
Auromorica. Vol. 33, No. I. pp. 85-90, 1997 

Pergamon Pm sooo5-1098(%)00126-4 
0 1997 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
ocux-II398197 $17.00 + 0.00 

Brief Paper 

gee Optimal Control of SISO Continuous-time Systems* 

ZI-QIN WANG? and MARIO SZNAIERt 

Key Words-2% control; optimal control; optimization, disturbance rejection. 

Ahatraet-In this paper we study the problem of designing a 
controller that minimizes the weighted amplitude of the time 
response due to a given, fixed input signal for SISO 
continuous-time systems. The main result of the paper shows 
that this problem admits a minimizing solution in 6p, and that 
the optimal closed-loop system has a special structure: a sum 
of delayed step functions, all having the same amplitude. 
Thus the optimal controller has a non-rational transfer 
function. Although in the general case finding this controller 
entails solving an infinite-dimensional linear-programming 
problem, we show that in some special cases the optimal 
solutions have closed-form expressions and can be found by 
solving a set of algebraic equations. Finally, we address the 
issue of selecting time and frequency domain weighting 
functions. This paper together with our paper ‘Rational 
Z-s&optimal controller for SISO continuous-time systems’ 
(IEEE Trans. Autom. Control. AC-41. 1358-1363 119%)). 
which deals with the design’ of rational 6p, suboptimal 
controllers for general systems, give a complete solution of 
the 2X control problem. 0 1997 Elsevier Science Ltd. All 
rights reserved. 

1. Introduction 
In many cases the objective of a control system design can be 
stated simply as synthesizing an internally stabilizing 
controller that minimizes the response to some exogenous 
inputs. When the exogenous inputs are assumed arbitrary but 
with bounded energy and the outputs are also measured in 
terms of energy, this problem leads to the minimization of an 
Y& norm of the closed-loop system. The case where the 
exogenous inputs are bounded persistent signals and the 
outputs are measured in terms of the peak time-domain 
magnitude leads to the minimization of an Z’,/l, norm. Yt’% 
optimal control can now be solved by elegant state-space 
formulae (Doyle et al., 1989) while 3,/l, optimal control can 
be (approximately) solved by finite linear programming 
(Dahleh and Pearson 1987a, b, 1988a; Diaz-Bobillo and 
Dahleh 1993). 

In some cases, following a common practice in 
engineering, the performance requirements are stated in 
terms of the response of the closed-loop system to a given, 
fixed test input (such as bounds on the rise time, settling time 
or maximum error to a step). In this case, if the output is 
measured in terms of its energy, the problem leads to the 
minimization of the closed-loop & norm, extensively studied 
in the 1960s and 1970s. On the other hand, if the outputs are 
measured in terms of the peak time-domain magnitude, it 
leads to the minimization of the ZJl, norm. 1, optimal 
control theory for SISO discrete-time systems was developed 
by Dahleh and Pearson (1988b) (for recent work in this 
context (see also Khammash, 1994; Elia et al., 1994; and 
references therein). In this paper we address the _Y?_ optimal 
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control problem for SISO continuous-time systems. In 
addition to presenting a continuous-time counterpart to the 
results of Dahleh and Pearson (1988b), the contributions of 
this paper are as follows. 

Contrary to &, Z and 2,/l, optimal control, where 
asymptotic stability of the closed-loop system is guar- 
anteed, in this case the optimal closed loop is only 
guaranteed to be in Z. Thus, in general, it is neither 
exponentially nor bounded-input bounded-output stable. 
In Dahleh and Pearson (1988b) this problem was 
addressed by restricting the closed-loop system to a 
subspace B c I,, algebraically equivalent to 1,. As a result, 
the optimal cost can be approached but not achieved. 
Moreover, it can be shown that the stability margin 
approaches zero as the closed-loop system approaches the 
optimal. In this paper we use a different approach. By 
observing that the stability of a weighted closed-loop 
system is sufficient (but not necessary) for BIB0 stability 
of the actual closed-loop system, our optimization problem 
is still formulated in ZZ. This guarantees the existence of 
optimal solutions, while the BIB0 stability requirement is 
addressed through appropriate weight selection. 

The structure of optimal solutions is identified: a sum, 
possibly infinite, of delayed step functions, all having the 
same amplitude. In general, finding these solutions entails 
solving an infinite-dimensional linear programming prob- 
lem. However, we show that for some classes of systems 
the solution has a closed-form expression that can be 
found by solving a system of algebraic equations. 

These results together with the method proposed in Wang 
and Sznaier (1994, 1996) for finding rational Z= suboptimal 
controllers give a complete solution of the 3X control 
problem. 

2. Preliminaries 
In this section we present the mathematical background 

required for solving the 2% optimal control problem. This 
material is standard in functional analysis and optimization 
textbooks (see e.g. Luenberger, 1969) and it is included here 
for ease of reference. 

Let X be a normed linear space. The space of all bounded 
linear functionals on X is denoted by X*. Consider x E X, 
r f X*, then (.r, r) denotes the value of the linear functional r 
at x. The induced norm on X* is defined as 

VII = sup ICr, r)l 
rtB,Y 

where BX + {x E X : 11.x )I 5 1). 
R, and Z@I+) denote respectively the set of nonnegative 

real numbers and the space of measurable functions f(t) on 
R, equipped with the norm: 

llfllI = ess s;p If(r)1 < 5. 

Similarly, Zi(W+) denotes the space of Lebesgue-integrable 
functions on R, equipped with the norm 

llfll, ;I 
I 

If(t)ldt<~. 
0 

8.5 
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Given f E Zi(R+), we shall denote its Laplace transform by 
F(s) = Y(j). 

Definition 1. Let S be a subspace of X. The annihilator 
subspace of S, denoted by S’ is defined as 

Next we recall a duality principle stating the equivalence of 
two optimization problems: one formulated in a normed 
space and the other in its dual. We shall exploit this result to 
recast the _?Z_ control problem as an optimization problem in 
a finite-dimensional space. 

Theorem 1. (Luenberger (1969, p. 121).) Let S be a subspace 
of a real normed linear space X. x* E X* be at a distance p 
from Sl. Then 

jt = min 1(x* - r*ll = ,s;~~ (x, x*), 
,*tSl 

where the minimum is achieved for some 6 E Sl. If the 
supremum on the right is achieved for some x0 E BS then 
(_r* - r&x0) = IIx* - $11 llxall (i.e. x*-a is aligned with 
x0). 

A special case of the above theorem is the case when S is 
finite-dimensional. In this situation the supremum on the 
right will always exist, and hence both problems have 
solutions. 

Now denote by A, the space of all Laplace transforms of 
elements in Z_. Elements of A, are analytic in the open right 
half-plane Re (s) > 0, and, if rational, have only simple poles 
on the imaginary axis. 

Definition 2. A system H(s) is said to be Z stable if 
H(s) E A,. 

Remark 1. Requiring % stability of the closed-loop system 
is usually not strong enough to guarantee acceptable 
performance, since it does not imply either BIB0 or 
exponential stability. However, as we show in the sequel, this 
latter requirement can be enforced by requiring 2% stability 
of appropriately weighted closed-loop transfer functions. 

3. Problem formulation 
Consider the system represented by the block diagram in 

Fig. 1, where P represents the plant to be controlled, the 
scalar signals d and u represent a fixed exogenous 
disturbance and the control action respectively, z and y 
represent the regulated output subject to performance 
constraints and the measurements available to the controller 
respectively, S is the impulse function, W,(s) is the Laplace 
transform of d, W, is an output weighting function 
representing performance requirement, 6 is the weighted 
output, and S represents the generalized plant. 

Our objective is to find an Z’_ internally stabilizing 
controller such that the maximum amplitude of the 
performance output l(t) is minimized. This is equivalent to 
minimizing the Z norm of the impulse response b(t) of the 
closed-loop system from S to 5: 

Compared with the discrete-time counterpart of the problem 
(Dahleh and Pearson, 1988b), we relax asymptotic stability to 
2% internal stability and drop the zero steady-state error 
requirement so that the infimum can be achieved. As we 
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Fig. 1. The generalized plant. 

mentioned before, asymptotic stability is certainly necessary 
for the actual (without input and output weights) closed-loop 
system from d to z, but not for the weighted one. We assume 
temporarily that we are satisfied with Z= internal stability of 
the weighted system, and we shall show later how to enforce 
internal asymptotic stability of the actual closed-loop system, 
through the use of appropriate weights. Additionally, these 
weights can be used to get a desired time response envelope 
for z(t) or enforce a zero steady-state error requirement. 

By a slight modification of the YJBK parametrization 
(Youla et al., 1976) it can be shown that the set of all 
closed-loop transfer functions achievable with .an 5& 
stabilizing controller can be parametrized as 

Q(r) = H(s) - W)Q(s), 

where H and I/ are rational stable transfer functions and Q is 
an arbitrary element in A,. 

Assume now tht U has n distinct zeros zi in the open right 
half-plane,? where z, = aj + ibj, and no zeros on the iw axis. 
Let T={MeA,:(M(zj)=O, j=l,...,n}. Then we have 
the following lemma, which can be proved using arguments 
similar to those in Dahleh and Pearson (1987b). 

Lemma 1. Let M(s) = U(s)Q(s). Then A E A, if and only if 
M E ?‘. 

Note that M(zj) = 0 if and only if 

I 

r 
m(t)e-Vdt = 0. 

0 

Define & = e-“j’cos b,t and gj = e_Oj’sin bjt. Then M G 

Z(m) E f if and only if (m,$) = 0 and (m, gj) = 0 for 
j = 1, . , n. Now consider the sets 

T={mmE:(m,f,)=Oand(m,g,)=Oforj=l,...,n}, 

S = span G, g,, j = 1, . , n}. 

Twill be viewed as a subspace of Z,, and S as a subspace of 
2,. It follows that T = S’, the annihilator subspace of S. The 
optimization problem (1) can now be written as 

~*=,:in~ Ilh -mll,=max(h, r). (2) ,sSS 

4. Problem solution 
In this section we use the duality principle to reformulate 

the problem (1) in terms of another optimization problem. 
While this second problem is still infinite-dimensional, this 
reformulation allows for identifying the structure of the 
solutions. Moreover, as we show in the sequel, in some cases 
these solutions can be found exactly by solving a system of 
algebraic equations. Finding approximate solutions in the 
general case is briefly discussed in Section 4.2. 

Theorem 2. (i) The solution to the problem (2) is given by 

I.L* = ,I$ Ilh - mll, 

= max i a, Re H(zj) + i a,+,, Im H(zj)] (3) 
al ,=I ,=I 

subject to = n 

II c a,e-“l’cos b,t + i aj+,e-uj’sin bjt dt 5 1. (4) 
0 ,=1 j=1 

(ii) An optimal solution r*(t) E 3, for the maximization 
problem always exists, where 

r*(t) = 2 a?e-Vcos bjt + i cu,++,e-“1’ sin b,t. 
j=l ,=I 

(iii) The optimal solution 4 = h -m always exists, and 
satisfies the following conditions: 

t This assumption is made to simplify the developments in 
the sequel. In Section 4 we shall show that it can be easily 
removed. 
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(a) I+(r)1 5 p*, with I+(r)1 = p* whenever r*(1) ZO; 

(b) 4(+*(t) 2 0: 

(c) 4(t) has the form 

4(t) = dol(t) + i (-1)‘24”10 - 0, 
,=1 

where l&l = I**, l(r) is the unit step function, and the ri 
are the points at which r*(r,) = 0, taken in increasing 
order and with appropriate multiplicity, 0 < t, 5 tz 5 

sr,. ; note that I may be infinite, in which case 
t,+ “: 

(d) @(zj) = H(zj) for j = 1,. . , n. 

Proof. (i) Using Theorem 1, we have II* = min,,sl Ilh - 
mll= = max,,es (r, h). However, r(t) has the representation 

r(t) = i a;-e-a/cos b,r + 2 aj+ne-aj’sin bit. 
,=1 j=l 

Hence 

(r,h)= f: aj Re ff(Zj)+ i a;+, Im(Zjh 

j=* j=1 

and ilr 11, I 1 if and only if 

II ,, $ aje-“~‘cos b,t + $ aj+, e-V sin bjt / dt 5 1. 

(ii) The existence of a solution to the maximization 
problem is guaranteed by the finite-dimensionality of S. 

(iii) The existence of a solution to the primal problem 
follows from duality. Properties (a) and (b) follow from the 
alignment conditions. To prove (c), note that r(t) is a 
continuous function and that r*(t) f 0 for any interval [a, b] 
except in the trivial case p* = 0. Hence g(t) is constant 
between any two adjacent zero points. Moreover, we can 
assume without loss of generality that r*(t) changes sign at ti 
(by considering points where r*(ti) = 0 but r*(t) does not 
change sign as zeros with a multiplicity of 2). The expression 
for 4(t) follows. Finally, property (d) is a restatement of the 
interpolation conditions. 0 

Consider now the case where the plant has a 
non-minimum-phase zero z, with multiplicity I, > 1. Then the 
conditions involving z, in Lemma 1 should be modified to 
M(‘)(z,) = 0, k = 0, 1,. , I, - 1, where MC*), denotes the 
kth derivative. These additional conditions can be accom- 
modated by including the functionalsf,.t + tke-slr~~~ b,t and 
g,,, k t&e-“I’sin b,t, k = 0, 1, . ,I - 1, in S and modifying 
Theorem 2 accordingly. 

It is interesting to compare optimal 6p, and 2% closed-loop 
systems. The first observation is that both contain delay 
terms and hence have non-rational transfer functions even 
for rational plants. The optimal 2, closed-loop system is a 
finite sum of delayed pulse functions with different strengths. 
The optimal Z closed loop is a (possibly infinite) sum of 
delayed step functions with the same amplitude. Thus a 
closed-form solution may not exist for an .YX optimal control 
problem. 

4.1. Exact solutions to two classes of systems 
(i) Systems with only real zeros. In this section we consider 
systems where all the unstable zeros zj, j = 1,. . . , n, of U(s) 
are real. Then the optimization problem reduces to 

subject to 

4) !j=l I 

The functional r*(t) has the form 

r*(t) = i cuje-z!. 
,=I 

For this class of systems the results of Theorem 2 can be 
used to obtain a closed form of the solution by exploiting the 
following theorem. 

Theorem 3. For the case where all the zeros zj, j = 1,. . . , n, 
are real the extremal functional r*(t) can equal zero at most 
at n - 1 points. The only exception is the trivial case /.L* = 0. 

Proof This follows immediately from Gantmacher (1959, 
Example 1, p. 118). 

Without loss of generality, we can always assume that 
r*(r) = 0 at exactly n - 1 points, by adding additional zeros of 
r*(t) at t = 0 and changing the sign of 4,) if necessary. The 
following corollary to Theorem 2 is now immediate. 

Corollary 1. For the case where all the zeros z,, j = 1,. , n, 
are real the optimal solution 4 = h - m has the form 

n-1 
4(t) = &J(t) + C (-1Y2&1(r - ti)v 

i=l 

where II#Q,[=~* andO~t,~r,~...~t,_,<m. Theoptimal 
closed-loop transfer function has the form 

m(s) = $ [ 4,) + “2’ (-1)‘2+,)e-+‘], (5) 
,=1 

and satisfies 

@(zj) = H(zj) for j = 1, . , n. (6) 

Remark 2. Since we have only n unknown variables ti, 
i=l,..., n - 1, and +,), in this case the solution to (1) can 
be found by solving the set of n algebraic equations (6). 

(ii) Systems with only one pair of complex zeros. In the 
case where f/(s) has only a pair of unstable complex zeros 
zi = a + ib and zz = a - ib, the optimization problem (1) 
reduces to 

CL*=m~~~~lh-mlll=max[(y,ReH(z,)+~*ImH(z,)l 
s 

subject to 

I 

I 
[are-“‘cos bt + oze-“‘sin btl dt s 1 

0 

In this case the functional r(t) has the form 

r(f) = are -aI cos bt + a2emU’sin bt = Mae-“’ sin (bt + f3,) 

= M,e-#‘sin b(r + ra) (7) 

where M,, 9, and t, depend on a, and 0 c: 6, = bt, < a 
It is easily seen from (7) that r(t) will change sign 

periodically at points tk = kx/b - t,, k = 1,2,. . . So the 
optimal solution has the form 

II=, 

where I&l = p*, and tk =kx/b -t,., k = 1,2,.. . . Even 
though the optimal solution 4(t) is a sum of infinite terms, 
the optimal closed-loop transfer function still has a closed 
form: 

Q(s)=$(l-$$. 
1 

Note that a(s) has only two unknown variables, I#+, and I,. 
Hence it can be solved exactly again from the following 
interpolation conditions: 

@(zj) = H(zj) for j = 1,2. (8) 

4.2. Approximation methods. An exact solution to the 9% 
problem for general systems is not available at present. In 
Wang and Sznaier (1994, 1996) we did develop a method for 
finding a suboptimal controller yielding a closed-loop system 
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with norm arbitrarily close to the optimal cost. An important 
feature of this method is that the resulting controllers are 
rational, and thus physically implementable. Because of 
space limitations, readers are referred to Wang and Sznaier 
(1994, 1996) for details about these approximations. 

Note in passing that an alternative approach will be to 
mimic the approximation method used in Dahleh and 
Pearson (1987b) for the 3, case. By sampling the integral 
constraint (4), the continuous-time problem will be 
transformed into a discrete-time problem. Then an 
approximate solution can be found by finite linear 
programming (Dahleh and Pearson, 1988b). However, this 
method will result in a suboptimal controller that, like the 
optimal one, has an irrational transfer function, and thus an 
additional approximation is required in order to obtain a 
practically implementable controller. 

5. Stability and time response shaping 
We now return to the fundamental issue of stability. With 

reference to Fig. 1, thus far we have only imposed the 
requirement that a(s), the weighted closed-loop transfer 
function from s(t) to l(t), must ge 3_ stable. However since 
Z stability does not imply asymptotic stability, additional 
steps are required in order to enforce asymptotic stability of 
the actual closed-loop system, that is, the closed-loop transfer 
function @&) between the physical input and output 
signals d(t) and z(r). Note that this is true even in the case 
where a suboptimal controller, obtained by using the 
finite-support approximation proposed in Wang and Sznaier 
(1994, 1996) is used. Though this approximation yields an 
asymptotically stable closed-loop system, the stability margin 
will approach zero as the approximation approaches the 
optimal controller. 

In this section we show how to both enforce closed-loop 
asymptotic stability and achieve some desirable performance 
specifications through the use of appropriate weighting 
functions. We shall discuss both frequency- and time-domain 
weighting. 

5.1. Time-domain weighting. One of the strengths of 2% 
optimal control is its ability to deal explicitly with 
time-domain specifications, such as overshoot and settling 
time. In general, these specifications can be described as 

Iz(t)l = Id*&)l sp(t) vt 6 R+ 

where &(t) is the closed-loop system from 8(t) to z(t), and 
p(t) is a bounded and nonnegative function. This confines the 
regulated output z(t) within an envelope. It is shown in 
Dahleh and Pearson (1988b) that this can be achieved in f, 
optimal control of discrete-time systems through time- 
domain weighting. Similar weighting can also be used for 
continuous-time systems. Let 

4(t) = t(t) =f(z(t)) = p-‘(t)z(t) e %(~)d,s(t)~ 

and consider the following weighted minimization: 

Suppose that a YJBK parametrization of all % stabilizing 
controllers for a&) is given by 

@16(s) = H(s) - Ws)Q(s). 

Then the following result furnishes a solution to (9). 

Theorem 4. Assume that U(s) has n single right-half-plane 
zeros z, and that p(t) = e-Y Then the following hold. 

(i) j.~* = _$fZ,“sK “d(r)“= 

= max 
a, r ; CY, Re H(Zj) + 2 a,+, Im H(z,) 

,=I 1 
subject to 

I I 
Z p(t) 2 u,e-9 cos bjf + i a,+ne-oj’sin b,t dt 5 1. 

0 j=1 ,=I 

(ii) An optimal solution r*(t) for the maximization 
problem always exists, where 

n 
r*(r) = c $e-Vcos b,t + 2 (YI*+ne-U~‘sin b,t. 

,=I ,=I 

(iii) The optimal solution 4(t) always exists, and satisfies 
the following conditions: 

(a) I4(t)l~ p* and 14(t)l= p* whenever r*(t) #O; 

(b) 4(t)r*(t) 2 0; 

(c) b(t) has the form 

44) = 4”W) + c (-lP$,l(t - t,), 
,=I 

where /doI = I**, and the t, are the points at which 
r*(t,) = 0 ordered in increasing order 0 5 t, 5 t2 5. 5 

t, . . ; if I is infinite then t, + ~0; 

(d) mrs(zj) = H(z,) for j = 1,. , n 

(iv) The optimal closed-loop system (Prs(s) and hence the 
optimal actual closed-loop system @&) are exponentially 
stable with a decay rate of (T for any o > 0. 

(v) If o >O then the regulated output z(t) has zero 
steady-state value. 

Proof: Since the proof is similar to those before, rather than 
going into details, we shall just mention some key points. 
Following the same idea as used in the proof of Theorem 7 in 
Dahleh and Pearson (1988b), parts (i)-(iii) can be proved 
using duality, as in Theorem 2. In fact these results hold even 
for the most general form p(t). Parts (iv) and (v) follow 
immediately from the fact that 

Iz(t)l = I&(t)/ = p*p(t) = p*e-“‘. q 

Note in passing that when p(t) = e-“‘, the EAS method 
(Wang and Sznaier 1994, 1996) can still be used to get 
rational suboptimal solutions arbitrarily close to the 
optimum. 

5.2. Frequency-domain weighting. In this subsection we 
consider systems U(s) having only real RHP zeros. In this 
case the 3% optimal weighted closed-loop systems m(s) has 
the form 

Q(S) = $ [ 4,, + i (-lW#+mrfl], 
i=l 

where I= n - 1 is finite. In this case m(s) has only one 
unstable pole at the origin. The situation involving complex 
RHP zeros is much more complicated, since 1 may be infinite 
and Q(s) may have additional poles on the w axis. 

Suppose that the regulated output z(t) is weighted in the 
frequency domain, 

C(s) = W&MS), 

and that the Laplace transform of d(t) is W,(s). Then 

Q(s) = W&)@,&)w,(~)? (10) 

where W,(s) and W,(s) serve as input and output weights. 
W,(s) is completely determined by the problem (the 
dynamics of the disturbance), but W,(s) is a free parameter 
that can be used to achieve some desirable performance 
specifications. 

Theorem 5. Assume that U(s) has only real RHP zeros. 
Then we have the following. 

(9 

(ii) 

The % optimal actual closed-loop system @&) is 
asymptotically stable if and only if the input weight W,(s) 
or/and the output weight W,(s) have at least one pole at 
the origin. 

The regulated output z(t) will have zero steady-state 
error if and only if the output weight W,(s) has at least 
one pole at the origin. 
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Proof (i) Since a(s) has only one unstable pole at the 
origin, (i) follows directly from the relationship (10) between 
Q(s) and a&). 

(ii) Note that 

z(s) = W,‘(s)@) = W,‘(s)@(s). (II) 

It follows from (11) and (5) using the final-value theorem, 
that 

[ 

n-l 

!iE Z(t) = !$ W,‘(S) 40 + C (-1)‘24,e-‘T 
i=l 1 

= (-l)“-‘~“w,‘(o), (12) 

where I&,[ equals the 9% optimal cost (different from zero 
except in trivial cases). Thus we have lim,,, z(t) = 0 if and 
only if 

W,‘(O) = 0. 

The above equality implies that W,(s) has at least one pole 
at the origin. q 

The above theorem states the following. For systems U(s) 
with only real RHP zeros, asymptotic stability of the optimal 
L?- closed-loop system is automatically guaranteed if the 
dynamics of the disturbance d(t) contains a mode at the 
origin, such as a step disturbance. If that is not the case then 
an output weight W,(s) containing a pole at the origin must 
be selected in order to guarantee asymptotic stability. To get 
zero steady-state error, just using disturbance dynamics as an 
input weight is enough for 7t& XZ and 9, optimal control, 
but not for & optimal control. For the last, an output weight 
must be used as well. 

Remark 3. When either the input weight W,(s) or the output 
weight W,(s) contains unstable modes, a precompensator 
containing these modes must be used before performing the 
YJBK parametrization. 

6. Examples 
Example 1. Consider the plant 

P(s) = ;‘T; 

with a step disturbance d. We want to design a controller 
C(s) to minimize the amplitude of the regulated output z(t) 
(z(s) = a(s) = [l + P(s)C(s)]-‘d(s)). 

Since W,(s) = d(s) = l/s, a precompensator containing this 
dynamic must be used. We choose a proper 
precompensator(s + 1)/s. Then the problem becomes that of 
finding an 2% stabilizing compensator C(s) for the 
augmented plant 

jqs) = 0 + l)(s - 2) 
s(s - 1) 

such that the amplitude of z(r)(z(s) = a(s) = [l + 
@(s@(s)]-‘d(s)) is minimized. One YJBK parametrization 
is given by 

Q(s) = H(s) - W)Q(s) 

= (s Z,lt 2) - (s + l)(s + 2)* 
(s - l)(s - 2) Q(s), 

Since U(s) has only two real RHP zeros at 1 and 2, the 
optimal solution is of the form 

Q(s) = $ (1 - 2ec’p). 

By solving the interpolation conditions 

Q(c) = H(z,), i = 1,2, 

we get &= 2 and I, = In2. Hence the optimal cost 
CL* = I&l = 2 and the optimal solution is 

Q(s) = s [l - 2(s)_“]. 

The actual closed-loop system is 

azd(s) = 2 - 4(2)-‘, 

which is stable, as expected, since the input weight contains a 
pole at origin. The optimal controller is 

(s - 1)[4(2)-” - l] 
‘(‘) = (s - 2)[2 - 4(2)-“1’ 

It can be shown that 1 is not a zero nor is 2 a pole of the 
controller C(s), so there are no unstable pole-zero 
canceflations. It can also be shown that C(s) has no pole at 
the origin, even though a precompensator containing a pole 
at the origin has been used. This is not an unexpected result, 
since the regulated output z(t) is not weighted in either the 
time or the frequency domain. The presence of a pole at the 
origin would lead to a zero steady-state value, contradicting 
the Z optimal structure. 

Example 2. Consider the same plant 

P(s) =s 
with a step disturbance d. We want to design a controller 
C(s) to minimize the amplitude of the weighted output 
5(r) = e’z(r) (z(s) = @&) = I1 + P(s)C(s)]-‘d(s)). 

This problem can again be solved exactly. It is easy to 
show that 

@(s) = C(s) = z(s - 1) = @&s - 1). 

From Example 1, we have that a YJBK parametrization is 
given by 

@&) = H(s) - W)Q(s) 
6(s - 1) (s - l)(s - 2) Q(s,, 

= (s + I)(s + 2) -(s + l)(s + 2)* 

Since U(s) has only two real RHP zeros at 1 and 2, the 
optimal solution is of the form 

a(s) = $ (1 - 2e-‘Is). 

By solving the interpolation conditions 

@(z, + 1) = aLa = H(z,), i = 1,2, 

we get 4,) = $(2 + ~‘2) and r, = & In 2. Hence the optimal cost 
II* = I&,\ = z(2 + fi) and 

Q&S) = @(s + 1) = -[l - 2e-‘I(‘+‘)]. 
s+l 

The actual closed-loop system is 

mrd(s) =$ [l - 2e~rl(s+1)], 

The optimal controller is 

C(s) = [l + s - +Os(l - 2e-‘l(J+‘))](s - 1) 

&s(l - 2e-‘++‘))(s - 2) 

It can be shown that 1 is not a zero nor is 2 a pole of the 
controller C(s), so there are no unstable pole-zero 
cancellations. It can also be shown that C(s) does indeed 
have a pole at origin this time. 

7. Conclusions 
In this paper we have formulated and studied the ZZ 

optimal control problem for SISO continuous-time systems. 
We have shown that an optimal solution always exists, 
although, as in the 9, optimal control case, it has a 
nonrational transfer function. The resulting optimal closed- 
loop system is a (finite or infinite) sum of delayed step 
functions, and its magnitude is equal to the optimal cost 
almost everywhere. 

In general, this optimal solution does not have a 
closed-form solution, and some approximation methods must 
be used to solve the problem (for details on obtaining 
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rational suboptimal controllers with guaranteed error bounds 
see Wang and Sznaier 1994,1996). However, we have shown 
that for two classes of systems the structure of the optimal 
solutions can be exploited to reduce the problem to that of 
solving a set of algebraic equations determined by the 
interpolation conditions. Finally, we have addressed the 
problem of enforcing additional performance requirements 
(such as stability degree, zero steady-state error or settling 
time bounds) through appropriate time- or/and frequency- 
domain weighting. 
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