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Rational Lm -Suboptimal Controllers 
for SISO Continuous-Time Systems 

Zi-Qin Wang and Mario Sznaier 

Abstruct- In this paper we study the problem of minimizing the 
weighted amplitude of the time response due to a given fixed input 
signal for single-input/single-output (SISO) continuous-time systems and 
focus on obtaining rational suboptimal solutions. An EAS (Euler ap- 
proximating system)-based method is proposed for designing a rational 
C,-suboptimal controller for SISO systems. It is shown that this rational 
approximation is the best one among a set of rational approximations, 
in the sense of providing the tightest upper bound and that it can 
approximate the optimal cost arbitrarily close. 

I. INTRODUCTION 
In many cases the objective of a control system design can be 

stated simply as finding a controller which stabilizes the feedback 
system and minimizes some output responses to some exogenous 
inputs. Depending on how the exogenous inputs are modeled, this 
leads to different mathematical optimization problems. For example, 
when the exogenous inputs are assumed arbitrary but with bounded 
energy, and the outputs are also measured in terms of energy, this 
problem leads to the minimization of the 3-1, norm of the closed-loop 
system; when the exogenous inputs are bounded persistent signals and 
the outputs are measured in terms of the peak time-domain magnitude, 
this problem leads to an CI/ZI norm minimization. %,-optimal 
control can now be solved by elegant state-space formulas [8], while 
CI /ZI -optimal control can be (approximately) solved by finite linear 
programming [3]-[5], [7]. In some cases performance specifications 
are given in terms of the response to fixed exogenous inputs (such as 
the step response). The case where the input is fixed and the output 
is measured in terms of its energy leads to the minimization of the 
closed-loop 3-12 norm extensively studied in the 1960’s and 1970’s. 

The case where the exogenous inputs are assumed fixed and the 
outputs are measured in terms of the peak magnitude leads to the 
minimization of an C,/Zm norm. I,-optimal control theory for 
single-input/single-output (SISO) discrete-time systems was devel- 
oped by Dahleh and Pearson in [6]. In this paper we address the 
C,-optimal control problem for SISO continuous-time systems and 
focus on designing rational suboptimal controllers. 

In [ l l ]  we have identified the structure of C,-optimal solutions. 
While exact solutions are not yet available except in some special 
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cases, we have shown that as in C1-optimal control, C,-optimal 
solutions contain delay terms. Thus, both the closed-loop system 
and the controller have irrational transfer functions, even if the plant 
and all the weights are rational. Since it is difficult to implement an 
irrational controller, this raises the additional question of existence 
of rational approximations. This issue is not trivial since a delay 
generally cannot be uniformly approximated by a rational system 
either in C1 or C, spaces. References [2], [9], and [12] answered 
the question in the GI case in an affirmative way and presented 
two methods to get rational L I  -suboptimal controllers. In this paper 
we will show that the same idea used in [2] [using the Euler 
approximating system (EAS)] can still be employed. However, using 
this technique requires imposing additional interpolation constraints. 
A modified EAS-based method is proposed and is shown to yield the 
best approximation, in the sense of providing the tightest upper bound, 
among a set of rational approximations. Moreover, we indicate how 
to select a priori the approximation to meet a given approximation 
error bound. 

11. PRELIMINARIES 

A. Notation 

Let R+ denote the set of nonnegative real numbers. C,(R+) 
denotes the space of measurable functions f ( t )  equipped with the 
norm: I l f l l ~ ~  = ess.supR+ If(t)l < 00, and C l ( R + )  denote 
the space of Lebesgue integrable functions on R+ equipped with 
the norm l l f l i ~ ~  = som I f ( t ) l d t  < 00. Similarly, I 1  denotes the 
space of sequences h = {h , }  such that llhllll = E:=, lhzl < 
00, and 2, denotes the space of sequences h = {h ,}  such that 
lihlll, = supz 1h.I < 00. Throughout the paper we will use the 
capital letter F ( s )  [or H(z ) ]  to denote the Laplace transform (or 
Z-transform) of f ( t )  (or { h i } )  and packed notation to represent 
state-space realizations, i.e., 

B. The C,-Control Problem 

Definition 1: A system F ( s ) ( H ( z ) )  is C, stable (1- stable) if 
f ( t )  E C,(R+)(h = {hi}  E l,). A controller C ( s ) ( C ( z ) )  is 
an C, -stabilizing (2,-stabilizing) controller if it renders the overall 
closed-loop system @ ( s ) ( @ ( z ) ) C ,  stable (Z, stable). 

By using this concept we can precisely state the L,-control 
problem as follows. Consider the system shown in Fig. 1, where 
P represents the plant to be controlled; the scalar signals d and 
U represent a fixed exogenous disturbance and the control action, 
respectively; z and y represent the regulated output subject to 
performance constraints and the measurements available to the con- 
troller, respectively; 6 is the impulse function; Wr (s) is the Laplace 
transform of d ;  WO is an output weighting function representing 
performance requirement; < is the weighted output; and S represents 
the generalized plant. Then the C,-control problem can be stated 
as follows. 

Problem 1 (C-): Find an C,-internally stabilizing controller 
such that the C, norm of the impulse response 4( t )  of the 
closed-loop system from 6 to 5 is minimized, i.e., 
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Fig. 1. The generalized plant. 

Remark 1: Note that C, stability does not imply either exponen- 
tial or bounded-inputhounded-output stability. Thus, compared to the 
discrete-time counterpart of the problem [6],  we relax asymptotic 
stability to C,-internal stability. Clearly, asymptotic stability is 
necessary for the actual (without input and output weights) closed- 
loop system from d to z but not for the weighted one. Relaxing the 
stability requirement allows for finding an optimal solution for the 
L ,  problem (see [ l l ]  for details). Internal asymptotic stability of 
the actual closed-loop system can be enforced through the use of 
appropriate weights [ l l ] .  

By using a slight generalizaion of the Youla parameterization, the 
L,-optimal control problem can be recast as [ 111 

where H ( s )  and U ( s )  are both stable functions. In the sequel we 
will assume that U ( s )  has no zeros on the imaginary axis. Thus (by 
absorbing its stable zeros in Q if necessary), we can assume that all 
the zeros of U ( s )  are unstable. Under this assumption, the solution 
to (1) is given by [ l l ]  

r n  1 

subject to 

where zJ denotes the zeros of U ( s ) .  
In [ 11 J we analyzed the structure of the solutions to this infinite- 

dimensional optimization problem and we showed that, in gen- 
eral, they contain delay terms thus leading to nonrational transfer 
functions. Given the difficulty of implementing these controllers, 
and motivated by the results of [2], we will search for rational 
approximations to the optimal solution. To this effect, proceeding 
as in [2], we introduce the EAS. 

C. The EAS and Its Properties 
Definition 2: Consider the continuous-time system 

Its EAS is defined as the following discrete-time system: 

where r > 0. 
From this definition it is easily seen that we can obtain the 

EAS of G(s )  by the simple variable transformation s = e, i.e., 
GE(z ,  7 )  = G [ e ) .  Moreover, by a slight generalization of [2, Th. 
21 it can be easily shown that if G E ( z ,  T) is asymptotically stable 
(or I ,  stable), then (5) is also asymptotically stable (or C, stable). 
Conversely, if G(5) is asymptotically stable, there exists T ~ , , ,  > 0 
such that for all 0 < 7 5 ~ ~ ~ ~ G ~ ( z . 7 )  is asymptotically stable. 

Dejinition 3: Consider the system 

k [ t )  = Ax( t ) .  (7) 

A set C C R" is a positively invariant set of (7)  if for any initial 
condition xo E C, the corresponding trajectory x(t, 2 , )  E C for all 
t .  A similar definition holds for the case of discrete-time systems. 

We now introduce a key property of the EAS, the fact that for  
strictly proper systems, the I ,  norm of the impulse response of the 
EAS scaled by T - ~  is an upper bound of the C, norm of the impulse 
response of the corresponding continuous-time system. 

Theorem 1:  Consider the strictly proper continuous-time system 

j: = -4x + B'u 

c = cx 
and its corresponding EAS 

x ( k  + 1) = [ I  + rA)x(k) + ~ B w ( k )  
(9) 

Assume that G E ( z , r )  is I ,  stable. Then we have that (8) is C, 
stable and such that l lg( t ) l lCm 5 i1l.y ( I C , ~ ) l l i ~ ,  where g ( t )  
and g " ( k , ~ )  are the impulse responses of G(s )  and GE(z ,7 ) ,  
respectively. 

Pro08 C, stability of (8) follows from I ,  stability of G"(z.  T )  

and [2, Th. 21. The second claim will be established by extending 
the proof of [lo, Th. I] to I,-stable systems. To simplify the 
expressions, take IC = -1 as initial time for the EAS so that 
1 1: - 4  T .  ' ( k , ~ )  = C z [ k ~ )  and g ( t )  = C x ( t ) ,  where ~ ( t )  and x ( k , ~ )  
are the free-state responses of (8) and (9), respectively, taking the 
vector B as the initial condition. Denote by n the dimension of A. 
We assume (without loss of generality) that (A? B )  is a reachable 
pair. This is both a necessary and sufficient condition for the EAS to 
be reachable for all 7 2 0. The reachability of ( I  + T A ,  T B )  implies 
that the sequence s ( k ,  7 )  spans R". Denote by S ( T )  the convex hull 
of the set of points {+z( i ,  i-). i = 0.1, .  . .}. By definition S ( T )  
is a positively invariant set for z ( k  + 1) = ( I  + ~ A ) z ( k ) .  Since 
x ( i ,  T ) ,  i = 0,1, .  . ., span R", the set S ( T )  is convex and contains 
the origin in its interior. 

Denote by S ( T )  the closure of S ( 7 ) .  Since G"(2.r) is 1, stable, 
S ( T )  is compact. We now prove that it is a positively invariant set for 
r ( k +  I)  = ( I $ T A ) Z ( ~ ) .  For any point zo on the boundary am, 
we can find a sequence { ~ i ,  i = 1 , 2 , . . . ]  in S ( T )  approaching T O .  

The sequence { ( I  + 7-4)2;, i = 1 , 2 , .  . .] is also inside S ( T )  and 
approaches ( I  + ~ A ) Z O .  So we must have ( I  + TA)ZO E S ( T ) .  

By generalizing the proof of [ l ,  Th. 2.21 from polytopes to general 
convex, compact sets, it can be shown that S ( T )  is also a positively 
invariant set for &(t)  = Ax@). Since x (0 )  = B = x ( 0 , ~ )  E S ( T ) ,  
it follows that the state impulse response x(t) of (A ,B)  E S(7). 
Define the set 

< ( k )  = CZ(k). 

E 

P(p)  = { T  E R" : lCrl 5 p , p  > 0) (10) 

then 

= inf{p 2 0 : x ( k , ~ )  E P ( p ) ,  for all k 2 O}. 

(11) 

Therefore the points & x ( i . ~ ) ,  i 2 0, are in the set P(+llg" 
(k,i-)I\i,).  Since this set is convex and closed, both S ( T )  and 
S ( T )  are its subsets. As ~ ( t )  E S(i-), we have I lg(t)I lc, = 
~ " I ' t > O  lCT(t)l 5 ~l1VE(kT)I l l , .  0 
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Remark 2: It is important to note that Theorem 1 only holds for 
strictly proper systems. When D does not equal zero, the impulse 
response g ( t )  of the continuous-time system will have an impulse 
function and hence it will no longer belong to C,. It follows that 
an L,-optimal solution will always render the closed-loop system 
strictly proper. Since discrete-time I,-optimal solutions do not share 
this property, additional precautions must be used when attempting 
to use the EAS approximation. 

111. MAIN RESULTS 
Motivated by [2] and Theorem 1, we may want to consider the 

I ,  -optimal control problem for the corresponding EAS system 

where h E ( t )  and u E ( t )  are the EAS of h( t )  and u( t ) ,  respectively. 
However the I,-optimal closed-loop system is not strictly proper in 
general. To apply Theorem 1 we must add to the optimization problem 
(12) an additional constraint, namely that a E ( z )  = HE(.) - 

U E ( z ) Q ( z )  must be strictly proper, or equivalently 4: = @(m) = 
0, resulting in the following nonstandard I,-optimization problem: 

p~ = inf llhE - uE * 4111, subject to 4; = 0. (13) 

Consider first the simpler case where both HE and UE are strictly 
proper. In this case the additional condition is automatically satisfied, 
and it is easily seen that (13) is equivalent to' 

(14) 

where SL denotes the left-shift operator. Consider now the case where 
HE ( z )  and U" ( z )  are proper, but not strictly proper. Clearly, for the 
C, problem (2) to have a finite solution, if h f  = H"(oo)  # 0, then 
we must have U: = UE(m) # 0 and must select go A &(a) = 
hF/uF.  Define H ( z )  = H " ( z )  ~ U E ( z )  i go (note that H ( z )  is 
strictly proper and such that fi(zF) = H " ( z f ) ) .  The I ,  problem 
can be rewritten as 

PE = inf IIH"(z) - U E ( z ) & ( z ) l l l ,  subject to 4: = 0 

q € 1 c c  

p" = inf I~SL i (hE - uE i g)11l, 
q E l ,  

q € i ,  

subject to qo = h,E 
",E 

= inf IIH(z) - U(z )Q(z ) l l i ,  
? E l ,  

@El, 
= inf l lzri(z)  - ~ ~ ( z ) Q ( z ) 1 1 1 ,  (15) 

where 6(z)  = and Q ( z )  = z ( Q ( z )  - q,,), and where that last 
equality follows from the fact that both & ( z )  and U ( z )  are strictly 
proper. Since a( 2:) = H E  (z:)  for all the unstable zeros of UE ( z ) ,  
it is straightforward to venfy that both (14) and (15) have the same 
dual problem. These results are summarized in the following lemma. 

The nonstandard I ,  problem (13) can be solved by 
transforming it to a standard I ,  problem in either form (14) or form 
(15). Furthermore, both (14) and (15) lead to the same dual problem 

r n  n 1 

Lemma 1 

' Alternatively, the original I ,  problem can be solved, adding the additional 
interpolation constraint a(..) = H ( m )  = 0. A simple computation shows 
that this is equivalent to (14). 

where zf denote the unstable zeros of U E ( z ) .  
After solving this dual problem, we get a strictly proper closed- 

loop system @ E  ( z )  and an optimal controller ICE ( z ) .  Transforming 
back to their continuous counterparts @.EAS ( s )  = @" (1 + T S )  and 
l i~ .~ . s  ( s )  = K" (1 + T S ) ,  we have that @EAS (s) is C, stable and, 
fromTheorem 1, l l ~ ~ ~ ~ ( t ) l l ~ ~  5 ";". It can be shown that @EAS(S) 

satisfies the interpolation conditions. Hence we can use @EAS(S) and 
ICE AS (s) as approximations to the optimal closed-loop system (a( s )  
and optimal controller K ( s )  of the C, problem, respectively. 

Next we show that the error of the resulting approximation goes to 
zero when 7 + 0. Furthermore, we indicate how to select T a priori 
to meet any prespecified error bound. 

Theorem 2: Given any E > 0, we can find a r a priori for the 
EAS method such that 

EAS 
P* I 114 IIC, I I P * ( l + E )  

where represents the impulse response of the closed-loop 
system obtained using the EAS method. Moreover, the approximation 
error converges to zero as fast as O(T) .  

Pro03 Consider the optimal 1,-control problem for the EAS 
(14) or (15) and their dual (16). By [2, Th. 21 there exists T,,, such 
that UE is stable for all 0 < T < rmTmax. Moreover, U E  has the 
same number of unstable zeros as U ( s )  since U ( s )  has only unstable 
zeros. Let 

ai = Pa Re{z?} + Pi+n Im{z?} 

a,+, = -Pi Im{z?} + Pi+n Re{.$}. 

By direct calculations it can be easily shown that an alternative form 
of (16) is 

n 1 

subject to 

n I 

From the relationship between the EAS and its corresponding con- 
tinuous system, the above dual problem is equivalent to 

r n  1 

subject to 

2 = 1  I 

Let us see how this problem can be related to the C, problem. The 
dual problem of &-optimal control is 

n 1 
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n 

at Re {e-'"} + Ea2+, Im{e-"'f} 
2 = 1  

subject to 

d t  5 1. (22) 

The difference between the two problems is in the constraints. Let us 
first sample r ( t ,  a )  at the time points t k  = k~ and approximate the 
integral Jam r ( t .  n ) d t  with an infinite sum r r ( t k ,  a ) .  Second, 
approximate the irrational terms eCZz tb  in ~ ( t k ,  a )  by rational terms 
(1 + T Z ~ ) - ' ,  obtaining a constraint identical to (20), up to a scaling 
factor T .  This scaling leads to the same scaling in the optimal cost. 
So the EAS method can be thought of as a two-step approximation 
of the original C, -optimal control problem. 

We now derive an upper bound on any a satisfying the constraint 
(18). Moreover, this bound is linear in T .  Assume, without loss of 
generality, that l / r  is an integer. Define 

i=l  
n 

+ E a,+, Im{ ( Z y l T - J )  j = 1 . 2 , .  . . ,1/' 
2 = 1  

Then l l ~ ~ ( k , a ) l l i ~  = l lr&(k,a)ll i l .  A bound on 11a111 for 
all a satisfying the constraint I l r ~ ( k ,  a)llil 5 1 can be obtained as 
follows. Consider the following sets: 

= { a :  IIr;(k'a)llil 5 1) 

~ ( r )  A { a :  ~ r $ ( k , a j /  5 1 for IC = 0,1:..,p - I >  

where p 2 n. Clearly S l ( r )  C R(T) .  Hence supaEs1 I(aII1 I 
51ipaE~ lla/ll. Moreover, from Theorem 1 it can be shown that if 
TI < 72, then Sl(r1) C S,(TZ). It follows that given 7, a bound on 
11a(T)111 for all T 5 7 is given by 

where F( . )  is a p x n matrix defined by 

F ( r )  = ( R e  { ( Z F ) - ' / ~ ) ~  In]{ ( z f ) - " / ' > )  

j = l ; . . , n  and i = l:..,p 

and where I I 1, 1 indicates the matrix norm induced from (El?-'. I I . I I 1 ) 
to (R",  1 1  . [ I 1 ) .  Note that since p 2 n,  F ( r )  has full column 
rank. Hence its left inverse F - ' ( T )  is well defined. Similarly, it 
can be shown easily that an upper bound on any n satisfying 
llr&(k.a)l/il 5 1 is given by 

llalli 5 llF-'(?)11i,i .~y{I(~?)-""l} I 1 1 ~ - 1 ( ~ ) 1 1 ~  I .  (24) 

Therefore, (24) provides a common upper bound independent of 
j on llalll satisfying ~ ~ ~ & ( k , a ) ~ ~ ~ ~  5 1, j = l , . . .  , l / ~ .  It 
follows that an upper bound on any a satisfying ~ ~ ~ ~ ( k , ~ ) ~ ~ ~ ~  = 

C8cl llr&(k,a)ll1 5 1 is given by 
1 

ll4ll 5 T l l ~ - l ( w , l  (25) 

where 7 is fixed. Now, given any t E R+, assume that the constraint 
(18) is satisfied. Selecting k such that t h  < t 5 t k + l  we have that 

n 

a , R e { ( l + ~ z , ) - ~ - ~ }  + Cn,+, Im{( l+rz , ) -" - '  
2 = 1  

n 11 
I E 

at Re{e-"'t} + En,+, Im{e-""} 
- t = l  

m 

k=O 

where E(.) !i 
bounded as follows: 

i ( k ,  T ) .  Each of the terms in i can be 

M 

Thus 

k=O 

Given any E > 0, we can always choose a T such that E(.) 5 E. 

Note that (28) also holds for a* which solves the dual problem of 
EAS and that 

1L 

(h,r(f ,CV*)) = x a : H ( Z , )  = P E  
Z=1 

so we have 
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Finally, to prove the last part of the theorem consider the Taylor 
expansion of (30). Note that 

IeZtT - 

l ez%Tl  - 1 
1 ~ ~ 7  + $ ( z ~ T ) ~  + $ ( z ~ T ) ~  + . . . I 

e R e l z , l T  - 1 
11 = 

(31) 

Thus we have that $ - ,U* 5 tp* + 0 as O ( r )  [since E + 0 as 
O(7)I. 0 

The following lemma is a straightforward application of [6, Th. 

Lemma 2: Given any > 0, an I,-suboptimal control for the 
51 to the EAS. 

EAS problem with cost P E  such that 

P E  5 P 5 P E ( 1 S E )  

can be found by solving a system of linear equations. Moreover, the 
suboptimal closed-loop system has finite support. A lower bound for 
the number of support ilr can be obtained from 

where F ( 0 )  A (Re{e-zzJ} I I m { e - z f 3 } )  j = l , . . . , n  and 
z =  l ; . . ,p,andwherez: =min,{lz?l} = m i n ~ { ~ l + ~ z ~ ~ } .  

Combining the results of Theorem 2 and Lemma 3, it follows that 
a rational suboptimal solution to the &,-control problem can always 
be found, and its cost can be made arbitrarily close to the optimal 
cost p*.  Denoting the C, norm of the rational suboptimal solution 
as PR, then by Theorem 1 we have PR I p / r .  Given any E > 0, 
we can easily find €1 > 0 and €2 > 0 such that 

E 1  + €2 + E l E Z  5 E 

If we select r according to Theorem 2 such that the error bound €1 is 
satisfied and select N according to Lemma 2 such that error bound 
€ 2  is satisfied, we have that 

= (f - 5) + (F - .*) 
PE I -E2 +P*€I 

I P*(€l + E2 + E l t 2 )  I P*E. 

Therefore the given error bound E for the rational suboptimal solution 
is satisfied. Moreover, since the finite support 1,-suboptimal solution 
for the EAS problem is internally asymptotically stable, so is the 
corresponding suboptimal solution to the L,-control problem. 

We have shown above that the EAS method is an effective way to 
obtain a rational approximation to the L,-control problem. There 
exist, of course, many ways to develop rational approximations. 
Next we will show that the EAS approximation is the best one 
among a certain subset n(r, N )  of the set of rational approximations, 
in the sense that it yields the tightest upper bound. For a given 
0 < 7 < r,,, and a given N > 0, the closed-loop system obtained 
using the EAS method is 

N 

@ ( s )  = C&(T)(l+ 7 s ) - 2 .  
2 = 1  

Define 
f N 

= H ( Z k ) , l c  = 1,. . . ,n  . (33) 1 
Clearly, all elements in a ( ~ ,  N )  (including the EAS approximation) 
can be thought of as rational approximations of the &-optimal 
closed-loop system. Let y max,{I&(r)/, i = 1;’. , N } .  Since 
y is the I ,  norm of the EAS of @ ( s )  = x:El 4t(r)(1 + T S ) - ’ ,  it 
follows from Theorem 1 that 

Y I ld(t)l lL I ; 
and 

The following theorem presents a result based on this upper bound 

Theorem 3: The rational approximation of the C,-optimal con- 
troller given by the EAS method leads to the smallest upper bound 
y/r among the elements of the set n ( ~ ,  N ) .  

Proofi Consider the following set: 

of l l+( t ) l lL .  

N 

For every in nc( r ,N)  there is a @ ( s )  = aE(l + 7 s )  in 
n(7, A.), and vice versa Since y = l l ~ E l l ~ m ,  the closed-loop system 
@E obtained by solving the optimal I,-control problem for the EAS 
certainly has the smallest y among the elements of the set C L E  (7, N ) .  
It follows that the rational closed-loop system obtained using the EAS 
methods also has the smallest upper bound y / r  among the elements 

0 
Remark 3: The theorem only states that the rational approximation 

obtained using the EAS method is the best one in the sense that 
it leads to the smallest upper bound y / r .  However, following a 
procedure similar to [lo], it can be shown that this bound converges 
monotonically to the optimal cost. Hence the gap between the upper 
bound and the actual C, norm vanishes as T -+ 0. 

of the set Q(7, N ) .  

IV. AN EXAMPLE 
Consider the plant 

s - 2  
s - 1  

P ( s )  = ~ 

with a step disturbance d. We want to design a controller C(s) to 
minimize the amplitude of the regulated output z ( t )  ( z ( s )  = @(s) = 

Since the output is not weighted, we have only an input weight 
W J ( S )  = d ( s )  = 5 .  To get a Youla parameterization, a precompen- 
sator containing this dynamics must be used. We choose a proper 
precompensator +. Then the problem becomes that of finding an 
G,-stabilizing compensator C( s )  for the augmented plant 

(1 + P ( s ) C ( s ) ) - l d ( s ) ) .  

such that the amplitude of z ( t )  is minimized. One Youla parameter- 
ization is given by 

@ ( s )  = H ( s )  - U ( s ) Q ( s )  
(s - l)(s - 2) 
( s  + I)(s + 2)2 Q ( S ) .  

- 6 ( ~  - 1) 
- 

(s + l)(s + 2)  
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For this plant the exact C,-optimal solution can be obtained and is 
given below (see [ l l ] )  

2 a(.) = -[1 - 2(2)-] 
S 

with optimal cost p* = 2 and corresponding C,-optimal controller 
given by 

( S  - 1)(4(2)-“ - 1) 
C ( S )  = 

(s - 2)(2 - 4(2)-”)’ 

We proceed now to find a rational controller using the EAS method. 
Let e = 0.1. With 7 = 0.001, according to (30) with 7 = 1 we 
have ~ ( 7 )  = 0.0901 5 0.1. The Youla parameterization of the EAS 
problem is 

@ ( z )  = .(HE(.) - U E ( z ) Q ( z ) )  

where 

H E ( z )  = H ( G )  = 0.006(2 - 1.001) 
( Z  - 0 . 9 9 9 ) ( ~  - 0.998) 

E 

( z  - 0.999)(z - 0 .998)~  
. 

Since z U E ( z )  has only two unstable real zeros, the l,-optimal 
control for the EAS problem can also be solved exactly. The optimal 
cost is 

/LE = 0.002 001 4 

and the optimal solution is of the form 

2=0 2 = q + 1  

with q = 693, 40 = 0.002001 4, and & = -0.0000247, So 

@E(.) = z - l @ ( z )  

1 
2 - 1  

= 0.0020014-(1 - 2 ~ ~ ~ ’ ~ )  + . 0 0 1 9 7 6 7 ~ - ~ ’ ~  

and the rational closed-loop system obtained using the EAS method is 

@.EAS(S) = aE(l + TS) = 2.0014-(1 - 2(1 + . O O ~ S ) - ‘ ~ ~ )  
1 
S 

+ ,001 976 7(1 + .0Ols)pg4 

with I I Q E A s ( ~ ) ~ ~ c ,  5 p E / r  = 2.0014. 
Note in passing that 7 could be much larger than the value 

estimated from (30) to satisfy the given approximation error t. For 
this example, even with T = 0.1, we can get an optimal cost 

= 0.21364 which still satisfies the ten percent error requirement. 
This larger value of T results in a lower-order approximation 

1 
@EAS(S) = 2.1364-(1 - 2 ( 1 +  + 0.12052(1+ .Is)-*. 

V. CONCLUSION 

We have shown in [I  11 that the C,-optimal control problem 
leads to nonrational closed-loop systems, even when the augmented 
plant is rational. In this paper we present an EAS-based method to 
obtain rational C,-suboptimal solution for general SISO systems. 
The suboptimal cost can be made arbitrarily close to the optimal cost 
by selecting a sufficiently small value of the parameter T. Moreover, 
7 can be selected a priori to satisfy a given approximation error 
bound. It is also shown that the rational approximation obtained 
using the EAS method is the best one among certain sets of rational 
approximations, in the sense of yielding the tightest upper bound. 

Even though rational approximations are available, further work 
toward obtaining exact solutions for general systems is worth pursu- 
ing. This is not only of theoretical interests but will also enhance our 
understanding of the C,-optimal control problem and the structure of 
the optimal solutions. A model reduction technique in the context of 
C, -optimization would be of significant practical value since rational 
C,-suboptimal controllers may have very high order. 
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