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Further Results on Rational 
Approximations of L1 Optimal Controllers 

Zi-Qin Wang, Mario Sznaier, and Franco Blanchini 

Abstract-The continuous-time persistent disturbance rejection proh- 
lem (L1 optimal control) leads to nonrational compensators, even for 
SISO systems [4], [7], [SI. As noted in [4], the difficulty of physically im- 
plementing these controllers suggest that the most significant applications 
of the continuous time L1 theory is to furnish bounds for the achievable 
performance of the plant. Recently, two different rational approximations 
of the optimal L' controller were developed by Ohta et al. [6] and 
by Blanchini and Sznaier [l]. In this paper we explore the connections 
between these two approximations. The main result of the paper shows 
that both approximations belong to the same subset RT of the set of 
rational approximations, and that the method proposed in [l] gives the 
best approximation, in the sense of providing the tightest upper bound of 
the approximation error, among the elements of this subset. Additionally, 
we exploit the structure of the dual to the L1 optimal control problem 
to obtain rational approximations with approximation error smaller than 
a prespecified bound. 

I. INTRODUCTION 
A large number of control problems involve designing a controller 

capable of stabilizing a given linear time invariant system while 
minimizing the worst case response to some exogenous disturbances. 
This problem is relevant for instance for disturbance rejection, 
tracking and robustness to model uncertainty (see [2] and references 
therein). When the exogenous disturbances are modeled as bounded 
energy signals and performance is measured in terms of the energy 
of the output, this problem leads to the well known 7-1, theory. The 
case where the signals involved are persistent bounded signals leads 
to the C' optimal control theory, formulated and further explored by 
Vidyasagar [7], [8] and solved by Dahleh and Pearson both in the 
discrete- [3], [5] and continuous-time [4] cases. 

The L' theory is appealing because it directly incorporates time- 
domain specifications. Moreover, it fumishes a complete solution to 
the robust performance problem (see [2] for a good tutorial and a 
list of relevant references). However, in contrast with the discrete 
time I' theory, the solution for the continuous-time L' optimal 
control problem leads to nonrational compensators, even for SISO 
systems. As noted in [4], the difficulty of physically implementing 
these controllers suggests that the most significant application of 
the continuous time C1 theory is to provide performance bounds 
for the plant. Recently, two rational approximations to the optimal 
L1  controller were developed independently [6], [ 11. Although these 
approximations are based upon different techniques ([6] follows an 
algebraic approach while [ 11 exploits the properties of the Euler ap- 
proximating set), they seem to be strongly connected [l] .  Noteworthy, 
they yield closed-loop plants with the same pole structure. 

In this paper we explore the connection between these approaches. 
The main result of the paper shows that both belong to the same 
subset 12, of the set of admissible rational approximations, and that 
the method proposed in [ 11 gives the best approximation (in the sense 
of providing the tightest upper bound of the error) among the elements 
of this set. Additionally, by exploiting the structure of the dual to 
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the L1 optimal control problem we fumish a procedure to compute 
rational approximations with error smaller than a prespecified bound 
E, and we show that the approximation error+O as O(T) .  

The paper is organized as follows. In Section I1 we introduce 
the notation to be used and we restate the main results conceming 
the C' problem and its rational approximations. Section I11 contains 
the majority of the theoretical results. Here we compare the two 
approximation methods and we show that, in a sense, the method 
proposed in [ 11 yields the best rational approximation. In Section IV 
we present a simple design example and we compare the optimal C' 
controller with its rational approximations. Finally, in Section V we 
summarize our results. 

11. PRELIMINARIES 

A .  Notation and Definitions 

R+ denotes the set of nonnegative real numbers. Cff i (R+)  de- 
notes the space of measurable functions f ( t )  equipped with the 
norm: l l f l l m  = ess . sup,+lf(t)l. L'(R+) denotes the space 
of Lebesgue integrable functions on R+ equipped with the norm 
llflll 2 JT I f ( t ) l d f  < CO. Similarly, 11 denotes the space of 
absolutely summable sequences h = {h,} equipped with the norm 
llhlll Ih,I < 03. RL' denotes the subspace of L1 formed 
by matrices with real rational Laplace transform. A denotes the space 
whose elements have the form 

00 

h = h L ( t )  + C h f S ( t  - t , )  
k=O 

where h L ( t )  E L l ( R + ) ,  { h f }  E I 1  and t ,  2 0, equipped with 
the norm l l h l l ~  a l l h L l l ~ l  + llh'llll. Given a function f ( f )  E L' 
we denote its Laplace transform by F ( s )  E C,; similarly, given 
h E A, we denote its Laplace transform by H ( s ) .  By a slight abuse 
ofnotation,wedenoteas [lF(s)111 4 Ilf(t)lll a n d ( ( H ( s ) [ ( s  = Ilhll.4. 

Throughout the paper we use packed notation to represent state-space 
realizations, i.e., 

Definition 1: Consider the continuous time system G( s). Its Euler 
approximating system (EAS) is defined as the following discrete time 
system 

G E ( z ,  T )  = rw). 
From this definition it is easily seen that we can obtain the EAS 

of G( s )  by the simple variable transformation s = ( z  - l)/r, i.e., 

G E ( z ,  T )  = G (  9). 
On the other hand, for any given T we can relate a discrete time 
system to a continuous system by the inverse transformation 2 = 
1 + TS. It is obvious that the discrete time system is, in fact, the EAS 
of the continuous time system obtained in this form. 

Definition 2:  Consider a system of the form 

= Ti(s) + Tz(s)Q(s) 

where Tz ( s )  has all its zeros { 31, 2 2 , .  . . , z 7 % }  in the open right-half 
plane and where, for simplicity, we assume that all the zeros are 
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Fig. 1. The generalized plant. 

distinct. Q(s) is said to be admissible if it is stable and satisfies the 
interpolation conditions 

@ ( Z k ) = T l ( Z k ) ,  I C = l , . . . , n  . 

B .  The L1 Optimal Control Problem 
Consider the system shown in Fig. 1, where S represents the 

system to be controlled; the scalar signals w E L- and U represent an 
exogenous disturbance and the control action respectively; and where 
( and y represent the output subject to performance constraints and 
the measurements available to the controller, respectively. As usual 
we will assume, without loss of generality, that any weights have 
been absorbed in the plant S. Then, the C1 optimal control problem 
can be stated as: Given the system (S) find an intemally stabilizing 
controller U ( . )  = l i ( s )y(s )  such that the worst case (over the set of 
all ~ ( t )  E Cm, llwlloo 5 1) maximum amplitude of the performance 
output ((t) is minimized. 

By using the YJBK parameterization of all stabilizing controllers 
[4], [9], the problem can be cast into the following model matching 
form 

where T I ,  T2 are rational stable transfer functions. 
Next, we recall the main result of [4], showing that a solution to the 

C1 optimal control problem can be found by solving a semi-infinite 
linear programming problem. 

Theorem I (Dahleh and Pearson [4]): Let T2 (s) have n zeros zZ 
in the open right-half plane and no zeros on the jw axis. Then 

PO = &\ I IT1 (S) + T2 ( s )Q( s) 1 1  A 

n 1 Re(Tl(-,))+xcu,+, Im{T1(=,)} (3) 
2 = 1  

subject to 

I 1, I 

2 = 1  I 
Vt  E R+. (4) 

Furthermore, the following facts hold: i) the extrema1 functional T *  ( t )  
equals 1 at only finite points: t 1 ,  . . . , t,,: ii) an optimal solution 
@ ( s )  = Tl(s )  + Tz(s)Q(s) to the left side problem always exists; 
and iii) the optimal q has the following form 

1n 

Q = x d , 6 ( f  - t z ) ,  t ,  E R+, m finite ( 5 )  
1 = 1  

and satisfies the following conditions 

a) a i - * ( t r )  2 0; 

2=1 
m 

,=1  

Remark I :  It was shown in [4] that we need to satisfy constraints 
(4) only for all t 5 t,,, where t,,, is finite and can be determined 
a priori. Even so, there are still infinite constraints, and therefore the 
dual problem is a semi-infinite linear programming problem. 

C. Rational Approximations to the Optimal L1 Controller 
From (5) it follows that, unlike in the discrete-time case, the L1 

optimal controller is irrational even if the plant is rational. Prompted 
by the difficulty in physically implementing a controller with a 
nonrational transfer function, two rational approximation methods 
have been recently developed by Ohta et al. [6] and by Blanchini 
and Sznaier [l]. In the sequel we briefly review these results. For 
brevity, we refer to the former as the OMK method and to the latter 
as the EAS method. 

Theorem 2 (Ohta et al., [6]): Let 

be minimal realizations. Define 

L = B ~ D ; ~  
A = A2 - LC2 

M = LD1+ RIB1 

where RI is the unique solution of the linear matrix equation 

ARi - RiAi = LCi. 

Then, there exist finite sets { t l  t 2  . . . f n L }  and (41 p2 . . . &} such 
that 

M = Edt exp(-At, ) L  
m 

(6)  

m a and PO = 1dlI. For T > 0, define N(f , ,  T) = the small- 
est integer larger than or equal to t , / T ,  i = 1, 2;.. , m ,  and 
N ( T )  k! Ar(tm, T). Finally, denote by 4 ( ~ )  the minimizer of 
11447) - d112 subject to 

,=1 

m 

M = Cf&(T)(I+ TA)-"('% ' ) L  (7) 

where d ( ~ )  = [ ~ I ( T ) ; . . , Q , ~ ( T ) ] ,  and Q = [d1,...,~,,]. Consider 
the rational system Q( s, T )  with the following state-space realization 

*=1 

where the matrices A, B4, C3, 0 3 4  are defined as follows 
-1 1 0 . . .  . . .  
0 - 1 1  0 0 

A ( T ) = T - ' [ ;  ... 0 . . .  -1 'I 8 1. N ( r ) b y N ( T )  

-1 ... . . .  

if k { K ( t , ,  T), i = 1, 2 , . . . , n 7 }  Bq ( T): its kth element 

if LV(t l ,  T )  # 0 
if N ( t 1 ,  T )  = 0. D 3 4 ( ~ )  = { Q~(T), O' 

Then, as T, -+ 0, we have that @(s, T )  -+ @.OPT(S) uniformly in the 
wide sense in the open half plane Re(s) > -U for some U > 0; and 
11@114. as well as its upper bound? = Cy='=, I Q ~ ( T ) ~ ,  converge to po. 

'I -7 - 
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Remark2: As we will show later, (6) and (7) are just another 
version of the interpolation condition. 

Next, we recall the main result of [ l ]  showing that the C1 norm 
of a stable transfer function is bounded above by the 1' norm of its 
EAS. Moreover, this bound can be made arbitrarily tight by taking 
the parameter T in (1) small enough. This result is the basis for the 
approximation procedure proposed in [ 11. 

Theorem 3 (Blanchini and Sznaier [ I ] ) :  Consider a continuous 
time system with rational Laplace transform @(s) and its EAS, 
@ ( z ,  T). If T )  is asymptotically stable, then @(s) is also 
asymptotically stable and such that 

ll@(S)Ill 5 II@% .)Ill. 

Conversely, if @(s) is asymptotically stable and such that 
(J@(s)l l l  = p,, then for all p > pLc there exists T*  > 0 such 
that for all 0 < T 5 T * ,  aE(:,-7) is asymptotically stable and such 
that ll@E(z, .)I11 i p.  

Theorem 4 [ I ] :  Consider a strictly decreasing sequence T~ --t 0, 
and define 

A 

where @ s ( z ,  T ~ )  denotes the closed-loop transfer function. Then the 
sequence pz is nonincreasing and such that Liz + PO, the optimal 

Corollary: A suboptimal rational solution to the C' optimal 
control problem for continuous time systems, with cost arbitrarily 
close to the optimal cost, can be obtained by solving a discrete-time 
ZI optimal control problem for the corresponding EAS. Moreover, if 
I<(;) denotes the optimal 11 compensator for the EAS, the suboptimal 
C1 compensator is given by I i ( r s  + 1). 

C1 cost. 

111. ANALYSIS OF THE DIFFERENT RATIONAL APPROXIMATIONS 
In this section we analyze the rational approximations generated 

by the OMK and EAS methods. The main result shows that both 
approximations belong to a certain subset 0, of the set of rational 
approximations, and that the EAS method generates the best approx- 
imation among the elements of this subset. We begin by showing 
that the two expressions for matrix M in Theorem 2 are just another 
version of the interpolation conditions. 

A .  Characterization of All Rational Approximations 

Lemma 1: For a closed-loop system of the form 

@(s) = x Q , e - " s ,  t ,  E R+ 
4 

2 = 1  

the following two conditions are equivalent 

4 

a) @ ( z k )  = C q , e - * k t ,  = ~ ~ ( z k ) ,  IC = l , . . . , n  . 

M = c p t  exp( -At,)L.  

,=1 
4 

b) 
Z = 1  

Moreover, we have I ~ @ ( s ) [ ~ A  = y = A 4  I&/. 
Proof: b)+ a) can be proved following the proof procedure of 

[6, lemma 21 by simply replacing @OPT with @. Similarly, the fact 
that b) is necessary for a) to hold can also be concluded from the 
proof. The expression for [I@( s ) l l ~  follows from direct calculations. 

In the next lemma we give a complete characterization of all 
rational approximations. 

Lemma 2 :  For any rational closed-loop system 

J = 1 2 = 1  

where Re(X,) > 0 and N8,  integers, the following two conditions 
are equivalent 

A 4  Moreover, we have I [ @ ( s ) ~ ~ A  5 1 = C,I1 
Proofi a ) e  b) can be proved using the same idea. The calcula- 

tions, through straightforward, are tedious, and are omitted here for 
space reasons. By direct calculation we have 

\&I. 

B .  Comparison of the OMK and the EAS Rational Approximations 
Lemma 2 gives a characterization of all rational admissible closed- 

loop systems. All these closed-loop systems can be thought as 
candidate rational approximations of the C1 -optimal closed-loop 
system. In the sequel we concentrate on a specific subset 0, 
and we show that both the OMK and the EAS methods generate 
approximations that belong to this subset. For T > 0, define 

n, = @(s) = C&(T)(l+ T S ) - N ' :  M { .I, 
= -&(T)(I+ TA)-.vtL . (8) 

2 = 1  1 
By direct calculation, the closed-loop system obtained by OMK 

methods is 
m 

@(s)  = C p , ( r ) ( I  + T S ) - ~ ( ' " . ' ) .  

Suppose that the 11-optimal closed-loop system for the EAS is given 
Z = 1  

by 

2 = 1  

then the closed-loop system obtained using the EAS method is 

@(s) = &hF(T)( l+  ny: .  
2 = 1  

It follows that the approximations generated by both methods belong 
to the set n,, with a specific { N z }  determined by each method. 

Remark 3: In the OMK method, { N ( f , ,  T ) }  depend directly on 
{ f , } ,  and hence on the L1 optimal closed-loop system. Hence, 
obtaining a rational approximation requires solving the C1 optimal 
control problem first. However, as pointed out in Remark 1, solving 
exactly this problem entails solving a semi-infinite linear program- 
ming problem. The EAS method requires only solving a discrete 
Z1 optimal control problem, which is considerable easier, since only 
finite-dimensional linear programming is involved. 

r I '  1 . ~ 1  1 1 
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Remark 4: Note that additional OMK-like rational approximations 
can be chosen among the elements of R, by simply modifying the 
rule for selecting N ( t , ,  T). For instance, N could be selected as the 
largest integer smaller than or equal to t Z / r  or t Z / r  + 0.5. Clearly, 
the convergence property also holds for these approximations. 

As it is shown in Theorem 6, the EAS method can be interpreted 
as approximating the original optimization problem, as opposed to 
directly approximating its irrational solution. This makes it quite 
unique. Besides the computational advantages, we show in the sequel 
that the EAS method has two other important merits. 

Theorem 5: The rational approximation of the L1 optimal con- 
troller given by the EAS method is the best one in the set R, in the 
sense that it leads to the smallest upper bound y. 

To prove Theorem 5, we need to prove first the following results. 
Lemma 3: Consider the following discrete time systems 

and 

Define 

LE = B ~ ~ D ; ;  
AE = AZE - LECZE 
ME = L E D I E  + A i '  R I E B ~ E  

where R I E  is the unique solution of the linear matrix equation 

A i l R l ~ A l ~  - RIE + LECIE = 0. 

Then we have 

ME = rA4  

where hf is defined in TheoremA2. 
Proof: First we show that AE is always invertible. Note that 

Since it is assumed that T ~ ( s )  has only unstable zeros, so does 
T F ( z ) .  This means all the zeros (poles) of T F ( z )  ((T?)-') have 
magnitudes larger than 1. Invertibility of AE follows immediately. 
Recall now that RI is the unique solution of the following linear 
matrix equation 

ARi - RiAi - LC1 = 0. 

We can verify that A;' R ~ E  also satisfies the above equation 

AA,' R~~ - A,' R1EAl - L c l  
- 1  = T ( R I E  - A E 1 R l ~ A 1 ~  - L E C I E )  = 0.  

Hence RI = A E i R l ~  and ME = rM.  

for the EAS system 
Lemma 4: Consider the discrete time 11 optimal control problem 

A closed-loop system 
satisfies the interpolation conditions 

= E:='=, d L z - N a  is admissible, i.e., 

(9) @ E ( ; % )  = T:(; f ) ,  k = 1 . .  . . , n 

where ;f are the zeros of TF, if and only if 

,=l  

Proof: From the definition of EAS, (9) is equivalent to 
4 

@ ( - i k )  = Cq5z(1 + T Z ~ ) - ~ '  = T l ( z k ) ,  k = l ; . . , n .  
Z = 1  

From Lemma 3, (10) is equivalent to 

Z = 1  

Equivalence of (9) and (10) follows now from Lemma 2. 
Note that Lemma 4 is true for any discrete time systems since 

a discrete time systems can always be thought as an EAS of some 
continuous time systems. 

Proof of Theorem 6: Consider a set of admissible closed-loop 
systems 

I a 

From Lemma 3 it follows that conditions (8) and (12) are identical. 
Therefore, for every in f l ~  there exists a corresponding 
@(s) = @E(l + TS) in R,, and vice versa. Since 

1=1 

it follows that the closed-loop system @ E  obtained by solving the 
optimal 1' control problem for the EAS yields the smallest y among 
the elements of the set RE. Hence the rational closed-loop system 
obtained by EAS methods also has the smallest upper bound y among 
the set 0,. 

C. The EAS Method Revisited 

Although the results of [6] and [ l ]  show that the optimal C' 
controllers can be approximated arbitrarily close with a rational 
controller, these results did not provide a way of obtaining an 
approximation with error smaller than a prespecified bound; rather, 
they required solving a sequence of problems and checking the 
approximation error until the desired precision was achieved. In this 
section we indicate how to select the parameter T for the EAS method 
in such a way that the error of the resulting approximation is smaller 
than a prespecified bound. Moreover, we show that this approximation 
error converges to 0 as fast as r. 

Theorem 6: Given any E > 0, we can find a r a priori for the 
EAS method such that 

P E  I C ' O ( l +  6 ) .  

Moreover, the approximation error converges to zero as O( T ) .  

Proof: Consider the optimal 11 control problem for the EAS 

and its dual 
r 

subject to 

1 I '  1 ' I  
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R(T) = {a :  pt(l+ T Z J k  
*=1 

where TF and TF are the EAS of TI and T2, respectively, and where 
zf denotes the zeros of TF. From the relationship between the EAS 
and its corresponding continuous system, the above dual problem is 
equivalent to 

Note also that constraints (19) will be automatically satisfied for 
all t > t,,, where t,,, is finite and can be determined a priori [4]. 
Given any t I t,,,, assume that the constraints (17) are satisfied 
and consider any t 5 f,,,. Selecting IC such that t k  5 t < t k  + T 

we have that 

we have that 
I 1 IC = 0, 1 , .  . . , n - 1 

I llalll (myc{t,axT-ll(l + Tzt )p l  - e-*arl> 
which can further be thought as an approximation of the dual problem 
of L1 -optimal control problem + m a x f l -  e-ztr}) 2 E ( T ) .  (22) 

1 

The first inequality is immediate. The second one follows from the 

and Ibl I 1, then 1 Re{T1(zt)} + E a z + n  lm{T1(zz)) (18) triangle inequality. The last one can be proved as follows: If la1 5 1 
t=1  

subject to 

Vt E R+ (19) 

in the sense that the constraints (19) are firstly sampled at the 
time interval t k  = k~ and then the irrational terms e-zztk are 
approximated by rational terms (1 + T Z , ) - ~ .  

For simplicity, in the sequel we will assume that all the zeros 
zZ are real as in 141, although the proofs can be easily extended to 
encompass complex zeros as well. 

An upper bound on IIaII1 for all N satisfying the constraints (15) 
can be derived as follows. Define the following sets 

so we have 

Note that both terms in the parenthesis can be made as small as 
one desires. So given any F > 0, we can choose a T such that the 
right-hand side of the inequality is less than or equal to E .  For this 
value of T we have 

Ir(t,  a)I = E a l e - z z f  5 1 + E, Vt E R+. i,T1 I 
In particular the above inequality holds for a* which solves the dual 
problem of EAS. Since 

n 

(Tl,  r(t9 a*) )  = ccY:Tl(Zt) = P E  

From [ l ]  it can be shown that, if T 5 7, then S, c S ( T )  c S(7)  
and S ( T )  R(T) .  Hence 

SUP ll4 I SUP llall1 I SUP- llall1 
aES, or€S(r) a € S ( r )  

Finally, the fact that E ( T )  = O ( T )  follows from considering the 
Taylor expansion of equation (22). 

I SUP- llall1 I l l~ - l (~ ) l lCo , l  (21) 
a E R ( r )  

where IV. AN EXAMPLE 

F(T) = 
Consider the example introduced in [4] and further studied in [ l ]  

and [6]. The plant is 

s - 1  
P ( s )  = - 

s - 2 '  

The control objective is to minimize 11@111 = IIPC(1 + PC)-'IIi. 
The optimal closed-loop system is [4] 

@OPT(S) = 1.7071 - 4.1213e-0 RR14s 

1 ... 1 1 
( l + T z l ) - '  ( l + T z q ) - l  ... 

... 
(1 + Tzl)-n+l (1 + Tz')-n+l . . . (1 + T Z n ) - n + l  

l/F-lllm,~ denotes the induced norm of F-' from I," to It, and 
where 7 is fixed. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995 557 

\ 

I \  
I \  I‘ I 

70 2 10.’ loo 

Fig. 2. Upper bound y versus T: EAS method-solid line; OMK 
methoddotted line, and OMK-like method-dashed line. 

with an optimal cost PO = 5.8284. For T = 0.45, the rational 
closed-loop system obtained using the EAS method is 

@.(SI = 1.8001 - 5.4878(1+ 0 . 4 5 ~ ) ~ ~  

with y = I l@(s ) l l ~  = 7.2879. The OMK method yields 

@( s) = 2.3947 - 5.0348( 1 + 0 . 4 5 ~ ) ~ ’  

with e, = 11@(s)l l~ = 7.4295. Finally, if we consider the OMK- 
like approximation obtained by selecting M( t , ,  T) largest integer 
smaller than or equal to t z / r ,  i = 1, .  . . , m, we obtain 

@(s) = 4.222 - 6.122(1+ 0.45s)-’ 

with y = I l @ ( s ) l l ~  = 10.344. Fig. 2 shows the upper bounds 
y corresponding to different approximation methods versus T. For 
this example the A norm of the closed-loop system coincides with 
its upper bound in all cases (since there are only 2 interpolation 
constraints). It is interesting to note that while the bound obtained 
using the EAS method decreases monotonously with T (theoretically 
proved in Theorem 4), those corresponding to the OMK and OMK- 
like methods do not. An estimated error bound E ( . )  curves for this 
example is shown in Fig. 3. It is very close to a straight line if a 
linear scale is used for the T axis. 

V. CONCLUSIONS 

A recent research effort [3]-[5], [7], [8], has led to techniques for 
designing optimal compensators that minimize the worst case output 
amplitude with respect to all inputs of bounded amplitude. In the 
discrete-time SISO case, minimizing the 1’ norm of the closed-loop 
impulse response yields a rational compensator. Unfortunately, the 
solution to the continuous-time version of the problem is nonrational. 
Prompted by the difficulty of physically implementing a system with a 
nonrational transfer function, rational approximations were recently 
developed [6], [I]. 

In this paper we compare these approximations and we show that 
they are strongly connected. Indeed, both approximations can be 
considered as elements of the same subset f2T of the set of rational 
approximations. 

i o  lo2 10 

Fig. 3. An estimated error bound. 

In Section 111-B we show that the EAS method proposed in [ I ]  
yields the best approximation (in the sense of providing the tightest 
upper bound of the error) among the elements of this set. 

Finally, in Section 111-C, we exploit the structure of the dual 
problem to provide a procedure that allows for selecting the parameter 
r for the EAS method to guarantee that the approximation error is 
smaller than a prespecified bound E. Moreover, we also show that 
this approximation error-0 as O ( r ) .  

We believe that these results, combined with the features of the 
EAS method mentioned in [l] ,  namely, the facts that i) it removes 
the ill-posedness due to the presence of zeros on the imaginary axis; 
ii) it leads to computationally simple problems; iii) it fumishes a 
monotonically nonincreasing bound; and iv) it is easily extendable to 
the MIMO case, make this method an attractive tool for the design 
of controllers for continuous time systems. 
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