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Because of their reduced switching losses, allowing a higher

operating frequency, dc-to-dc resonant converters have been

used extensively in the design of smaller size and lighter weight

power supplies. The steady state and dynamic behavior of both

the conventional series and parallel resonant converters have

been thoroughly analyzed and small-signal models around given

nominal operating points have been obtained. These models have

been used in the past to design controllers that attempted to keep

the output voltage constant in the presence of input perturbations.

However, these controllers did not take into account either load

or components variations, and this could lead to instability in

the face of component or load changes. Moreover, prediction of

the frequency range for stability was done a posteriori, either

experimentally or by a trial and error approach.

In this paper we use ¹-synthesis to design a robust controller

for a series resonant converter (SRC). In addition to robust

stability the design objectives include rejection of disturbances

at the converter input while keeping the control input and

the settling time within values compatible with a practical

implementation.
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I. INTRODUCTION

For many years, a conventional approach to control
power conversion was to use switching mode power
processing circuits based upon pulsewidth modulation
(PWM) control methods [18]. In PWM converters,
switching of semiconductor power devices is done
under high current levels. Hence, in order to reduce
switching losses, the frequency of operation of these
converters is limited. In addition, the high frequency
harmonic components resulting from quasi-square
switching current and/or voltage waveforms produces
high levels of electromagnetic interference (EMI)
[3, 10].
In resonant converters, the capacitor voltage and

current waveforms exhibit sinusoidal behavior, allowing
for the use of high operating frequencies. These high
frequencies are desirable since they result in smaller,
lighter magnetic components and faster transient
responses. In fact, today’s dc-to-dc resonant converters
have their operating frequencies well in the megahertz
range [12], with power density up to 50 W/in3. An
additional advantage of resonant converters over PWM
converters is a substantially lower harmonic content.
Due to these features and the ever increasing

demand for smaller size and lighter weight high
performance dc-to-dc converters for industrial,
residential, and aerospace applications, high frequency
dc-to-dc resonant converters are currently the object
of widespread interest. Depending on the manner in
which energy is transformed from the resonant tank to
the output circuit, traditionally converters are classified
as series [4, 13, 19, 21, 28, 31, 34] and parallel [2, 4,
11, 14, 19, 20, 31, 33, 34] resonant converters. The
former type uses the inductor current to couple the
energy from the resonant tank to the load, whereas the
later type uses the capacitor voltage for the transfer of
energy. In both types, the resonant tank (LC) plays
the role of buffering the energy from the source to
the output circuit. The control characteristics of the
series resonant converter reveal that for a small load
variation, a wide range of switching frequencies is
required. Hence, it is used in applications with tight
load regulations [13, 20, 28]. Unlike the series types,
the parallel resonant converter is more suited to
applications requiring a wide range of load variations
[11, 14, 33].
The steady state and dynamic behaviors of both the

conventional series and parallel resonant converters
have been thoroughly analyzed. Several commonly used
control techniques were compared in [22]. As shown
there, most of these techniques have relatively poor
performance. The alternative control law proposed,
the optimal trajectory control method, achieves good
nominal performance, but it entails using a complex,
nonlinear controller. More recently small signal models
have been obtained using perturbation methods, and
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Fig. 1. Conventional SRC circuit diagram.

used in the design of controllers that attempt to keep
the output voltage constant in the presence of input
perturbations [29]. However, these controllers did
not take into account either load or components
variations. Moreover, prediction of the frequency range
for stability was done a posteriori, most of the time
either experimentally or by a trial and error approach.
We use ¹-synthesis (see [23, 24] and references

therein) to design a robust controller for a series
resonant converter (SRC). The design objective is to
robustly reject input variations in the presence of load
and component uncertainty, while keeping both small
control actions and settling times. This is accomplished
by selecting appropriate weight functions reflecting
these requirements.
This work is organized as follows. In Section

II we briefly describe the conventional SRC and
we provide a small signal model around a nominal
operating point. In Section III we analyze the
characteristics of the plant. This analysis provides
some insight into the nature of the control problem,
in particular displaying the relatively poor control
characteristics of the plant. In Section IV we indicate
how to characterize plant uncertainty and we design
a robust controller to achieve robust performance
(i.e. guaranteed performance for all possible plants)
using ¹-synthesis. In Section V we provide linear
and nonlinear simulation results showing the
performance of the closed-loop system under
different conditions. Finally, in Section VI we
summarize our results.

II. PROBLEM DESCRIPTION

A. The Conventional Series Resonant Converter

The conventional SRC circuit diagram [29] is
shown in Fig. 1. The series resonant circuit consists
of the inductor L and the capacitor C. The parallel
combinations of the transistors and the diodes form
bidirectional switches which operate at fifty percent
duty ratio to generate a symmetrical square wave
voltage, with frequency fs, applied across the resonant
circuit. The resonant inductor current is coupled to the
output circuit using a full wave rectifier. The output
capacitor Co behaves as a constant voltage sink in
the steady state and is much larger than the resonant
capacitor C. Finally, the resistor Ro and the voltages

Vg and Vo represent the load, the line (input) and the
output, respectively.
The nominal parameters used here are the same as

the data in [29], i.e.,
L= 0:1335 mH
C = 12:8 nF
Co = 32 ¹F
Ro = 19 −
Vg = 40 V
Vo = 15 V
fs = 100:35 kHz.
For convenience, we introduce the following

normalized variables:
Vng = Vg=Vg = 1
Vno = Vo=Vg = 0:375
Vnc = Vc=Vg
Inl = ZoIl=Vg =

p
L=CIl=Vg

Fns = fs=fo.
where fo = 1=2¼

p
LC is the resonant frequency. It

should be noted that the normalized output Vno is the
same as the converter gain. Finally, the load condition
is defined as: Q =

p
L=C=Ro.

B. Small Signal Model

Under steady-state conditions, it can be shown that,
for a SRC operating in the continuous conduction
mode [29], there are four circuit modes in each
switching period. Thus the converter is a nonlinear,
variable structure system, with its steady state
state-trajectory uniquely determined by the normalized
switching frequency Fns and load condition Q [28, 34].
For a given operating point, a small signal discrete-
time model of the converter can be obtained by using
a perturbation method [29]. The sampling time for this
discrete time model is equal to Ts=2, where Ts = 1=fs is
the switching period. Therefore, due to aliasing effects,
this model is accurate up to the operating switching
frequency.
The discrete model from the the normalized

switching frequency Fns and the normalized line Vng
to the normalized output Vno (to simplify the notation,
we use the same variables for both the steady state and
its perturbation) at the nominal operating point is given
by the following state space realization [29]:

x(k+1) = Ax(k) +B
μ
Fns(k)

Vng(k)

¶
Vno(k) = Cx(k)

where

xT = (Vnc Inl Vno)

A=

0B@ 0:7107 0:9449 ¡2:5271
¡0:4335 0:6742 ¡0:4008
0:0006 0:0011 0:9905

1CA
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B =

0B@¡4:1482 0:6637

10:6373 1:6742

¡0:0005 0:0008

1CA
C = (0 0 1):

C. Control Objectives

The purpose of the feedback controller is to keep
the output voltage at a prescribed level (in our case
Vo = 15 V, i.e., Vno = 0:375) at all operating points,
using as control input the switching frequency fs. This
problem can further be divided into three parts as
follows.

1) Line Regulation (Nominal Performance): The
line voltage is often unregulated and could have a
substantial range of variation, with typical variation
values around §20%. This variation is modeled as an
external disturbance, thus leading to a disturbance
rejection problem. Commonly used performance
specifications for this disturbance rejection problem
are a) zero steady state error; b) output overshoot less
than 10%; and c) settling time of at most 5 ms.
2) Load Regulation (Robust Stability): On the

other hand, the load condition could also vary over
a wide range. Since the load Ro enters the dynamics
of the model, load variations will appear as model
uncertainty and could possibly lead to stability
problems. Normally the load changes from 10% at
low load to 90% at full load condition. Other model
uncertainty, such as unmodelled high frequency
dynamics, are also considered.
3) Robust Performance: Since the converter

operates at a wide range of load condition, the
performance requirements must be satisfied at all
operating points. This is equivalent to requiring
satisfactory response under both line and load
variations.
4) Finally, in order to guarantee implementability

of the resulting controller, all physical variables
such as control input must be limited to practical
values.

REMARK 1 Note that robust performance is achieved
as long as the minimum performance requirements
are met by all possible plants, (i.e., the worst case
performance still satisfies the specifications), even
though the responses corresponding to different
plants may differ significantly due to the wide
variation of operating conditions. A related problem
is to design a controller that renders the
performance of the plant insensitive to model
uncertainty. Although this will result in closer
responses for all plants in the set, it will also usually
deteriorate performance.

Fig. 2. Conventional SRC control characteristics curves.

III. ANALYSIS OF THE PLANT

To gain an essential understanding of the problem,
we proceed with an analysis of the plant before
designing a controller.

A. Control Characteristics

In steady state, if any two of the variables among
the normalized output Vno, switching frequency ratio
Fns, and output load Q are specified, the third variable
can be determined. The effects of the switching
frequency and the load upon the converter output can
be easily visualized by using the control characteristic
curves. From the control point of view, the control
characteristic curves allow us to make a initial estimate
of the load change that can be tolerated and to see
some of the difficulties in load regulation.
The control characteristic curves for various output

loads Q are shown in Fig. 2. As pointed out in [29],
we see that the SRC has a relatively poor control
characteristics. Since different control characteristics
curves are far apart, a wide range of switching
frequencies is needed to accommodate load changes.
This further implies that the plant dynamics may vary
significantly as the operating point changes. Here, the
operating point varies along the dotted line in Fig. 2
where the mark x indicates the nominal operating
point.

B. Frequency Responses

From the discrete time state space model, we can
easily get the z-transfer functions from the normalized
switching frequency and the normalized line input to
the normalized output:

[G(z) Gg(z)] = C(zI¡A)¡1B: (1)

Following a common approach, we carry out the
analysis of the plant and the synthesis of a digital
controller using a w-plane approach [9]. To this effect,
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the bilinear transformation:

z =
1+ sTs=4
1¡ sTs=4

(2)

is used to get the transfer functions in the frequency
domain s. These transfer functions, still denoted as G
and Gg, are given by

G(s) =
1:545 ¤ 10¡3(s+447980)(s¡ 362050)(s¡ 401400)

(s+1747:4)(s+13443¡ 157260i)(s+13443+157260i)
(3)

Gg(s) =
8:207 ¤ 10¡5(s+267090)(s¡ 1874400)(s¡ 401400)

(s+1747:4)(s+13443¡ 157260i)(s+13443+157260i):

(4)

The frequency responses G(s) corresponding
to the nominal operating point as well as to a few
other load conditions are shown in Fig. 3. At the
nominal operating point, the converter has one real
pole at ¡1747:4 and a pair of conjugate poles at
¡13443§157260i, responsible for the peak in the
frequency response. As the load becomes lighter, the
conjugate poles move farther to the left, with the peak
decreasing, until they change into two real poles. If the
load is decreased further, one of the real poles moves
very fast towards ¡1 and then at Ro = 47:1− from
¡1 to +1, yielding an unstable open-loop plant. At
this point, the perturbation technique used to obtain
the small-signal model ceases to be valid. Therefore,
in this paper, we limit Ro to be less than 45−. On
the other hand when the load becomes heavier, the
conjugate poles move towards the imaginary axis,
resulting in a larger resonant peak. As we explain
in detail later, this results in a more difficult control
problem.

IV. CONTROL DESIGN

A. Structured Singular Value and ¹-Synthesis

Consider the system interconnection shown in
Fig. 4(a), where M represents the nominal (stable)
closed-loop system and where the “feedback” ¢u
represents a model perturbation with a block diagonal
structure of the form: (see [7])

¢u(s) 2¢
_=f¢(s) = block¡ diagf¢1(s),¢2(s), : : : ,¢n(s)g,
¢i(s) stableg: (5)

This interconnection can be used to represent a
nominal system subject to different types of model
uncertainty. The stability of this interconnection has
been analyzed in [7, 25, 27]. In [25, 27], Safonov and
Athans defined the multivariable stability margin km as

Fig. 3. Frequency responses G(s) at different load conditions.

Fig. 4. (a) Robust stability problem. (b) Robust performance as
robust stability problem.

the largest positive km such that the interconnection is
stable for all ¢, k¢k1 · km, i.e.,
km¢u (M) = min

¢u2¢
fk¢uk1 : det(I+M(j!)¢u(j!))

= 0 for some !g (6)

where k¢uk1 _= supw ¾(¢u) and where ¾(¢) denotes
the maximum singular value. Thus, km is an indicator
of the the largest uncertainty permissible before
instability occurs. In [7], Doyle introduced the concept
of Structured Singular Value (SSV or ¹), defined as

¹¢u (M) =

8>><>>:
1

min¢u2¢fk¢uk1 : det(I+M(j!)¢u(j!))

= 0 for some !g
0 if no ¢u 2¢ destabilizesM

:

(7)

Hence, ¹ is simply equal to the reciprocal of km.
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As shown in [7], if M is a stable transfer matrix, a
necessary and sufficient condition for robust stability
of the interconnected system for all perturbations
k¢uk1 · 1 is that

¹¢u(M)< 1:

Robust performance (i.e. guaranteed performance
for all possible plants in the set) can be addressed
by recasting the problem into an augmented robust
stability problem by introducing an additional fictitious
perturbation block ¢p, as shown in Fig. 4(b), where w
and z represent exogenous inputs and outputs subject
to performance specifications, respectively. It can be
shown (see the main loop theorem in [24]) that robust
performance is achieved if and only if:

¹¢(M)< 1

where ¢= diagf¢p,¢ug contains now both the
uncertainty and the performance blocks.
As shown above, ¹ provides a useful tool for

robustness analysis. It combines unstructured and
structured uncertainty, robust stability and robust
performance in a unified framework. It can even
be extended to cover parametric uncertainty (real ¹).
Unfortunately, at the present time there are no
efficient algorithms for computing the exact value of ¹
for general perturbation structures. Thus, the following
upper bound is used instead [7, 27]:

¹¢(M)· inf
D2D

kDMD¡1)k1 (8)

where D represents a set of positive definite Hermitian
matrices with a diagonal block structure that commute
with ¢. Efficient computational algorithms exist
for this upper bound. Moreover, this upper bound
coincides with the exact value for perturbation
structures having up to 3 blocks. For more than
3 blocks, the bound is no longer tight. However,
the largest gap ever observed is less than 15%
(corresponding to an example built analytically),
and is substantially lower in most cases arising in
practice [24].
From the discussion above it follows that robust

controllers guaranteeing robust stability or robust
performance can be synthesized by solving the
following optimization problem:

min
K stabilizing

¹¢fM(K)g

where the notation M(K) is used to indicate explicitly
that the closed-loop transfer matrix M is a function of
the controller K. Due to the difficulties in computing
the exact value of ¹, the upper bound (8) is used
instead, yielding the following optimization problem:

J = min
K stabilizing

½
inf
D2D

kDM(K)D¡1k1
¾
: (9)

Robust stability or robust performance is achieved if
J < 1. The optimization problem (9) is convex both

in the scaling D and in the controller K. However, it
is not jointly convex and thus hard to solve (due to
the possible presence of multiple local minima). The
solution method currently used alternates between
finding the tightest possible upper bound by optimizing
the scales D while holding the controller constant (an
infinite dimensional convex optimization problem);
and finding an internally stabilizing controller that
minimizes this upper bound (a standard H1 control
problem). This algorithm, known as the “D¡K”
iteration, is implemented both in the Robust Control
Toolbox [1] and ¹ Analysis and Synthesis Toolbox [6],
and can be summarized as follows.

1) H1 Synthesis. Holding D fixed, use H1
synthesis to solve:

min
K stabilizing

kDM(K)D¡1k1: (10)

In the first iteration D is often set to I. After the first
iteration the D scale obtained in Step 3 is used.
2) ¹ Analysis. Calculate the upper bound of ¹ for

the closed-loop system obtained using the controller
K from Step 1. This entails solving the following
infinite-dimensional optimization problem:

inf
D2D

kDM(K)D¡1k1: (11)

This problem is approximately solved by finding the
value of D over a finite grid of frequency points !i.
3) D Fitting. The approximate solution to the

optimal scaling problem of Step 2 is found by fitting
the values D(j!i) with a real-rational, proper, stable,
minimum-phase transfer matrix D(s).
4) Go to Step 1 if stop criterion is not met.

Due to the lack of joint convexity in K and D, this
algorithm is not theoretically guaranteed to converge
to the global minimum. An additional drawback is that
the user has to make a judgement call in Step 3, when
deciding the order of the rational function D(s) used to
interpolate the data points, and different choices may
yield widely different results. In practice however, the
D¡K iteration seems to work well, and has allowed
for solving many difficult engineering problems (see for
instance [30]). Interested readers are referred to [23,
24] for a more detailed discussion of the history and
theory of both ¹ and ¹-synthesis.

B. Uncertainty Weight Selection

In this work we describe the set of possible plants
using multiplicative dynamic uncertainty, i.e., we
assume that the actual plant can be modeled as

G(s) =Go(s)(1+W(s)¢(s)) (12)

where Go(s) represents the nominal plant, W(s)
is a fixed weighting function that contains all the
information available about the frequency distribution
of the uncertainty, and where ¢(s), a stable transfer
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Fig. 5. Multiplicative uncertainty for different loads Ro and
uncertainty weights.

function, represents model uncertainty. Furthermore,
we assume, by absorbing any scaling factor into W(s) if
necessary, that k¢(s)k1 · 1. Thus, at each frequency
!, all possible plants lie in the disk centered at the
nominal frequency response Go(!), with radius r(!) =
jGo(j!)W(j!)j (hence this uncertainty description is
sometimes referred as disk-like uncertainty).
There are a number of uncertainty sources in the

converter modeling. Load variation is, of course, a
primary source. In this work we assume that Ro is
within the range from 17− to 45− which corresponds
to Q within the range from 2.2695 to 6.0074. The
nominal operating point corresponds to Ro = 19−,
with the corresponding Q = 5:375. Additionally, there
might be some uncertainties in the resonant inductor
L and capacitor C. Since they result in a change of
the load condition Q, they effectively behave as a load
resistance Ro change. Hence we do not consider these
uncertainties separately. Other uncertainty sources are
neglected high frequency dynamics and limitation of
the small-signal modeling approach. Since these two
are primarily high frequency uncertainties, it follows
that the uncertainty weight needs to be sufficiently
large at high frequencies.
In this work we address this model uncertainty

by using a single, norm bounded, multiplicative
uncertainty to cover all possible plants. Let Go(s)
represent the nominal transfer function from the
control input Fns to the output Vno, and let G

Ro(s)
denote the transfer functions for operating points
where RO is different from its nominal value. These
off-nominal plants can be represented by the model
(12) by defining:

¢Ro(w) = (GRo ¡G)G¡1 (13)

rRo(!) = j¢Ro(!)j= j(GRo ¡G)G¡1j: (14)

Some sample uncertainties corresponding to different
values of the load Ro are shown in Fig. 5. We can see
that the multiplicative uncertainties have a peak at the

oscillating frequency. This peak becomes larger and
steeper as the load resistance Ro decreases. Covering
this steep peak by a simple rational uncertainty weight
seems very hard, hence it inevitably introduces much
conservatism to get a reasonable simple uncertainty
weight. This explains partially why in the electronics
community, the SRC control systems are designed on
the heaviest load.
Based on the above discussion, the following

multiplicative uncertainty weight was chosen for
control design:

wI(s) = 0:8
10¡5s+1
10¡7s+1

: (15)

The magnitude frequency response of wI(s) is also
shown in Fig. 5. It begins to increase at the frequency
! = 105 rad/s and does not stop until reaching 80 at
the frequency ! = 107 rad/s, thus covering both, high
frequency uncertainties and all the uncertainties due
to load changes from 17− to 45−. Attempting to cover
the resonant peak corresponding to values of Ro < 17
with a low order rational function results in a larger
gap between the sets of plants and the uncertainty
used to cover it both at low and high frequencies.
Thus, this approach introduces too much conservatism,
deteriorating the performance. On the other hand, a
tighter fit could be achieved by using a higher order
function to model the uncertainty. However, this
results in a high-order controller. Thus the weight (15)
offers a good compromise between robustness and
controller complexity.
The relatively large magnitude of (15) at low

frequencies (0.8) is due to the wide range of operating
points, which results in a significant change in static
gain. It should be pointed out that static gain change
never leads to disk-like uncertainty of the form (12) at
low frequencies because phase does not change much
at low frequencies. Hence, this approach is potentially
conservative since it allows for uncertainties than
never appear in practice. To exclude these unexisting
uncertainties, real ¹ may be used. However, as shown
in [35], robustness depends only on the worst case
uncertainty, introducing these additional uncertainties
will not yield a (much) more conservative design as
far as these additional uncertainties do not affect
(much) the original worst case uncertainty. Uncertainty
modeling can be improved by using the following
uncertainty weight

w0I(s) = 0:5
(0:016s+1)(10¡5s+1)
(0:001s+1)(10¡7s+1)

(16)

which has the same magnitude as wI(s) at middle and
high frequencies but reduces the magnitude from 0.8
to 0.5 at low frequencies. However we found that
this improved modeling made little difference in the
performance of the closed-loop system.
The uncertainty in the feedforward path Gg(s)

can be modeled in the same way. However, following
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Fig. 6. Block diagram for ¹-synthesis.

a standard practice, we have not included this
uncertainty explicitly in the control design. The reasons
are as follows. 1) An additional perturbation has
to be used to represent this uncertainty. However,
this perturbation is neither totally independent nor
identical to the uncertainty in feedback loop, as
both of them result from the same source–load
variation. Thus, adding this second perturbation not
only complicates the problem, but it also potentially
introduces much conservativeness. 2) This feedforward
path uncertainty does not affect robust stability. 3) As
we show in the next section, this uncertainty is taken
into account when imposing robust performance
requirements.

C. Performance Weight Selection

Fig. 6 shows the block diagram used for ¹-synthesis,
where the uncertainty in the feedforward transfer
function Gg has been absorbed into the performance
block ¢p. Here ¢I and wI represent the model
uncertainty perturbation block and its weight,
respectively, which have been discussed in the previous
subsection. ¢p, we(s), and wu(s) represent the fictitious
uncertainty block associated with the performance
specifications and the performance weights associated
with the tracking/regulation error and the control
effort, respectively. Although regulation is our primary
concern, the reference input r is also included in
our problem setting, in order to get good tracking
characteristics.
The selection of we(s) and wu(s) entails a

trade-off among different performance requirements,
particularly good regulation versus peak control
action. The weight on the control error we(s) is usually
selected to be very large at low frequencies in order to
get good tracking and regulation. One simple form is

we(s) =

Ts

M
+1

Ts+A
(17)

where A is the maximum allowed steady state error
(A should be zero if zero steady state is required); T
approximately determines the bandwidth (!b ¼ 1=T)
and hence the rising time and settling time; and where
M is the maximum allowed amplification of high
frequency noise. M is closely related to the overshoot
in the time response, and a common rule of thumb
is to choose M between 1.5 to 2. The weight on the
control input wu(s) was chosen close to a differentiator
to penalize fast changes and large overshoot in control

input. Interested readers may refer to [16] for more
details.
Note that there is no exact relationship between the

the parameters T(!b) and M of the frequency domain
weighting functions, and time domain performance
specifications given in terms of rise-time, settling-time,
and overshoot. The design of multiobjective robust
controllers subject to both time and frequency domain
specifications is to a large extent an open problem,
although some progress has been made recently (see
[32 and references therein]).
When using frequency domain weights to enforce

time-domain specifications, the relationship for
second-order systems presented in most classic control
textbooks may be used for an initial weight selection.
An iterative procedure, alternating between weight
selection, controller synthesis and performance
evaluation, is then usually needed in order to obtain
a satisfactory design. When all the performance
specifications are met but there is still room left for
improvement, usually we only improve T, in order to
get a response as fast as possible, while still satisfying
the additional specifications.
The following weights offer a good compromise

among all the conflicting time-domain specifications:

we(s) =
0:001s+1
0:002s

(18)

wu(s) =
5 ¤ 10¡5s
10¡7s+1

: (19)

These weights approximately give a closed-loop
bandwidth of 1=0:002 = 500 rad/s. Note that an
integrator is included in we(s) to get zero steady-state
error. We may relax this requirement if we allow for a
small, non-zero, steady-state error.
It should be pointed out that, in principle, the

reference input r and the weight on the control input
wu(s) are not necessarily involved in the design since
our main objective is line voltage regulation and since
we did not impose specific requirements either upon
the command tracking error, or upon the maximum
control effort. If neither r nor wu(s) are included in
the problem setting shown in Fig. 6, then the following
higher performance weight can be used:

w0e(s) =
1
2
10¡5s+1
10¡5s

: (20)

Using this weight robust performance (¹RP < 1) can
still be achieved, while obtaining acceptable control
input under line voltage variations. However, the
control input due to a reference input change has
very large peaks, due to the presence of the transfer
function Gg(s) in the disturbance channel. Finally, it
should be pointed out that the weight on the control
input wu(s) alone has little effect, since the control
action in response to a line voltage variation is
acceptable.

WANG ET AL.: ROBUST CONTROLLER DESIGN FOR A SERIES RESONANT CONVERTER 227



D. Controller Synthesis

By using the uncertainty description developed in
Section IVB and the performance weights of Section
IVC, we get an uncertainty structure ¢ consisting of
a scalar block (corresponding to the robust stability
requirements) and a 2£ 2 block (corresponding to
the robust performance). The robust controller was
synthesized using the ¹ Analysis and Synthesis Toolbox
[1], applied to the block diagram shown in Fig. 6.
Initially the D scale was set to I. After 5 iterations
using a second-order fit for the D scale, we obtained
a 13th-order controller yielding ¹RP = 0:9823. Finally,
Hankel norm model reduction yielded a 6th-order
controller with virtually no performance degradation
(¹RP = 0:9845< 1). The state space description of this
reduced order controller is given by

K = Ck(sI¡Ak)¡1Bk +Dk (21)

where

Ak =

0BBBBBBBBB@

¡1:317e+6 6:162e+4 2:973e+5 5:876e¡ 3 ¡1:134e+5 ¡2:959e+4
0 ¡1:552e+3 ¡1:667e+5 4:899e¡ 4 1:420e+4 4:090e+3

0 1:554e+5 ¡3:473e+4 ¡2:473e¡ 3 3:925e+4 1:089e+4

0 0 0 ¡1:000e¡ 3 ¡5:265e¡3 3:900e¡ 4
0 0 0 0 ¡4:273e+4 ¡2:219e+4
0 0 0 0 0 ¡7:641e+3

1CCCCCCCCCA
BTk = (¡153:51 38:575 56:637 ¡50:427 ¡278:14 ¡49:935)

Ck = (189:56 34:243 17:456 ¡50:427 ¡244:77 ¡103:71)

Dk =¡3:8034e¡ 3:

Finally, the corresponding z-domain controller
is obtained by using the inverse of the bilinear
transformation (2).
In order to benchmark the performance

of the robust controller, we also designed a
proportional-integral-derivative (PID) controller.
This controller, tuned based on the plant frequency
responses at the various operating points shown in
Fig. 3, is given by

KPI =
s+2000

s
: (22)

Notice that this is in fact a proportional-integral (PI)
controller. The gain on the D term was set to 0 to
limit the gain at high frequency, since this gain has a
direct bearing upon the robustness of the closed-loop
gain. The frequency responses of both ¹ and the PI
controllers are shown in Fig. 7. Both controllers have
similar responses at low frequencies, with a slightly
lower gain for the PI. Beyond ! = 50000 rad/s, the

Fig. 7. Frequency responses of ¹ (solid) and PI (dash) controllers.

gain of the ¹ controller begins to decay very fast, in
order to accommodate the model uncertainty at high
frequencies. Note that robust stability dictates that the
loop gain must be kept small enough at the resonant
frequency. Since the response of the PI controller
is flat at high frequency, the only mean to increase
robustness is to reduce its gain.

E. Controller Implementation Considerations

Given the relatively high frequency sampling
rate (roughly 200 Khz), of the plant, a digital
implementation of the 6th-order z-domain controller
may require using a specialized digital signal processing
(DSP) processor, with enough processing power to
carry out the required operations in the amount of
time available. Rather than pursuing this approach,
in this work we propose to implement this controller
using an analog, continuous time controller, connected
to the plant through the use of sample and hold

228 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 32, NO. 1 JANUARY 1996



Fig. 8. Frequency responses of digital and sampled controllers.

devices. Fig. 8 shows the frequency response of
the ¹-controller obtained by using the bilinear
transformation to convert the s-domain controller (21)
back to the z-domain, versus the frequency response of
the z-domain controller obtained by simply sampling
the inputs and outputs of (21). From the figure it
follows that both responses are quite close, due to
the sampling frequency being much higher than the
controller bandwidth. Moreover, notice that the
converter itself provides a sample and hold action
when connected to the controller. Thus, connecting the
s-domain controller (21) directly to the plant should
provide a response closely resembling that of the true
z-domain ¹-controller. This is the case, as we show in
Section VB through the use of a nonlinear simulation
of the closed-loop system.

V. SIMULATION RESULTS

A. Linear Simulation

The closed-loop system corresponding to the
¹-controller was simulated at four different operating
points: Ro = 45−, 19−, 17−, and 13−, using the
corresponding linear model of the plant. The time
responses to 20% step change in line voltage Vng and
reference input r are shown in Fig. 9.
For the nominal case Ro = 19−, the settling time

is about 2 ms for line voltage change and is less
than 1 ms for reference input change. The output
responses are very good since the settling time is
much less than the required 5ms, with almost no
overshoot. The control action in response to a line
voltage change is also adequate. However the control
response to a reference input change has an overshoot.
In our original design, without using a penalty weight
wu(s) on the control, this peak value was almost 2,

Fig. 9. Linear simulation results with ¹-controller at different
operating points Ro = 19 (solid), 45 (dash), 17 (dot),
13 (dot-dash)−. (a) Line voltage step change (20%).

(b) Reference input step change (20%).

potentially leading to implementation problems. Thus,
the design was modified leading to the present value.
If one wants to attenuate this overshoot further, a
higher penalty on the control input must be used
and the performance requirements on the output
must be relaxed accordingly. Alternatively, the peak
control action can be substantially reduced by changing
setpoints at a constant speed (a common industrial
practice), rather than using an abrupt step change.
When the operating point moves to Ro = 45−, the

settling times are about doubled and the overshoot
of the output response is about 10%, while the
overshoot of the control action corresponding to a
step disturbance at the input (modeling a sudden
drop of the line voltage) decreases. This is mainly
due to the significant decrease in plant static gain
(see Fig. 3). The ¹-controller is in fact undertuned for
this operating point, in order to get an overall good
performance. When the operating point moves towards
heavier loads, the responses are almost the same as
the nominal, with the exception of the appearance of
some chattering in both the output and the control
input, for the case Ro = 13− (note that this load is
beyond the range considered in our design). The
occurrence of chattering is due the larger peak in the
plant frequency response as the load increases. It can
be eliminated by increasing the damping of the system.
Note that the controller achieves robust

performance, since the performance specifications
are met at all operating points. However significant
variation of performance is observed. This is a direct
result of the large variation in the plant dynamics, and
any fixed linear controller can do very little in this
respect. Reducing this variation will necessitate using
a nonlinear, gain scheduling controller.
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Fig. 10. Linear simulation results with PI controller at different
operating points Ro = 19 (solid), 45 (dash), 17 (dot),
13 (dot-dash)−. (a) Line voltage step change (20%).

(b) Reference input step change (20%).

The same simulation was performed for the
closed-loop system corresponding to the PI controller.
The time responses to 20% step change in line voltage
Vng and reference input r at three different operating
points: Ro = 45−, 19− and 17− are shown in Fig. 10.
They are similar to the responses with the ¹-controller
with a slightly larger overshoot and slower responses.
However, the system becomes unstable for Ro · 15−.
This is due to the PI controller inability to provide
enough attenuation to counteract the increment in
the magnitude of the resonant peak of the plant at
heavier loads. Since this peak increases very fast, a
slight extension of operating range to heavier load
requires a substantial decrease in the gain of the PI
controller, seriously compromising its performance.

B. Nonlinear Simulation

It should be noted that in Section VA only linear
simulations at different load conditions were used to
estimate the robustness of the feedback system and the
load regulation performance. While linear simulations
at different load conditions often can provide and
approximate evaluation of load regulation performance,
this is usually insufficient to assess the performance of
a highly nonlinear system such as the converter. Thus,
to further validate our results, a nonlinear simulation
of the SRC circuit was performed using P-Spice. The
closed-loop system was obtained by first realizing the
transfer function (21) using operational amplifiers and
then connecting this controller to the converter.

Fig. 11. Nonlinear simulation results with ¹-controller at different
operating points Ro = 19 (solid), 45 (dash), 17 (dot),
13 (dot-dash)−. (a) Line voltage step change (20%).

(b) Reference input step change (20%).

Fig. 12. Nonlinear simulation of load regulations. Load step
changes from 19− to 45− (solid), from 45− to 17− (dash),

from 17− to 13− (dot).

Fig. 11 shows the responses due to reference
input and line voltage step changes. Note that these
results are similar to those obtained using a linear
simulation as shown in Fig. 9. In the responses to
line voltage step change, both the overshoot and
settling time are slightly larger than in the linear
simulation. In the responses to reference input step
change, the overshoot increases very fast as the load
increases and it becomes unacceptable at the operating
point Ro = 13−. (Note however that this load is
not covered in our control design). The chattering
observed in the responses to a line voltage step change
is fundamentally different from that appearing in
the linear simulation. This chattering is due to the
periodic behavior of the converter (periodic charge
and discharge of capacitor) and has nothing to do with
underdamping. Of course similar phenomena occur in
the responses to a reference input step change, but the
ripples are too small to be visible compared with the
scale used there.
Fig. 12 shows the load regulation characteristics for

three cases: a load Ro step change from 19− to 45−,
from 45− to 17−, and from 17− to 13−. These plots
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show that the resulting closed-loop system has both
good performance and good robustness characteristics.

VI. CONCLUSIONS

Because of the ever increasing demand for
smaller size and lighter weight, resonant dc-to-dc
converters have been the object of much attention
lately. These converters have the potential to provide
high-performance conversion, without some of the
problems associated with classical PWM-based
converters, provided that a suitable control circuit,
guaranteeing performance in the face of line-input
disturbances, load changes, and component variations
can be synthesized.
In this paper we have studied these problems

within the framework of ¹-synthesis. In order to cast
our problem into this framework, uncertainties in
the load and components are modeled as a single,
norm-bound, complex perturbation covering all
possible plants. The design example of Section V
demonstrates that different performance requirements
can be easily incorporated by using suitable weights
on the corresponding input and output signals and
that conflicting performance specifications can be
traded-off by adjusting these weights. The simulation
results show that the resulting controller fully satisfies
the design objectives. These results are further
validated through a full nonlinear circuit simulation.
The paper shows that the ¹-robust control

framework provides a systematic way for synthesizing
controllers for resonant converters, capable of
guaranteeing good performance under a wide range
of load conditions. By lumping uncertainties from
different sources into one perturbation block, the
resulting robust performance problem has only two
uncertainty blocks. Hence the upper bound of ¹
used in the synthesis process coincides with the
exact value.
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