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1. Introduction 

When disturbances and outputs are persistent bounded 
signals, the worst case disturbance rejection problem leads 
to the L' optimal control theory, which was formulated 
by Vidyasagar 161 and solved by Dahleh and Pearson both 
in the discrete [2][4] and continuous time [3] cases. In 
contrast with the discrete time 1' theory, the solution 
to the continuous-time C' optimal control problem leads 
to irrational compensators. As noted in 131, the diffi- 
culty of physically implementing these controllers suggests 
that the most significant application of the continuous 
time C1 theory is to provide performance bounds for the 
plant. Recently, two rational approximations to the o p  
timal C' controller were developed independently [SI [l]. 
Although these approximations are based upon different 
techniques ([SI follows an algebraic approach while [l] ex- 
ploits the properties of the Euler Approximating System), 
they seem to be strongly connected El]. 

In this paper we explore the connection between these 
approaches. The main results of the paper show that both 
belong to the same subset 52, of the set of admissible 
rational approximations, and that the method proposed 
in [l] gives the best approximation among the elements 
of this set. Additionally by exploiting the structure of 
the dual to the L' optimal control problem we furnish a 
procedure to compute rational approximations with error 
smaller than a prespecified bound Q, and we show that the 
approximation error + O as O(r) .  

2. Preliminaries 

2.1. Notat ion and Definitions 
R+ denotes the set of nonnegative real numbers. 

C"(R+) denotes the space of measurable functions f ( t )  
equipped with the norm: l l f l l o o  = e ss.sup If(t)l.  C'(R+) 

denotes the space of Lebesgue integrable functions on R+ 
equipped with the norm 1 1 f 1 1 1 =  If(t)ldt  < 00. Similarly, 

l~ denotes the space of absolutely summable sequences 

h = {hi} equipped with the norm llhIl12 lhil < 00. 
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7LC' denotes the subspace of C' formed by matrices with 
red rational Laplace transform. A denotes the space 
whose elements have the form: 

oo 

h = h q t : )  + hfS(t - t , )  
k r O  

where hL( t )  E L1(R+),  { h : }  E 11 and t ,  2 0, equipped 
with the norm I l h l l ~ . g l l h ~ I I ~ ~  + ~ ~ h l ~ ~ ~ l .  Given a func- 
tion f ( t )  E C' we will denote its Laplace transform by 
F(s )  E C,; similarly, given h E A, we will denote its 
Laplace transform by H(:s).  By a slight abuse of notation, 
we will denote as lIp(s)II1&IIf(t)IIl and IIH(s)IIA = I I ~ I I A .  
Throughout the paper we will use packed notation to rep- 
resent state-space realizations, i.e. 

Definition 1 Consider the continuous time system G(s). 
Its Euler Approzimating System (EAS)  is defined as the 
following discrete time system: 

From this definition it is easily seen we can obtain the 
EAS of G(s) by the simple variable transformation s = 

G E ( z , r )  = G(+) 
On the other hand, for any given r we can relate a dis- 
crete time system to a continuous system by the inverse 
transformation z = 1 + 7s. It is obvious that the discrete 
time system is, in fact, the EAS of the continuous time 
system obtained in this form. 

Definition 2 Consider a system of the form: 

Q(s) = Ti(s) +Tz(s)B(s) 

2-1 . - , i.e. 

where Tz(s) has all its zeros { 21, , zn } in the 
open right-half plane. #(s) is said to be admissible if it is 
stable and sotiafiea the interpolation conditions 
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2.2. The L1 Optimal Control Problem 
Consider the system represented by the block diagram 

in Figure 1, where S represents the system to be con- 
trolled; the scalar signals w € L- and U represent an ex- 
ogenous disturbance and the control action respectively; 
and where C and y represent the output subject to perfor- 
mance constraints and the measurements available to the 
controller respectively. As usual we will assume, without 
loss of generaJity, that any weights have been absorbed 
in the plant S. Then, the L' optimal control problem 
can be stated as: Given the system (S) find an internally 
stabilizing controller U(.) = K(s)y(s) such that the worst 
case (over the set of all w(t) E LO3, llwlloo 5 1) maximum 
amplitude of the performance output c( t )  is minimized. 
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Y 

Figure 1: The Generalized Plant 

By using the YJBK parametrization of all stabilizing 
controllers [3], the problem can be cast into the following 
model matching form: 

where TI, T2 are rational stable transfer functions, and 
where, without loss of generality, we can assume that T2 
has all its zeros in the open-right half plane. 

Next, we recall the main result of [3], showing that a 
solution to the Ll-optimal control problem can be found 
by solving a semi-infinite linear programming problem. 

Theorem 1 (Dahleh and Pearson, [$I) Let Tz(s) have n 
zeros z1 in the open right-half plane and no zeros on the 
jw-axis. Then: 

r n  n 1 

subject to: 

n n 

Ilr(t)ll= I ~ ~ i R e { ~ - ' l ' } + ~ o i + n Z ~ { c - " . L ~ I  < 1, V t  E R+ 
1-1 $=I 

(3) 
Furthermore, the following facts hold: i) the eztremal 

functional r'(t) equals 1 at only finite points: t l ,  ... ,t,; 
ii) an optimal solution @(s) = Tl(s) - Tz(s)Q(s) to the 
leftside problem always exists; and i i i )  the optrmal 4 has 
the following form: 

m 

Q = C 4 1 6 ( t  - ti), ti E R+, m finite (4) 
1-1 

and satisfies the following conditions: 
a). h r ' ( t i )  2 0; 

m 

¶ = l  
c) .  

Remark 1 I t  was shown in [3J that we need t o  satisfy 
constraints (3) only for all t 5 tmaz where tmas is finite 
and can be determined a priori. Even so, there are still 
infinite constraints, and therefore the dual problem i s  a 
semi-infinite linear programming problem. 

2.3. Rational Approximations to the Optimal C1 
Controller 

From equation (4) it follows that, unlike in the discrete- 
time case, the L'-optimal controller is irrational even if 
the plant is rational. Prompted by the difficulty in physi- 
cally implementing a controller with an irrational transfer 
function, two rational approximation methods have been 
recently developed independently by Ohta et. al. [5] and 
by Blanchini and Sznaier [l]. For brevity, we will refer to 
the former as the OMK method and to the latter as the 
EAS method. 

Theorem 2 (Ohta et al., [5]) Let 

i j , e - " k t a  = Tl(zk), 5 = 1 , .  . . ,n. 

mrnimal Galizations. Define: 
L = B2D2-' 

A = A2 - LC2 
M = LD1 + R I &  

where RI is the unique solution of the matrix linear equa- 
tion 

ARi - RIA, = LCi 
Then, there exist finite sets { tl t 2  ... t m }  and 
{41 (62 ... &,} such that: 

m 

M = 4,ezp(-kit,)L (5) 
a= 1 

m 
and 

Po = 1 4 8 1  

I= 1 

For r > 0, define N( t , , r ) s  the smallest integer larger 
than or  equal to ti/r, i = 1 , 2 ,  ..., m, and N ( r ) = N ( t , ,  r ) .  
Finally, denote by $(r)  the minimizer of IId(r) - 4112 sub- 
ject to 

a 

m 

M = C4,(r)(I+ rA)-N(t''7)L (6) 

w h e y  4(r) = [#l(.), ..., 4m(r) l l  and 4 = [$I ,...,$n]* 
i=1  

Consader the rational system @ ( s , r )  with the following 
state-space realization: 

Where A, B4,C3,034 areN(r)xN(r) ,  N(r)x l ,  l xN(r )  
and 1 x 1 matrices, respectively; and are defined as follows: 

f -1 

m 

i=l  
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C 3 ( r ) = ( r - l  0 ... O ) ,  

Then, as r + 0, we have that @ ( s , r )  + @ O P T ( S )  uni- 
formly in the wide sense in the open half plane Re(s)  > 
-U for some U > 0; and / I @ ~ ! A ,  as well as its upper bound 
y = Id , ( r ) l ,  converge to pot the optimal cost. 

Next, we recall the main result of [l] showing that the 
C’ norm of a stable transfer function is bounded above 
by the l1 norm of its Euler Approximating System (EAS). 
Moreover, this bound can be made arbitrarily tight by 
taking the parameter r in (1) small enough. This result 
is the basis for the approximation procedure proposed in 

Theorem 3 (Blanchini and Sznaier, [I]) Consider a 
continuous time system with rational Laplace transform 
@(s) and its EAS, r ) .  If aE(z,  r )  is asymptotically 
stable, then @(s) is also asymptotically stable and such 
that: 

Conversely, If @(s) is asymptotically stable and such that 
~ ~ @ ( s ) / / i ~ p C ,  then for all p > pc there ezists r* > 0 such 
that for all 0 < r 5 r*,  @‘(z, r )  is asymptotically stable 
and such that II@’(z, .)I11 5 p. 

Theorem 4 [I] Consider a strictly decreasing sequence 
r, + 0, and define: 

PI. 

II@P(S)ll’ I IPE(z9 r)111 

where @ Z ( z ,  ri) denotes the closed-loop transfer function. 
Then the sequence pi  i s  non-increasing and such that 
pi + p o ,  the optimal C’ cost. 

Corollary: A suboptimal rational solution to the C’ Op 
timal Control Problem for continuous time-systems, with 
cost arbitrarily close to the optimal cost, can be obtained 
by solving a discrete-time 11 optimal control problem for 
the corresponding EAS. Moreover, if K ( z )  denotes the 
optimal 11 compensator for the EAS, the suboptimal C1 
compensator is given by K ( r s  + 1). 

3. Analysis of the Different Rational 
Approximations 

In this section we analyze the rational approximations 
generated by the OMK and EAS methods. The main 
result shows that both approximations belong to a certain 
subset 52, of the set of rational approximations, and that 
the EAS method generates the best approximation among 
the elements of this subset. We begin by showing that the 
two expressions (5) and ( 6 )  for matrix M in Theorem 2 
are just another version of the interpolation conditions. 

3.1. Characterization of all Rstional Approxima- 
tions 
Lemma 1 For a closed loop system of the form 

P 

( ~ ( 8 )  = E ti E R+, 
i=l 

the following two conditions are equivalent 

a) @[)(a) = 

b) M = 5 4iezp(-hi)L. 

Moreover, we have 

P 

i=l  
4ie-=kti = Tl(Zk), k = 1,. . . , n. 

*=I 

i = l  

Proof: b) a) can be proved following the proof proce- 
dure of Lemma 2 in [5:I by simply replacing @OPT with 
@. Similarly, the fact that b) is necessary for a) to hold 
can also be concluded from the proof. The expression for 
l l @ ( s ) l l ~  follows from direct calculations. 

0 

In the next lemma we give a complete characterization of 
all rational approximations. 

Lemma 2 For any rational closed loop system 

@(s) = 2 Cd,,(l + X,s)-N*’ 
J = 1  I=1  

where Re(X) > 0 and hrrJ integers, the following two con- 
ditions are equrualent 

a) @ ( Z k )  = 
e q1 

J=1 i=1 
xd,.,(l + X ~ z k ) - ” ~  = Ti(Zk). k = 

1,. . . , n .  
93 9. 

j=1 t = l  
b) M = dsj(1 + XjA)-N1~ L. 

Moreover, we have 

Proof: a) e b) can be proved using the same idea. The 
calculations, though Straightforward, are tedious, and are 
omitted here for space reason. By direct calculation we 
have 

A Pi 
= r= IAJl 

j=l i= l  

3.2. Comparison of the OMK and the EAS Ratio- 
nal Approximations 

Lemma 2 gives a chatracterization of all rational admis- 
sible closed-loop systeias. All these closed loop systems 
can be thought as candidate rational approximations of 
the C’-optimal closed loop system. In the sequel we will 
concentrate on a specific subset 52, and we will show that 

mations that belong to this subset. For r > 0, define: 
both the OMK and the EAS methods generate approxi- 

52, = {@(s) =: j&r)(l + : 
i i l  

P 

M == C d i ( T ) ( I +  rA)-NiL} (7) 
i s1  
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By direct calculation, the closed loop system obtained 
by OMK method is: 

m 

@(s) = &(r) ( l+  T S ) - N ( - )  

1=1 

Suppose that the 1%-optimal closed loop system for the 
EAS is given by: 

@E(.) = f: q f ( r ) z -NF 
I S 1  

then the closed loop system obtained using the EAS 
method is: 

P 

@(s) = C@(r)(l+ rs)-Nf" 
is1 

It follows that the approximations generated by both 
methods belong to the set Q,, with a specific {NI} de- 
termined by each method. 

Remark 2 In the OMK method, (N(tl!r)} depend di- 
rectly on {tl}, and hence on the L -optimal closed loop 
system. Hence, obtaining a rational approximation re- 
quires solving the e'-optimal control problem first. How- 
ever as pointed out in Remark 1, solving exactly this 
problem entails solving a semi-infinite linear programming 
problem. The EAS method requires only solving a discrete 
11 optimal control problem, which is considerable easier, 
since only finite-dimensional linear programming is in- 
volved. 

Remark 3 Note that additional OMK-like rational ap- 
proximations can be chosen among the elements of 51, by 
simply modifying the rule for selecting N(t,, T ) .  For in- 
stance, N could be selected as the largest integer smaller 
than or equal to t l / r  or t,/r + 0.5. Clearly, the conuer- 
gence property also holds for these approximations. 

As i t  will be shown in Theorem 6, the EAS method can 
be interpreted as approximating the original optimization 
problem, as opposed to directly approximating its irriG 
tional solution. This makes i t  quite unique. Besides the 
computational advantages, we will show in the sequel that 
the EAS method has two other important merits. 

Theorem 5 The rational approximation of the t1- 
optimal controller given by the EAS Method is the best 
one in the set a, in the sense that it leads to the smallest 
upper bound y. 

In order to prove Theorem 5 ,  we need to prove first the 
following results: 

Lemma 3 Consider the following discrete time systems: 

and 

Define: 
LE = B~ED~-A 

A E  = A ~ E  - LEC2E 
M E  = L E D I E  + AE'RIEBIE 

where R ~ E  is the unique solution of the matrix linear equa- 
tion 

A E ' R l ~ A l ~  - R ~ E  + LECIE = 0 
Then we have 

M E  = T M .  

Proof: Firstly we show that AE is always invertible. Note 
that 

Since it is assumed that Tz(s) has only unstable zeros, so 
does TF(z).  This means all the zeros (poles) of T:(z) 
((TF)-') have magnitudes larger than 1. Invertibility of 
& follows immediately. Recall now that RI is the unique 
solution of the following matrix linear equation 

AR, - RIA1 - LCt = 0 

We can verify that AE'RIE also satisfies the above equa- 
tion 

AA;' RIE - A;' R l ~ A l  - LGI 
= 
= o  

T - ~ ( R I E  - AE'RIEAIE - L E C ~ E )  

So R1 = A E I R l ~  and M E  = rM follows. 

I3 

Lemma 4 Consider the discrete time 11 optimal control 
problem for the EAS system: 

A closed loop system 

i.e. satisfies the interpolation conditrons 

= 2 q 5 , ~ - ~ *  is admrsssble, 
c = l  

= Ti@($), k = 1,. . . ,n ( 8 )  

where zf are the zeros of TF, if and only if 

P 

M E  = E g : A , " L E .  (9) 
I=% 

Proof: From the definition of EAS, (8) is equivalent to 

@(lk) = k'$:(l + TZk) -"  = T I ( Z k ) ,  k = I,.. . ,It. 
t=1 

From Lemma 3, (9) is equivalent to 

M =  .&$,(I+TA)-NlL U 
1=1 

M E  = 

Equivalence of (8) and (9) follows now from Lemma 2. 
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Note that Lemma 4 is true for any discrete time system 
since a discrete time system can always be thought as an 
EAS of some continuous time system. 

Proof of Theorem 5: Consider a set of admissible closed 
loop systems 

i t 1  i r l  

(11) 
From Lemma 3 it follows that conditions (7) and (11)  are 

identical. Therefore, for every in KIE there exists a 
corresponding @(s) = QE(l  + r s )  in n,, and vice versa. 
Since 

a 

a= 1 

it follows that the closed loop system Q E  obtained by 
solving the optimal I' control problem for the EAS yields 
the smallest y among the elements of the set Q E .  Hence 
the rational closed loop system obtained by EAS methods 
also has the smallest upper bound y among the set Qr.  

0 

3.3. The EAS Method Revisited 
Although the results of [5] and [ l ]  show that the optimal 

L' controllers can be approximated arbitrarily close with 
a rational controller, these results did not provide a way of 
obtaining an approximation with error smaller than a pre- 
specified bound; rather, they required solving a sequence 
of problems and checking the approximation error until 
the desired precision was achieved. In this section we in- 
dicate how to select the parameter r for the EAS method 
in such a way that the error of the resulting approxima- 
tion is smaller than a prespecified bound. Moreover, we 
show that this approximation error converges to  0 as fast 
as r .  Finally, we provide an alternative, simpler proof to 
EAS method that does not use the properties of Positively 
Invariant Sets. 

Theorem 6 Given any e > 0, we can find a r a priori 
for the EAS method such that 

P E  5 PO(1 + E )  

Moreover, the approzimation error converges to zero as 
O(r)* 

Proof: Consider the optimal l1 control problem for the 

P E  1: inf IITi@(z) + T?(z)Q(z)IIi (12 )  
EAS: 

Q rtoble 

and its dual: 

subject to: 
n 

I aiR.{(zE)-k)+c i-1 a i+n Im{ (z$ ) -k  4 5 1, k = 0,1,2, ... 
(14) 

where T? and TF are the EAS of TI and Tz, respectively, 
and where zf denotes the zeros of T:. From the relation- 
ship between the EAS and its corresponding continuous 

i t 1  

system, the above dual problem is equivalent to 
n 1 

subject to: 
n 

. r r l  ,=l 

which can further be thought as an approximation of the 
dual problem of L1-optimal control problem 

k = 0 , 1 , 2 ,  ... (16) 

subject to: 
n 

a=:1 

(18) 
in the sense that the constraints (18 )  are firstly sampled 

at the time interval t k  =: kr and then the irrational terms 

For simplicity, in the sequel we will assume that all the 
zeros z, are real as in [3 ] ,  although the proofs can be easily 
extended to encompass complex zeros as well. 

An upper bound on llall1 for all a satisfying the con- 
straints (13)  can be derived by using a procedure similar 
to the proof of Theorem 5 in [2]. Define a p x n matrix 

are approximated by rational terms (1  + rz,)-'. 

/ 1  1 ... 1 \  

F =  

( 

where p is any integer n'ot smaller than n. I t  can be easily 
shown that F has full column rank and satisfies: 

F,a = rE(i - 1 ,  a )  

where F, denotes the i th row of F .  Hence: 

IlQlll = IIF-'Fall1 I l l ~ - l l l c o , l  IlFallm 5 Il.F-lIlc-a,l 
where F-' denotes the left inverse of F and where 
l\F-lllw,l denotes the induced norm of F-' from 1," to  

Note also that constraints (18)  will be automatically 
satisfied for all t > t,,,, where t,,, is finite and can 
be determined a priori [3]. Given any t 5 tmaz, assume 
that the constraints (16) are satisfied and consider any 
t 5 t,,,. Selecting k such that t k  5 t < t k  + r we have 
that: 

'P. 

n n 
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The first inequality is immediate. The second one follows 
from the triangle inequality. The last one can be proved 
as follows: If 1.1 5 1 and Ibl 5 1 then 

lak - bkl = la - bl)ak-l + ak-’b + ... + bk-’l 5 kla - bl 
so we have 

1(1 + rz:)+ - e-’’*’ I 
5 
5 tmazr-’1(1 + rz:)-’ - (20) 

Note that both terms in the parenthesis can be made 
as small as one desires. So given any E > 0, we can choose 
a r such that the right-hand side of the inequality is less 
than or equal to 6. For this value of r we have: 

kI(1 + rz,)-l - e-’*rl 

n 

~ r ( t ,  a11 = I cx:e-+tl 5 1 + E ~t E R+ 
:=1 

In particular the above inequality holds for a* which 
solves the dual problem of EAS. Since 

n 

(TI, T(t, a*)) = a:TI(Zt) = P E  
:=1 

we have that 

Finally, the fact that E ( T )  = O(T) follows from considering 
the Taylor expansion of equation (19). 

Remark 4 By using the results of Lemma 2 and Theo- 
rems 2 and 5, the main result of [f] can be proved without 
using the concept of positively invariant sets. The fact that 
the A-norm of the resulting closed-loop system i s  less than 
p E ( r )  follows from Lemma 2. The convergence property 
is a direct result of Theorem 2 and Theorem 5. 

4. An Example 

Consider the example introduced in [3] and further 
studied in [l] and [5]. The plant is 

s - 1  
9 - 2  

P(8) = - 
The control objective is to minimize II@II1 = IIPC(1 + 
PC)-’ 111. The optimal closed loop system is [3]: 

@ O P T ( S )  = 1.7071 - 4.1213e-0 8814’ 

with an optimal cost = 5.8284. For T = 0.45, the ra- 
tional closed loop system obtained using the EAS method 
is: 

with y = I I @ ( s ) I I A  = 7.2879. The OMK method yields: 
@(s) = 1.8001 - 5.4878(1 + 0 . 4 5 ~ ) - ~  

@(s) = 2.3947 - 5.0348(1 + 0 . 4 5 ~ ) ~ ’  

with y = 11@(s)ll~ = 7.4295. Finally, if we consider the 
OMK-like approximation obtained by selecting N(t, ,  r ) e  
largest integer smaller than or equal to t i l s ,  i = 1 , .  . . , m, 
we obtain: 

@(s) 2 4.222 - 6.122(1 + 0.45~)-’ 

with y = I lO(s) l l~  = 10.344. 

5. Conclusions 

A recent research effort [2],[3],[4],[6],[7], has lead to 
techniques for designing optimal compensators that min- 
imize the worst case output amplitude with respect to all 
inputs of bounded amplitude. In the discrete-time SISQ 
case, minimizing the 1’ norm of the closed-loop impulse re- 
sponse yields a rational compensator. Unfortunately, the 
solution to the continuous-time version of the problem is 
irrational. Prompted by the difficulty of physically im- 
plementing a system with an irrational transfer function, 
rational approximations were recently developed [5],[1]. 

In this paper we compare these approximations and 
we show that they are strongly connected. Indeed, both 
approximations can be considered as elements of the same 
subset Qr  of the set of rational approximations. 

In section 3.2 we show that the EAS method proposed 
in [l] yields the best approximation (in the sense of pro- 
viding the tightest upper bound of the error) among the 
elements of this set. 

Finally, in section 3.3, we exploit the structure of the 
dual problem to provide a procedure that allows for se- 
lecting the parameter r for the EAS method to guarantee 
that the approximation error is smaller than a prespecified 
bound E .  Moreover, we also show that this approximation 
error -+ 0 as O(r) .  

We believe that these results, combined with the fea- 
tures of the EAS method mentioned in [I], namely the 
facts that i) it removes the ill-posedness due to the pres- 
ence of zeros on the imaginary axis; ii) it leads to compu- 
tationally simple problems; and iii) i t  is easily extensible 
to the MIMO case, make this method an attractive tool 
for the design of controllers for continuous time systems. 
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