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Abstract

This paper considers the problem of estimating the
fundamental matrix from corrupted point correspon-
dences. A general nonconvex framework is proposed
that explicitly takes into account the rank-2 constraint
on the fundamental matrix and the presence of noise and
outliers. The main result of the paper shows that this
non-convex problem can be solved by solving a sequence
of convex semi-definite programs, obtained by exploit-
ing a combination of polynomial optimization tools and
rank minimization techniques. Further, the algorithm
can be easily extended to handle the case where only
some of the correspondences are labeled, and, to exploit
co-ocurrence information, if available. Consistent ex-
periments show that the proposed method works well,
even in scenarios characterized by a very high percent-
age of outliers.

1. Introduction
The fundamental matrix provides a scene–

independent algebraic representation of the epipolar
geometry of a stereo camera system, that depends only
on the cameras’ intrinsic parameters and relative pose
[6]. Given the key role that this matrix plays in a large
number of problems in computer vision applications,
such as stereo camera calibration, 3D reconstruction,
etc., the problem of estimating it from experimental data
(typically consisting of point correspondences from two
images) has been the subject of a large research effort.
In general, existing techniques reduce the problem to
a constrained optimization, where the main difficulties
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stem from the need to impose that the resulting matrix
must be rank deficient, and from the presence of
outliers, which if not properly handled can substantially
skew the estimate.

Existing methods fall roughly into one of two classes,
depending on how they tackle the non-convex rank-
2 constraint. The first type of methods uses a two-
step approach, for instance, methods based on the well-
known eight-point algorithm and its various extensions
[12, 6, 3], that starts by finding a (sub)optimal estimate
without taking into account the rank constraint and then
refines the result by reducing its smallest singular value
to 0. However, in [13] it has been shown that ignoring
the rank constraint can degrade the accuracy in terms of
the covariance matrix of the first-order variation of the
solution. On the other hand, the second type of meth-
ods considers the rank constraint explicitly. In [16] a
Levenberg-Marquard (LM) approach is proposed to op-
timize the singular value decomposition (SVD) of the
fundamental matrix. In [20] and [1] the rank constraint
is imposed by setting its determinant to 0, leading to
a 3rd-order polynomial constraint. Alternatively, in [2]
and [21] the estimation problem is reduced to one or sev-
eral constrained polynomial optimization problems by
imposing the constraint that the null space of the solu-
tion must contain a non-zero vector. The resulting op-
timization problems are solved by resorting to various
optimization techniques, such as brand-and-bound ap-
proaches [20, 21] or moments based convex relaxations
[2, 1].

Although the above methods perform well under the
assumption of small, suitably distributed (for instance
Gaussian) measurement noise, their performance sub-
stantially degrade in the presence of even a few outliers
(i.e., point mismatches). Thus, a large number of ro-
bust methods have been developed to explicitly take into
account the presence of outliers. These include random-
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ized methods such as RANdom Sampling Consensus es-
timator (RANSAC) [5] and its variants, which attempt to
find outlier-free data by repeatedly randomly selecting
the minimal number of correspondences needed to gen-
erate a solution, and selecting the best one, according to
some optimality criteria. For instance, RANSAC selects
the solution with largest support on the complete dataset.
MSAC [17], a redecending M-estimator [8], penalizes
both the squared fitting error of inliers and number of
outliers. Least Median of Squares (LMS) [11] selects
the estimate which gives the least median fitting error.
Finally, Maximum Likelihood Estimation SAmple Con-
sensus (MLESAC) [18] attempts to find the maximum
likelihood estimate of the true position of the points.
Random sampling based methods are attractive due to
their simplicity and the existence of theoretical bounds
on the number of samples required to guarantee a given
probability of success. However, they suffer from sev-
eral weaknesses. Firstly, for a given probability of suc-
cess, the number of needed iterations grows very fast
with the number of outliers. Secondly, since the bounds
explicitly depend on the number of outliers, this quantity
must be known or estimated accurately, since stopping
the algorithm prematurely can lead to arbitrarily bad so-
lutions. Finally, these methods cannot directly impose
the rank deficiency constraint. Rather, this is done a pos-
teriori, by projecting the solution onto the manifold of
rank-2 matrices. However, as indicated before, this step
can lead to substantial performance degradation.

1.1. Main Idea and Paper Contributions

Motivated by the challenges noted above, in this pa-
per we propose a novel single-step framework for ro-
bustly estimating the fundamental matrix from point
correspondences corrupted by noise and outliers. The
main idea is to introduce binary variables that indicate
whether a given correspondence is an inlier (and hence
should be used in the estimation), or an outlier (and
hence should be discarded), and to explicitly impose the
rank-2 constraint by searching for the epipoles. This
formulation leads to a polynomial optimization over a
semi-algebraic set that can be solved by appealing to re-
cent results on sparse polynomial optimization. Specifi-
cally, the advantages of the proposed approach vis-à-vis
existing techniques include the abilities to:

• Explicitly impose rank-deficiency and handle noise
and a very large percentage of outliers, without the
need for additional assumptions such as bounds on
the number of outliers.

• Certify that a given convex relaxation has indeed

found an optimal estimate of the fundamental ma-
trix (the ground truth for noiseless data and the one
that maximizes the number of inliers in the case of
noisy measurements).

• Exploit co-occurrence priors to improve the esti-
mate.

• Handle partially known correspondences.

• Explicitly exploit the underlying sparse structure of
the problem to reduce the computational burden.

In addition, we provide theoretical results showing that,
if in the optimization above a certain matrix containing
only variables related to the fundamental matrix has rank
1, then the first order relaxation of the problem achieves
global optimality. Combining these ideas with rank-
minimization techniques leads to a computationally ef-
ficient algorithm with complexity comparable to robust
regression based techniques, while still retaining the ad-
vantages noted above. These results are illustrated with
several examples where the proposed algorithm is shown
to consistently outperform existing techniques.

2. Preliminaries
2.1. Notation

X,x, x matrix, vector, scalar
XT (xT ) the transpose of X(x)
R, N set of real number and non-negative inte-

gers
I Identity matrix
M � N the matrix M−N is positive semidefinite
σi(A) the i-th largest singular value of matrix A
|I| cardinality of the set I

2.2. Problem Statement

Given a pair of images of the same scene from two
uncalibrated perspective views, the fundamental matrix
F ∈ R3×3 is defined as the rank-2 matrix which satisfies
the epipolar constraint

x′
T
Fx = 0, ∀x′,x, (1)

where the homogenous coordinates x,x′ ∈ R3 are the
corresponding projections of a 3D point in the two im-
ages. F has seven degrees of freedom due to the am-
biguity caused by the scaling and singularity. Our goal
is to develop a computationally tractable algorithm that,
starting from noisy point correspondences corrupted by
outliers, simultaneously estimates a rank-2 fundamental
matrix that maximizes the number of inliers, and, at the



same time, explicitly identifies outliers, defined as those
points whose distance from the surface defined by (1)
is beyond a given bound. Specifically, we address the
following problem:

Problem 1. Given a set of noisy point correspondences,
{xi,x′i}, i = 1, . . . , n drawn from two images of the
same scene, and a-priori bound on the fitting error
|x′Ti Fxi| ≤ ε, find a fundamental matrix F such that:
1.- ||F||F = 1;
2.- F is rank-2;
3.- The number of inliers is maximized, that is max
|I(F)| where I(F)

.
= {(x′i,x) : |x′Ti Fxi| ≤ ε}.

As we show in the sequel, the problem above can
be recast as a constrained polynomial optimization and
solved using the methods briefly described below.

2.3. Moments Based Polynomial Optimization

2.3.1 The Problem of Moments

Consider a constrained Polynomial Optimization Prob-
lem (POP) of the form

p∗K
.
= min

x∈K
p(x) (P1)

where p(x) is a multivariate polynomial expressed as a
sum of monomials, that is p(x) .

=
∑

α pαxα, where
α

.
= (α1, . . . αn) with αi ∈ N is a multi-index, x

.
=

(x1, . . . , xn), xi ∈ R and, following standard notation,
we have defined xα =

∏n
i=1 x

αi
i . Here K denotes a

set defined by d inequalities of the form gk(x) ≥ 0,
k = 1, . . . , d, where gk(.) is a multivariate polynomial
also expressed as a sum of monomials, e.g. K .

= {x ∈
Rn : gk(x)

.
=
∑

β gk,βxβ ≥ 0, k = 1, . . . , d}.
Problem (P1) is generically non-convex (except in a

few special cases) and hence computationally challeng-
ing. Thus, we consider a related problem:

p̃∗K
.
= min
µ∈P(K)

∫
p(x)µ(dx) = min

µ∈P(K)
Eµ [p(x)] (P2)

where P(K) is the space of probability measures on K
with

∫
K dµ = 1 and Eµ[·] denotes the expectation. Al-

though (P2) is an infinite dimensional problem, it is, in
contrast to (P1), convex. As shown in [9], Problems (P1)
and (P2) are equivalent, in the sense that

• p̃∗K = p∗K.

• For every optimal solution µ∗ of (P2), p(x) = p∗K,
µ∗-almost everywhere.

It follows (see [9, 10] for more details) that problem
(P1) can be reduced to a sequence of Linear Matrix In-
equalities (LMI) optimization problems in the moments
of the unknown probability measure µ of the form

p∗N = minm
∑

α pαmα

s.t. MN (m) � 0,
L
N−d δk2 e

(gkm) � 0,∀dk=1

(2)

where m
.
= {mα(i) : mα(i)

.
=
∫
K xα(i)

µ(dx)} is the
moments sequence of order up to 2N , indexed by a
multi-index sequence α(i) ∈ Nn arranged in a graded
reverse lexicographic order, and MN and L

N−d δk2 e
are

the truncated moment and localizing matrices given by

∀SNi=1,j=1 : MN (m)(i, j) = mα(i)+α(j)

∀
S
N−d δk

2
e

i=1,j=1 : L
N−d δk2 e

(gkm)(i, j) =
∑

β gk,βmβ+α(i)+α(j) ,

(3)
where δk is the degree of polynomial gk, and SN =(
N + n
n

)
(e.g. the number of moments in Rn up to

order N ).
Further, it can be shown that as N increases, p∗N in

(2) monotonically increases to p∗K from below. The nec-
essary and sufficient conditions to guarantee the equiva-
lence between (2) and (P1) are either

• positive semi-definiteness of the infinite dimen-
sional matrices MN and L

N−d δk2 e
as N increases

to infinity; or

• for a finite N , the flat extension [4] property
holds, that is, for MN � 0, MN+1 � 0, and
rank(MN ) = rank(MN+1).

2.3.2 Exploiting an Underlying Sparse Structure

In many cases of practical interest, including the prob-
lem in this paper, the objective function and the poly-
nomials defining the constraint set K exhibit a sparse
structure that can be exploited to substantially reduce
the computational burden entailed in solving (2). To this
effect, start by introducing the concept of running inter-
section:

Definition 1. Consider problem (P1) and let Ik ⊂
{1, . . . , n} be the set of indices of variables such that
each gj(x) contains variables only from some Ik. As-
sume that the objective function p(x) can be partitioned
as p(x) = p1(x) + . . . + pl(x) where each pk contains



only variables from Ik. Problem (P1) is said to sat-
isfy the running intersection property if there exists a re-
ordering Ik′ of Ik such that for every k′ = 1, . . . , l− 1:

Ik′+1 ∩
k′⋃
j=1

Ij ⊆ Is for some s ≤ k′ (4)

As shown in [10], when the running intersection
property holds, one can construct a convergent hierar-
chy of semidefinite programs of smaller size:

p∗N = minm
∑l
j=1

∑
α(j) pj,α(j)mα(j)

s.t. Mk,N (mIk) � 0,∀lk=1,
L
j,N−d

δj
2 e

(gjmIk) � 0,∀dj=1,

(5)
where pj,α(j) is the coefficient of the α(j)-th monomial
in the polynomial pj , Mk,N (mIk) denotes the moment
matrix and L

j,N−d
δj
2 e

the localizing matrix for the sub-

set of variables in Ik. Notably, for a given N , this ap-
proach requires considering moments and localizing ma-
trices containing O(κ2N ) variables, where κ is the max-
imum cardinality of Ik, rather than O(n2N ). Since in
the problems considered in this paper κ� n this results
in substantial computational complexity reduction.

3. Main Results
In this section we present the main theoretical results

of the paper: (i) a reformulation of Problem 1 into a con-
strained polynomial optimization problem, (ii) a conver-
gent sequence of convex relaxation, and (iii) a sufficient
condition, given in terms of the rank of a small matrix,
for the first element of this sequence to attain global opti-
mality, leading to a computationally efficient algorithm.

3.1. A Constrained POP Reformulation

By introducing indicator variables si ∈ {0, 1}, Prob-
lem 1 can be reformulated as

p∗ = min
q,F,si

n∑
i=1

(1− si) subject to: (6a)

||F||2F = 1 (6b)

Fq = 0,qTq = 1 (6c)

s2i = si,∀ni=1 (6d)

si|x′Ti Fx| ≤ siε (6e)

In this formulation (6c) guarantees that F is rank defi-
cient, while (6d) forces si to be binary. This last equa-
tion, combined with (6e) enforces that si = 0 for outliers
(that is, points where |x′Ti Fx| > ε). Thus, the cost func-
tion (6a) is meant to minimize the number of outliers.

Remark 1. Note that in this formulation, rank defi-
ciency of F is enforced by imposing the existence of a
nonzero vector q in its null space, leading to a second
order polynomial constraint. For comparison, the ap-
proach in [1], imposes det(F) = 0, which in this case
results in a third order polynomial constraint. Thus, the
lowest order relaxation in that formulation requires con-
sidering moments of order up to four, while in our formu-
lation the lowest order relaxation involves only moments
of order up to 2. Since the size of the optimization prob-
lem is combinatorial in the order of the relaxation, our
approach, combined with theoretical results guarantee-
ing that this relaxation is exact, leads to a substantial
reduction in computational complexity.

Remark 2. It can be easily shown that (6) exhibits the
running intersection property. This observation will be
used in the next section to efficiently construct a hierar-
chy of convex relaxations.

Remark 3. Under the assumption that all the corre-
spondences are inliers, then (6) reduces to a feasibility
problem about F and q with si = 1, ∀i = 1, . . . , n.

3.2. Moments Based Relaxations

Clearly, (6) is nonconvex due to the bilinear terms
and the binary variables in (6b)-(6e). However, the mo-
ments based polynomial optimization techniques intro-
duced in Section 2.3, can be used to obtain a sequence
of convex relaxations of the form

p∗N = min n−
∑n
i=1m(si)

s.t. Mi,N � 0,∀ni=1

Li,N−1 � 0,∀di=1

(7)

where Mi,N denotes the N -th order moment matrix
consisting of moments of {F,q, si} (variables associ-
ated with (xi,x

′
i)) of order up to 2N , and where Li,N−1

denotes the localizing matrices corresponding to the
constraints (6b)-(6e) that define the feasibility set in (6).

The results from Section 2.3.2 guarantee that this se-
quence of relaxations converges monotonically (from
below) to the optimum. Nevertheless, from a practical
stand point its applicability is limited to relatively small
problems, due to the fact that the number of variables
increases combinatorially with N (even when exploit-
ing the underlying sparse structure), and that, in prin-
ciple the value of N required to achieve a flat exten-
sion, and hence certify optimality, can be large. In addi-
tion, once an optimal N has been found, extracting the
solution F from the corresponding moments matrix M
is far from trivial, unless rank(M) is low (see [7] for
details). To circumvent these difficulties, in the sequel



we will exploit the fact that moment matrices associated
with atomic measures having a single atom have rank 1,
since in this case the moments simply correspond to the
powers of the variables, evaluated at the location of the
atom, and in turn the variables are equal to their first or-
der moments. In principle, one could try to exploit this
observation by adding a low rank constraint on each of
the moment matrices Mi,N to (7). However, this con-
straint would be computationally hard to enforce due to
the large number of matrices involved. Surprisingly, as
shown by the result below, enforcing a low rank con-
straint only on the moment matrix associated with F and
q is enough to guarantee that the relaxation correspond-
ing to N = 1 attains global optimality. Further, in this
case the elements of F can be read directly from its as-
sociated moment matrix, without the need for additional
computations.

Theorem 1. Consider the first order moment relaxation
(7) of Problem (6) given by

p̃∗1 = min n−
∑n
i=1m(si)

s.t. Mi,1 � 0,∀ni=1 and Li,0 � 0,∀di=1
(8)

Let Mc
1

.
=

 1 m(f)T m(q)T

m(f) m(ffT ) m(fqT )
m(q) m(qfT ) m(qqT )

. Then, if

rank(Mc
1) = 1, the relaxation (8) is exact. Further, in

this case the corresponding optimal first order moments
sequence {m(F)∗,m(q)∗,m(si)

∗} is also an optimal
solution to the original non-convex problem (6).

Proof. (Sketch) For each pair (xi,x′i), ∀i = 1, . . . , n,
the first order moment matrix Mi,1 corresponding to its
associated variables f ,q and si is of the form

Mi,1 = m(


1
f
q
si

 [1 fT qT si
]
)

=


1 m(f)T m(q)T m(si)

m(f) m(ffT ) m(fqT ) m(fsi)
m(q) m(qfT ) m(qqT ) m(qsi)
m(si) m(fT si) m(qT si) m(si)


(9)

where f denotes the vectorized F, and where the last
entry of Mi,1 results from the constraint si = s2i . Since
rank(Mc

1) = 1, then the first order moment variables
m(f) and m(q) satisfy (6b) and (6c). Next we show
that they also satisfy (6e).

Let v = [v(j)]12j=1 =
[
fT qT

]T
. Due to the

positive semi-definiteness of Mi,1, its principal minors
should also be positive semi-definite. Hence:

Mm =

 1 m(v(j)) m(si)
m(v(j)) m(v(j)2) m(v(j)si)
m(si) m(v(j)si) m(si)

 � 0

(10)
If Mc

1 is rank 1, then m(v(j)2) = m2(v(j)), further-
more, from

det(Mm) = −[m(v(j)si)−m(v(j))m(si)]
2 ≥ 0,

(11)
we have

m(v(j)si) = m(v(j))m(si). (12)

At the first order relaxation, the localizing matrix as-
sociated with (6e) reduces to:{

x′Ti m(siF)xi ≤ m(si)ε;

x′Ti m(siF)xi ≥ −m(si)ε.
(13)

Substituing (12) into (13) leads to{
x′Ti m(si)m(F)xi ≤ m(si)ε;

x′Ti m(si)m(F)xi ≥ −m(si)ε.
(14)

Thus, for any m(si) > 0, (13) reduces to{
x′Ti m(F)xi ≤ ε
x′Ti m(F)xi ≥ −ε

, (15)

implying that the pair (x′i,xi) is an inlier associated with
the fundamental matrix m(F). Next, note that, since
(8) seeks to minimize−

∑n
i=1m(si), then any non-zero

m(si)
∗ term in the optimal solution will automatically

increase to 1. Therefore, (8) is exactly equivalent to (6)
(by replacing F, q, si with m(F), m(q), m(si)). Fi-
nally, note that the combination of the binary variables
m(si)

∗ and rank(Mc
1) = 1 guarantees that Mi,1 is also

rank 1, from where it follows that the first order moment
sequence {m(F)∗,m(q)∗,m(si)

∗} is indeed an optimal
solution of the original nonconvex problem (6).

3.3. A Reweighted Heuristic Based Algorithm

Theorem 1 suggests that a computationally attrac-
tive algorithm can be obtained by simply adding the
constraint rank(Mc) = 1 to (8). Unfortunately, the
resulting problem is no longer convex. Nevertheless,
a tractable convex relaxation can be obtained by us-
ing a (weighted) nuclear norm as a surrogate for rank1,

1This relaxation amounts to a local linearization of the matrix’s
log-det function.



and iteratively solving a sequence of regularized convex
problems[14], of the form:

p̃
(k)∗
1 = min n−

∑n
i=1m(si) + λtrace(W(k)Mc

1)
s.t. Mi,1 � 0,∀ni=1 and Li,0 � 0,∀di=1

(16)
favoring low rank solutions through the second term
in the cost, leading to Algorithm 1 outlined below.
Note that each iteration has computational complexity
roughly equivalent to that of regularized robust regres-
sion and robust low rank factorization based methods.
Further, consistent numerical experience shows that typ-
ically only a few iterations are needed for convergence.

Algorithm 1 Robust Fundamental Matrix Estimation

Initialize: k = 0, W(1) = I;
repeat
k = k + 1;
Solve (16) and obtain M

c∗(k)
1 ;

Update W(k+1) = [M
c∗(k)
1 + σ2(M

c∗(k)
1 )I]−1

until σ2(M
c∗(k)
1 ) < 10−6σ1(M

c∗(k)
1 ).

4. Extensions: Co-occurences and Partially
Known Correspondences

A salient feature of the proposed framework is that
it can be easily extended to handle co-occurrences and
partially known correspondences. The former simply
entails using the same variable si for correspondences
known to have the same label (either all are outliers or all
are inliers, although the actual label is unknown). Par-
tially known correspondences arise in cases where la-
beling is expensive, and thus only a few labels are avail-
able. Consider first a scenario without outliers. In this
case, the problem can be formalized as: given a set of
n labeled point correspondences (yi,y′i), i = 1, . . . , n,
m unlabeled points {xj}mj=1 from image 1 and m unla-
beled points {x′j}mj=1 from image 2 of the same scene,
find the fundamental matrix F and a set of m pairs
(x′i,xj) such that |x′iFxj | ≤ ε. By introducing suitable
variables li,j the problem can be reduced to the follow-
ing polynomial feasibility form:

li,j |x′iFxj | ≤ li,jε,∀mi=1∀mj=1

|y′iFyi| ≤ ε,∀ni=1∑m
i=1 li,j = 1,∀mj=1∑m
j=1 li,j = 1,∀mi=1

(17)

where the last two equations in (17) enforce the fact that
each unlabeled point must be assigned to exactly one

correspondence. Finally, the case where the set of la-
beled data contains outliers can be handled as before, by
introducing variables si and minimizing n−

∑
si.

House Library

Merton I Merton II

Merton III Wadham
Figure 1. Sample image pairs from the VGG dataset.

5. Experiments
Next, we describe a set of experiments used to ver-

ify our theoretical results. These experiments consist of
the estimation of fundamental matrices from points cor-
respondences from six pairs of stereo images: House,
Merton I, Merton II, Merton III, Library, and Wadham,
given by VGG, University of Oxford, shown in Figure 1.

5.1. Experimental Protocol

In each experiment, before computing the fundamen-
tal matrix, the data was normalized as in [6] and [3].
Ground truth data. Given a pair of images, we first
calculated a fundamental matrix from the correspon-
dences (xi,t,x′i,t) provided with the dataset by minimiz-
ing the algebraic error. We considered the resulting fun-
damental matrix Ft, as the ground truth, with the thresh-
old ε given by ε .= maxi |x′Ti,tFtxi,t|. Then, the VLFeat
toolbox [19] was used to obtain a set of SIFT features
from the two images, and correspondences (xi,x′i) were
defined by those pairs of points whose `2 norm is≤ 0.5.
Finally, inliers and outliers were selected as those cor-
respondences satisfying maxi |x′Ti Ftxi| ≤ ε, and those
violating this bound, respectively.



Experimental set-up. For each pair of images, we ran
seven sets of experiments, with 100 correspondences
and outliers ranging from 10% to 70%. For each set of
experiments we ran 50 times by randomly picking Nout
outliers and Nin inliers from (xi,x

′
i) and compared the

results with several state-of-the-art methods.
Evaluation criteria. We compared four performance
measurements as follows:

• Precision = Ground truth inliers∩Identified inliers
Identified inliers × 100;

• Recall = Ground truth inliers∩Identified inliers
Ground truth inliers × 100;

• Hmeans =
√
Precision×Recall × 100;

• Similarity = |trace(FtFT )|. The closer
Similarity is to 1, the smaller the distance be-
tween the identified fundamental matrix F and the
ground truth Ft.

Computational platform. All algorithms were imple-
mented in MATLAB and run on a 3.4GHz iMac with
32G memory. The SDP solver used was SeDuMi [15].

5.2. Results

In these experiments we compared the performance
of the proposed algorithm with that of RANSAC and
several of its variants, i.e., MSAC, MLESAC and
LMEDS. For all these methods, the number of iterations
was set to 500, and in each iteration the fundamental
matrix was calculated using the eight-point algorithm.
The results are summarized in Tables 1-4, and illustrated
in Figure 2. As shown there, the proposed algorithm
was consistently more robust than the SAC algorithms,
in the sense that it identified a larger number of inliers
and yielded a fundamental matrix closer to the ground
truth, in terms of a larger inner product. Note that while
in Tables 1-3 the proposed method leads to larger vari-
ance, the corresponding mean value is higher, indicating
that the other methods have consistently lower perfor-
mance. Indeed, a quick computation assuming gaussian
distributions shows that our method yields a higher ob-
jective value with probability > 0.7 even in the most
unfavorable case. In terms of computational efficiency,
since our algorithm requires solving semi-definite opti-
mization problems, each iteration is more time consum-
ing than those of SACs. On the other hand, consistent
numerical experience shows that only a few iterations
are needed for convergence (typically no more than 14).
Since each iteration requires about 10 seconds when us-
ing 100 points, the overall computational cost remains
competitive vis-à-vis randomized methods, specially in
cases involving large number of outliers.

Table 1. Mean and Standard Deviation of Precision (%)
Nout RANSAC MSAC LMEDS MLESAC Proposed

10 97.7586 97.6864 97.8189 97.9042 98.2640
1.7967 1.7241 1.9095 1.7129 1.9726

20 94.7582 94.6092 94.5228 94.6768 96.6838
3.0774 2.3474 3.0246 3.0948 2.8109

30 90.3102 90.6371 90.1515 90.6361 93.5078
5.1555 3.8062 4.8416 5.0145 4.6797

40 83.8319 83.6164 83.9802 84.0462 90.1450
6.8161 5.6156 7.3236 6.6029 6.5219

50 74.9536 74.7678 74.7990 75.8945 83.8643
10.7474 6.6748 10.0023 9.5612 8.7383

60 58.3182 59.4671 60.3656 60.9045 75.8507
12.7762 9.1357 12.4958 10.9836 14.0279

70 43.5151 42.9147 44.8255 44.0817 62.6045
13.0902 12.2906 12.9395 13.3457 16.8592

Table 2. Mean and Standard Deviation of Recall (%)
Nout RANSAC MSAC LMEDS MLESAC Proposed

10 75.6074 71.9333 69.1296 72.9741 89.2111
4.8220 4.5412 5.1152 6.2715 7.8245

20 74.1917 70.8500 70.6417 71.6167 85.5804
5.5170 4.7135 5.3528 6.5717 8.9735

30 72.1571 70.0000 70.6714 69.9000 80.1794
6.3000 5.1970 6.1241 7.3354 10.3759

40 69.4556 67.1944 68.7500 67.6278 77.3000
7.7685 7.7287 8.4810 7.8525 10.9068

50 64.9600 62.4600 62.3733 63.4733 71.9000
10.5049 9.8250 10.8597 9.6938 11.1134

60 57.1500 56.9583 55.7667 57.3917 66.7817
13.4839 10.6995 13.8929 10.8910 15.0884

70 50.2222 47.5000 45.7000 48.8556 62.0917
14.3284 16.3911 14.0125 14.7437 18.6231

Table 3. Mean and Standard Deviation of Hmean (%)
Nout RANSAC MSAC LMEDS MLESAC Proposed

10 85.9271 83.7512 82.1771 84.4428 93.5321
2.9264 2.8941 3.2714 3.7745 4.7464

20 83.7898 81.7846 81.6613 82.2578 90.8371
3.6833 2.7879 3.7210 4.2533 5.7553

30 80.6565 79.5672 79.7593 79.4978 86.4264
4.9393 3.8809 4.8613 5.4053 7.2137

40 76.2084 74.8478 75.8708 75.2759 83.2783
6.3890 6.1565 7.0401 6.1798 7.8551

50 69.6849 68.2157 68.1352 69.2968 77.4227
10.0422 7.4362 9.4998 8.8621 8.5625

60 57.6164 58.0626 57.7907 59.0019 70.8664
12.6155 9.4320 12.2474 10.2399 13.3851

70 46.6358 45.0231 45.0193 46.2706 62.0409
13.3631 14.0348 12.6929 13.5550 16.7669

Table 4. Mean and Standard Deviation of Similarity (×100)
Nout RANSAC MSAC LMEDS MLESAC Proposed

10 99.7772 99.6793 99.4775 99.9650 99.9828
0.7316 0.0126 2.2484 0.0908 0.0716

20 99.6139 99.1964 99.2437 99.9289 99.9860
1.7647 0.0129 3.3507 0.3425 0.0697

30 99.4306 99.2144 99.6560 99.8947 99.9920
2.6753 0.0207 1.4154 0.3682 0.0176

40 99.6427 99.0665 99.5319 99.8482 99.9918
1.0935 0.0189 2.2583 0.3942 0.0187

50 98.5472 96.9745 99.4611 99.6875 99.9876
5.1293 0.0331 3.4161 1.3350 0.0327

60 97.6169 94.9443 99.0108 98.8553 99.9878
8.7403 0.0570 5.0077 5.3757 0.0289

70 96.6981 94.5070 98.7259 98.5653 99.9931
9.0199 0.2751 5.6968 5.0236 0.0078
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Figure 2. Performance comparison (Hmean and Similarity) for the image pairs House, Library and Merton II. The rest of the
experiments using VGG data show similar behavior.

6. Conclusions

This paper considers the problem of robustly estimat-
ing the fundamental matrix from point correspondences
corrupted by noise and outliers. Its main result is a com-
putationally tractable algorithm that explicitly enforces
the rank deficiency constraint, without assumptions on
the percentage or distribution of the outliers. In addi-
tion, the algorithm can be easily extended to handle co-
occurrence information or scenarios where only some

of the correspondences are known. These results are
illustrated with experiments, showing that the proposed
method performs well, even in scenarios characterized
by a very high percentage of outliers, consistently out-
performing existing techniques. Research is currently
under way seeking implementations based on first order
methods (as opposed to the interior point methods used
by conventional SDP solvers), in order to further reduce
the computational burden.
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