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Abstract— This paper considers the problem of worst-case
estimation for switched piecewise linear models, in cases where
the mode-variable is not directly observable. Our main result
shows that worst case point wise optimal estimators can be
designed by solving a constrained polynomial optimization
problem. In turn, this problem can be relaxed to a sequence of
convex optimizations by exploiting recent results on moments-
based semi-algebraic optimization. Theoretical results are pro-
vided showing that this approach is guaranteed to find the
optimal filter in a finite number of steps, bounded above by
a constant that depends only on the number of data points
available and the parameters of the model. Finally, we briefly
show how to extend these results to accommodate parametric
uncertainty.

I. INTRODUCTION AND MOTIVATION

Switched linear systems are ubiquitous in many applica-
tions ranging from manufacturing processes, communication
systems and biology to reconfigurable control. Thus, a large
research effort has been devoted in the past decade to the
problems of identification, control and estimation of systems
represented by switched autoregressive models.

In the context of estimation, existing results can be
roughly classified into three categories. The first class of
algorithms involves situations where the mode variable is
directly accessible. In this case, the problem can be solved by
considering for instance a gain switched Luenberger observer
[2], obtained by solving a set of linear matrix inequalities.
In the case of `∞ bounded noise, worst case optimal filters
can be synthesized by solving on-line a linear programming
problem with O(r) variables, where r is the memory of the
filter [11].

In the second category of algorithms, the assumption
on the knowledge of the discrete state is relaxed. Rather
than assuming exact knowledge of the discrete state, the
problem is formulated in a probabilistic context, where either
a probability vector for different modes is provided or it is
assumed that mode transitions occur according to a model
described as a first-order Markov chain [9][5]. However, in
many practical situations these probabilistic descriptions are
not directly available.

The third family of algorithms considers a very general
setup where the discrete state is not directly accessible and
no priors exist on the probability of transitions. Rather, in
these cases an estimator is constructed to estimate the states
from the knowledge of the inputs and outputs [10][3][4][1].
In [10] and [3], an multi-model observer is designed, which
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consists of a location observer to decide the active submodel
and a continuous observer to estimate the continuous states.
These type of methods require observability of the switching
system which is nontrivial to check. Alternatively, several
methods completely avoid estimating the mode variable. For
instance [4], proposes an asymptotic observer constructed
directly from the measured data using an algebraic approach.
However, this approach is only available for systems sharing
common dynamics, where the switching is restricted to the
measurement equations. In [1], both the unknown discrete
mode and the continuous state vector are jointly estimated
by minimizing a receding-horizon quadratic cost function
that penalizes weighted `2 norms of the estimation errors
in the state, measurement and process noise over the set
G of switching patterns compatible with the experimental
data observed so far. A potential difficulty here stems from
the computational complexity entailed in minimizing the
objective function over all patterns in G, and in propagating
this set.

In this paper, we consider the problem of finding worst
case optimal estimators for switched ARX models in cases
where the mode is not directly accessible and the measure-
ments are corrupted by unknown but bounded noise. This
scenario captures the features present in many applications
where no a priori information is available about the noise,
except its support set. As in [1], we propose a receding
horizon strategy. However, the proposed algorithm does
not require explicitly propagating the admissible switching
set or minimizing over all its elements. Rather, this is
accomplished implicitly by recasting the problem into a
constrained polynomial optimization form where admissible
switching sequences are characterized as those satisfying a
set of polynomial constraints. As we show in the paper by
appealing to Information Based Complexity ideas, worst case
point wise optimal estimators can be obtained by solving
a semi-algebraic optimization problem. In turn, the use
of moments-based polynomial optimization tools allows to
relax this problem to a sequence of convex optimization
problems, each of which furnishes a suboptimal estimator
with guaranteed worst case bounds. In addition, we provide
theoretical results showing that an optimal solution can be
obtained by considering a relaxation whose size can be
determined a-priori and depends only on the memory of the
estimator and the ARX model. Finally, in the last part of
the paper, we briefly indicate how to extend these results to
accommodate model uncertainty.



II. PRELIMINARIES

For ease of reference, in this section we summarize
the notation used in the paper and recall some results on
polynomial optimization and information based complexity
that play a key role in establishing the main result of this
paper.

A. Notation
y (M) a vector in Rn (a matrix in Rn×m)
||y||∞ ∞ norm of the vector y: ||y||∞

.
= maxi |yi|

`∞ Banach space of vector sequences equipped
with the norm ‖y‖`∞

.
= supi ‖yi‖∞

Nns set of positive integers up to ns
M � N M−N is positive semidefinite

B. Background on Information Based Complexity

In this section, we recall some results from Information
Based Complexity (IBC) required to establish (worst-case)
optimality of the proposed filter. Here we just consider the
case of bounded operators in `∞. A general treatment can
be found for instance in the book [13].

Let K be a set in `∞ and consider two linear operators
Sy , Sz: `∞ → `∞. In this context, the estimation problem
can be stated as, given an element f0 ∈ K, find an estimate
ẑ of z .

= Szf0 using noisy experimental information y =
Syf0 + η, where the noise η is only known to belong to
some bounded set N ⊂ `∞. Given an estimation algorithm
ẑ = A(y) (not necessarily linear), it is of interest to compute
its worst case approximation error. For a given measurement
y, define the consistency set:

T (y) .= {f ∈ K : y = Syf + η for some η ∈ N} (1)

that is, the set of all possible elements in K that could have
generated the observed data y. Since all the elements f that
could have generated y belong to T (y), it follows that the
local error ε(y,A) is given by

ε(A, y) .= sup
f∈T (y)

||Szf −A(y)||∞ (2)

Definition 1: An algorithm Ao(·) is said to be locally (or
point wise) optimal if ε(Ao, y) = infAε(A, y), that is, if, for
every measurement y, it produces the best (in the worst-case
sense) estimate of all possible algorithms.
The minimum local error ε(A0, y) is sometimes referred
to as the local radius of information, r(y). It provides a
lower bound on achievable performance, since no estimation
algorithm can have smaller worst case error when operating
on the same measured data y.

C. Moments based polynomial optimization

Next, we recall results from polynomial optimization the
classical theory of moments which will play a key role in
developing tractable estimation algorithms. Let K ⊂ Rn
be a compact semi-algebraic set defined by a collection of
polynomial inequalities of the form gk(x) ≥ 0, k = 1, · · · , d,
that is,

K = {x |x ∈ Rn gk(x) ≥ 0, k = 1, · · · , d} (3)

and consider the problem of minimizing a multivariate poly-
nomial p =

∑
α pαx

α over the set K. As shown in [6],
this problem is equivalent to minµ E(p) where E denotes
expectation and µ denotes the set of all Borel measures
supported in K, or equivalently

p∗ = minm
∑
α pαmα

subject to ∃µ, supported in K such that
mα = Eµ(xα)

(4)

Existence of such a representing measure µ is equivalent to
positive semidefiniteness of the (infinite) moment M(m) and
localizing L(gkm) matrices [6], Thus, an equivalent convex,
albeit infinite dimensional reformulation of (4) is given by:

p∗ = minm
∑
α pαmα

s.t. M(m) � 0,
L(gkm) � 0, k = 1, . . . , d,

(5)

A truncated version of this problem involving moments of
order up to 2N is given by:

p∗N = minm
∑
α pαmα

s.t. MN (m) � 0,
LN (gkm) � 0, k = 1, . . . , d,

(6)

where
MN (m)(i, j) =mα(i)+α(j) , ∀i, j = 1, · · · , SN

LN (gkm)(i, j) =
∑
β

gk,βlmβ(l)+α(i)+α(j) ,

∀i, j = 1, · · · , S
N−b δk2 c

(7)

where SN =

(
N + n
n

)
(e.g. the number of moments in Rn

up to order N ). The main result of [6] shows that p∗N ↑
p∗, monotonically, thus providing a hierarchy of convergent
relaxations.

1) Exploiting the sparse structure: In many cases of
practical interest, both the polynomial objective and the
constraints that define the set K exhibit a sparse structure
that can be used to reduce the computational complexity en-
tailed in solving the (truncated) problems (6). The following
property plays a key role in exploiting this structure:

Definition 2: [7] Assume that the polynomial p can be
partitioned into p = p1+ · · ·+ pd such that each pk and that
the constraints gk that define the set K contain only variables
indexed by elements of some subset Ik ⊂ {1, · · · , n}. If
there exists a reordering Ik′ of Ik such that for every k′ =
1, · · · , d− 1:

Ik′+1 ∩ ∪k
′

j=1Ij ⊂ Is for some s ≤ k′ (8)

then the running intersection property is satisfied.
It can be shown that for problems that satisfy the running
intersection property, it is possible to construct a hierarchy of
semidefinite programs of smaller size. Specifically, partition
the objective function {pk}dk=1 according to the sets {Ik}
and consider the problem:

p∗N = minm
∑d
k=1

∑
α(j) pk,α(j)mα(j)

s.t. MN (mIk) � 0, k = 1, . . . , d,
LN (gkmIk) � 0, k = 1, . . . , d,

(9)



where pk,α(j) is the coefficient of the α(j)
th monomial in

the polynomial pk, MN (mIk) denote the moment matrix and
LN (gkmIk) the localizing matrix for the subset of variables
in Ik. Then, as shown in [7] p∗N ↑ p∗. It is worth emphasizing
that for the case of generic polynomials and constraints, an
N th order relaxation requires considering moments and lo-
calizing matrices containing O(n2N ) variables. On the other
hand, if the running intersection property holds, it is possible
to define d sets of smaller sized matrices each containing
variables only in Ik (i.e. number of variables is O(κ2N ),
where κ is the maximum cardinality of Ik). In many practical
applications, including the one considered in this paper,
κ � n. Hence, exploiting the sparse structure substantially
reduces the number of variables in the optimization (and
hence the computational complexity), while still providing
convergent relaxations.

D. Problem Statement

In this paper, we consider multi-input, multi-output
(MIMO) switched autoregressive exogenous (SARX) models
of the form:

yt =
∑na
k=1 Ak(σt)yt−k +

∑nc
k=1 Ck(σt)ut−k

ŷs = ys + ηs, s = t, t− 1, ..t− na
(10)

where ut ∈ Rnu , yt, ŷt ∈ Rny and σt ∈ Nns denote the
input, output, its noisy measurements, and the discrete mode
signal, respectively. No assumptions are made in terms of
dwell time, thus the system can switch arbitrarily fast among
the ns submodels Gi, each associated with a set of its coeffi-
cient matrices {A1(i), . . . ,Ana(i),C1(i), . . . ,Cnc(i)}. The
goal is to estimate a (scalar) linear combination of values of y
using the most recent r noisy measurements ŷ, where r (the
memory of the estimator), is a design parameter. Formally,
this problem can be stated as follows:

Problem 1: Given a nominal switched ARX system of the
form (10), an a-priori bound ε on the `∞ norm of the noise,
e.g. ‖η‖∞ ≤ ε, and a linear functional

zt
.
=

∑nz
i=0 hTi yt−i

.
= Trace

(
HTYt

)
;

Yt
.
=

[
yt . . . yt−nz

]
,

Ht
.
=

[
h0 . . . hnz

] (11)

where hi are given vectors, find a (worst case) locally
optimal estimate ẑt of zt using the most recent r ≥
max{na + 1, nz + 1} noisy measurements of y, that is
find ẑ = A({ut, ŷt}tt−r+1) that minimizes the worst case
estimation error maxzt ||ẑt − zt||∞.

III. BOUNDED COMPLEXITY LOCALLY OPTIMAL
ESTIMATORS

In this section we present the main result of this paper:
a convex optimization based algorithm for finding bounded
complexity `∞ (point wise) optimal estimators. The main
idea is to first recast this problem into a linear optimization
form over a semi-algebraic set, which in turn can be relaxed
to a sequence of convex optimization problems by exploiting
the results outlined in section II-C.

A. A Semi-Algebraic Optimization Reformulation

Given a sequence of input/output data {ŷi,ui} i = t −
r + 1, . . . , t, define the consistency set T (ŷ,u):

T (ŷ,u) .=
{
{yi}tt−r+1 such that (10) holds for some

‖η‖∞ ≤ ε and {σi}tt−r+1+na ∈ Nns .
}
(12)

that is the set of all possible values of y that are consistent
with the observed data. As we show next, T (ŷ,u) has a
semi-algebraic representation. Define a set of (r − na)ns
indicator variables xi,j ∈ {0, 1}, i = 1, . . . , ns, j = t− (r−
na)+1, . . . , t. Clearly, (10) holds if and only if the following
set of equations is feasible:

xi,s‖ys −
∑na
k=1 Ak(i)ys−k −

∑nc
k=1 Ck(i)us−k‖22 = 0

x2i,s = xi,s,
∑
i xi,s = 1, i = 1, . . . , ns,

∀ s ∈ [t− r + 1 + na, t]
(13)

where we used the fact that x ∈ {0, 1} ⇐⇒ x = x2. Thus,
it follows that T (y,u) is equivalent to:

T ′(ŷ,u) .=
{
{yi}tt−r+1 : subject to eq. (13), ‖ηs‖∞ ≤ ε

and ys = ŷs − ηs for all s ∈ [t− r + 1 + na, t]. }
(14)

Next, we present the proposed estimator, based on solving
two optimization problems. Given {ŷt, ut}tt−r+1, define ẑ+t ,
ẑ−t as the solutions to the following optimization problems:

ẑ+t = max
y∈T ′(ŷ,u)

Trace
(
HTYt

)
(15)

ẑ−t = min
y∈T ′(ŷ,u)

Trace
(
HTYt

)
(16)

and define the (central) estimator

ẑt
.
=
ẑ+t + ẑ−t

2
(17)

Lemma 1: ẑt is a point wise optimal worst-case estimator
of zt.

Proof: This result is followed immediately from The-
orem 2.4 in [12] by noting that ẑt is the Chebyshev center
of the set

HT ′ .= { z : z
.
= Trace

(
HTY

)
for some {y}tt−r+1 ∈ T ′(ŷ,u)}

Remark 1: By directly substituting ŷk = yk + ηk into
(13) it follows that the optimization problems (15) and (16)
can be rewritten as:

ẑ+t (ẑ−t ) = maxηk(minηk)Trace
(
HTΞ

)
+ fo(ŷ)

subject to: xi,spi,s(η) = 0, s ∈ [t− r + 1 + na, t]
‖η‖∞ ≤ ε
xi,s = x2i,s;

∑
i xi,s = 1

(18)
where Ξ

.
=
[
ηt . . . ηt−nz

]
, pi.s(η) is a (quadratic) SoS

polynomial, and where fo(ŷ) is a function of the measured
data only.



B. A Moments-Based Convex Relaxation

Problems (18) are computationally challenging due to the
non-convex polynomial constraints. However, as shown next
the use of the moment-based techniques allows for obtaining
a (monotonic) sequence of bounds from which convergent
suboptimal estimators can be obtained. To this effect, rewrite
pi,s in (18) explicitly as pi,s = cTs η

α, where the coefficients
cs are a function of the parameters of the SARX model
and the measured data {u, ŷ}, and where ηα is a vector
containing the monomials of the unknown noise ηt in a
suitable ordering. From the results outlined in section II-C,
it follows that a sequence of convex relaxations of problems
(18) is given by:

ẑ+t,N (ẑ−t,N ) = max
m

(min
m

)Trace
(
HTPNMN

)
+ fo(ŷ) (19)

subject to
MN (m) � 0
LN (m) � 0

(20)

where m denotes the moment sequence of ηt, · · · ,ηt−r+1

up to order 2N and where the matrix PN selects the elements
of M corresponding to the first order moments of ηtt−nz and
LN is the moments localizing matrix corresponding to the
constraints (13) and ‖η‖∞ ≤ ε.

Lemma 2: The estimator ẑN
.
=

ẑ+t,N+ẑ−t,N
2 satisfies

maxz∈HT ′ |z − ẑN | ≤ eN
.
=

ẑ+t,N−ẑ
−
t,N

2 . Moreover eN is a
non-increasing sequence and limN→∞ eN = e, the optimal
worst case error.

Proof: From the results in section II-C it follows that
ẑ+t,N ≥ ẑ+t and ẑ−t,N ≤ ẑ−t . Hence, given any z ∈ HT ′, we
have that:

z − ẑN ≤ ẑ+t,N − ẑN =
ẑ+t,N−ẑ

−
t,N

2

z − ẑN ≥ ẑ−t,N − ẑN = − ẑ
+
t,N−ẑ

−
t,N

2

Thus |z−ẑN | ≤ eN for all z ∈ HT . The facts that ek is non-
increasing, convergent follow from the results in section II-C,
showing that ẑ+t,N , ẑ−t,N are convergent non-increasing/non-
decreasing sequences respectively.

Theorem 1: The optimal value in problem (19) is achieved
for some N ≤ No

.
= r − na + 1.

Proof: The proof, omitted due to space constraints, is
based upon showing that the objective function in (18) admits
an expansion of the form:

Trace
(
HTΞ

)
− z∗ .= uo +

∑
uifi

where z∗ denotes the optimal value, fi denote the constraints,
and uo, ui are sum of squares polynomials such that degree
of uo ≤ 2No and degree of uifi ≤ 2No. The desired result
follows then from Putinar’s Positivstellensatz.

C. Computational Complexity Considerations

It can be easily seen that the objective and constraints
in Problem (19) can be partitioned into r − na subsets
Ik, each containing the noise variables for na + 1
consecutive time instants and the ns indicator variables
associated with the index k. Thus, it follows that it

satisfies the running intersection property and hence it
can be solved by considering r − na smaller moments
matrices of size

(
N+nany+ny+ns
nany+ny+ns

)
rather than a single

one of size
(N+rny+(r−na)ns

rny+(r−na)ns

)
. While this results in a

substantial reduction on the number of variables that
need to be considered (from O((rny + (r − na)ns)

2N )
to O((nany + ny + ns)

2N ), the computational burden
can limit the “memory” of the estimator (the design
parameter r) that can be used in practice. To circumvent
this difficulty, in the sequel we present a suboptimal
filter that allows for using a shorter memory r0 < r
by propagating past bounds on the estimation error in a
receding horizon fashion, leading to the following algorithm:

Algorithm 1: Receding Horizon Estimator

Choose the window length r0, r0 < r. Set the number of
iterations to r − r0 + 1;
Set z+s = +∞, z−s = −∞, s = 1, . . . , r
For i = r0 + 1, . . . , r, repeat

1- Solve Problem (19) with r = r0 subject to the
additional constraints

Trace(HTYs−nz :s) ≤ z+s ,
Trace(HTYs−nz :s) ≥ z−s , s = i− r0 + 1, . . . , i

2- Update z+i and z−i with the results from [1-];
end for.

D. Consistency Considerations

Note that the optimization problems (15) and (16) are
uncoupled, in the sense that the worst case noise and
switching sequences could potentially be different. Hence the
estimator (17) is not interpolatory, in the sense that it does
not necessarily belong to the consistency set T ′(ŷ,u). This
raises the issue of whether the search for optimal estimators
should be restricted to those inside the consistency set,
for instance by enforcing the constraint that the optimizing
sequences in (15) and (16) are the same. As we show next
with a simple example, as long as one is interested in
minimizing the worst case estimation error, the answer to
this question is negative: estimators outside the consistency
set can have smaller worst case error than those inside it1.
To this effect consider a system that switches between two
first order models:

yk+1 = yk (sys1)

and
yk+1 = −0.5yk (sys2)

with noise bound |ε| ≤ 1. Assume that two noisy measure-
ments are available:

ŷ1 = y1 + ε1 = 2
ŷ2 = y2 + ε2 = 0

(21)

1This is related to the fact that, unless one is working in a Hilbert space,
the Chebyshev center of a set can be outside it, even if the set is convex.



The goal is to find a worst-case optimal estimator for y2.
Optimizing y+ − y− (the diameter of information) subject
to the constraint that both y+ and y− have to have been
generated by the same switching sequence leads to y+sys1 =

y−sys1 = 1 for the case where the measurements are both
generated by the first system and y+sys2 = −0.5, y−sys2 = −1
if both are generated by the second one. The corresponding
central estimators are given by yc,sys1 = 1 and yc,sys2 =
−0.75. Note that the worst case estimation error of yc,sys1
is 1 − (−1) = 2, achieved if the true signal was generated
by the second system. Similarly, the worst case estimation
error of yc,sys2 is 1−(−0.75) = 1.75, achieved when the true
signal was generated by the first system. On the other hand,
optimizing y+ and y− separately leads to y+ = 1, y− = −1
and yc = 0 with a worst case error of 1, regardless of whether
the true system is the first or the second one. Note that the
estimate yc = 0 is outside the consistency set, since this set
is {1} ∪ [−1.5,−0.5].

E. Handling Parametric Uncertainty

In this section we briefly outline how to extend the basic
estimator presented in section III-A to account for parametric
uncertainty. Assume that some coefficients in (10) are only
known to belong to some semi-algebraic set, e.g. Ai ∈ Ai,
Cj ∈ Cj , for some2 i, j. In this case, treating Ai,Cj as
unknowns in (13) and adding the constraints Ai ∈ Ai,
Cj ∈ Cj to the description (14) leads to a semi-algebraic
optimization problem that can be solved using the techniques
outlined above.

IV. EXAMPLES

In this section, we illustrate with several examples.

A. Example with no model uncertainty

Consider first the case of a system that switches arbitrarily
fast between the following two subsystems:

yt = 0.2yt−1 + 0.24yt−2 + 2ut−1 (G1)

yt = −1.4yt−1 − 0.53yt−2 + ut−1 (G2)

The goal is to estimate zt = yt from the noisy measurements

ŷt = yt + ηt, ‖η‖∞ ≤ 0.5

Figures 1 and 2 shows the performance of the proposed
estimator with memory r0 = 11, over a time horizon T =
30. As illustrated there, the proposed estimator substantially
reduces the uncertainty in the estimation, and performance
improves as more measurements are collected.

2simple examples are structured additive uncertainty M+∆ and multi-
plicative uncertainty (1 + δ)M.

Fig. 1. Estimation results in the absence of model uncertainty (blue line:
[ŷt − 0.5, ŷt +0.5], magenta box: suboptimal bounds by Algorithm 1, red
star: yt, and black circle: our estimate)

Fig. 2. Estimation error for Example 1

B. Example with Parametric Uncertainty

The next example illustrates the ability of the proposed
estimators to handle parametric uncertainty. In this case,
we assumed that the coefficients of the nominal model are
subject to time-varying multiplicative parametric uncertainty
leading to descriptions of the form

yt =
∑na
k=1(1 + δAk,t)Ak(σt)yt−k

+
∑nc
k=1(1 + δCk,t)Ck(σt)ut−k

ŷs = ys + ηs, s = t, t− 1, ..t− na
(22)

where the only information available about δAk,t and δCk,t
is a bound of the form:

||δAk,t||∞ ≤ εAk and ||δCk,t||∞ ≤ εCk (23)

This uncertainty can be handled by the proposed algorithm
by adding the new variables δAk,t and δCk,t to the prob-
lem, and suitably modifying the moments sequence m and
corresponding matrix M(m) to include the new terms, and
adding the constraints corresponding to (23) to the localizing
matrix L(m).



Figures 3 and 4 show the results of two experiments with
5% and 10% uncertainty, respectively (e.g. εAk = εCk =
0.05 and εAk = εCk = 0.10). Finally, Figure 5 shows the
actual estimation error for both cases, as well as the one
obtained when the system is perfectly known. As expected,
model uncertainty results in larger estimation errors.

Fig. 3. Estimation with 5% parametric uncertainty.

Fig. 4. Estimation with 10% parametric uncertainty.

V. CONCLUSIONS

This paper considers the problem of worst case estimation
for switching systems in cases where the mode variable is
not accessible. By exploiting a combination of results from
information based complexity and polynomial optimization,
we show that point wise optimal estimators can be obtained
by solving a (convergent) sequence of convex relaxations.
Each one of these relaxations provides a suboptimal esti-
mator with guaranteed worst case estimation error, and this
error converges monotonically to the optimal as the size of
the relaxations increases. Moreover, as shown in the paper,
the size of the relaxation needed to exactly solve the problem
is bounded by a constant that depends only on the memory
of the ARX model and the estimator. Finally, we address

Fig. 5. Absolute value of the actual estimation error for different uncertainty
levels (blue star: εAk = εCk = 0, green cross: εAk = εCk = 0.05, red
circle: εAk = εCk = 0.10)

the issue of computational complexity by exploiting the
inherently sparse structure of the problem and by considering
a restricted memory estimator in a receding horizon context.
A point worth noting is that consistent numerical experience
shows that the bounds obtained in Theorem 1 are conser-
vative and that indeed optimal solutions are obtained with
substantially smaller size relaxations. However, no formal
proof of this fact is currently available.
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