
A Convex Optimization Approach to Model (In)validation of Switched
ARX Systems with Unknown Switches

Y. Cheng Y. Wang M. Sznaier N. Ozay C. Lagoa

Abstract— This paper considers the problem of (in)validating
switched affine models from noisy experimental data, in cases
where the mode-variable is not directly observable. This prob-
lem, the dual of identification, is a crucial step when designing
controllers using models identified from experimental data. Our
main results are convex certificates, obtained by exploiting a
combination of sparsification and polynomial optimization tools,
for a given model to either be consistent with the observed
data or be invalidated by it. These results are illustrated using
both academic examples and a non-trivial application: detecting
abnormal activities using video data.

I. INTRODUCTION AND MOTIVATION

The problem of identifying switched affine models has
been the object of considerable attention during the past
few years. Since it has been shown that this problem is
generically NP–hard, a large portion of these efforts has
been directed towards developing computationally efficient
algorithms, leading to a number of techniques based either
on heuristics or relaxations (see for instance [9], [18], [2],
[17], [15], [8], [13], [1] and references therein). Thus, a
key step before using the resulting models, is to (in)validate
them using additional experimental data. In the case where
the mode variable can be directly measured, the problem is
closely related to that of validating Linear Parameter Varying
(LPV) models and can be solved using techniques similar
to those proposed in [19], [3]. However, in many practi-
cal situations, the mode variable is not directly available.
Examples of this situation include, amongst others, fault
detection problems and general data segmentation problems
arising in the context of systems biology and video-analytics.
The case where the discrete state must be inferred from the
measured, noisy data, is considerably less developed. In [16],
Ozay et. al. proposed necessary and sufficient conditions
for a switched affine autoregressive exogenous model to be
(in)validated by the experimental data, based upon the idea
of recasting the problem into one of checking emptiness of a
semialgebraic set. In turn, as shown there, this condition can
be checked by solving a sequence of convex optimization
problems involving increasingly large matrices until either a
positive solution is found or the rank of certain matrices
formed using the solution to the dual problem ceases to
increase. The former case provides an invalidation certificate,
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while the latter indicates that the observed experimental data
is consistent with the model under consideration. While this
approach has been shown to be very effective with relatively
small sized problems, its computational complexity increases
with the problem size. In addition, in its present form, it
cannot accommodate constraints on the trajectory of the
mode variable. Equivalently, the underlying graph is assumed
to be complete.

To circumvent these difficulties, in this paper we present
an alternative framework for model (in)validation of switched
affine models. Contrary to previous work based on exploit-
ing the so called hybrid decoupling constraint, the present
approach relies on introducing a set of sparse “indicator”
variables si. In this context, the problem reduces to seeking
solutions to a set of linear inequalities such that si ∈ {0, 1},
or showing that no such solutions exist. Further, topological
constraints in the underlying graph (e.g. sets of admissible
transitions) translate into simple linear constraints in these
indicator variables.

Since the problem above is NP–hard, in the first part of
the paper, we develop a linear programming based relaxation
based upon using a (weighted) `1 norm as surrogate for
cardinality [6], [20], [4]. This relaxation is computationally
efficient and can handle large scale problems. However,
in some cases it may fail to establish whether or not the
model is (in)validated by the experimental data1. In order
to handle these cases, in the second part of the paper
we develop an alternative convex relaxation, based on the
solution of a constrained polynomial optimization problem
using moments-based techniques. The main result of this
section shows that this relaxation is guaranteed to provide
a necessary and sufficient (in)validation certificate, using
moment matrices of order at most T + 1, where T denotes
the number of experimental data points.

These results are illustrated both with academic examples,
where we compare the performance of the relaxations pro-
posed here and the one developed in [16], and a non-trivial
problem arising in computer vision: activity monitoring.
Typically, a visual surveillance system captures high volume
data streams from multiple cameras. However, interesting
(e.g. abnormal) activities are rare. Thus, it is important to
be able to automatically eliminate the normal behavior and
trigger an appropriate response when something potentially
interesting or abnormal occurs. As we show in Section V-
B, this problem can be recast into a piecewise affine model

1Due to its special structure, the problem does not satisfy, in general, the
restricted isometry property. Thus, there is no guarantee that minimizing the
`1 norm will indeed find the sparsest solution.
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invalidation form and solved using the framework developed
in this paper.

II. PRELIMINARIES

For ease of reference, in this section we summarize the
notation used in the paper and recall some results on sparse
polynomial optimization needed to establish its main results.

A. Notation and Definitions
x,M a vector in Rn (matrix in Rn×m)
‖x‖∞ `∞-norm of the vector x ∈ Rn

‖x‖∞
.= sup

i
|xi|

‖x‖1 `1-norm of the vector x ∈ Rn

‖x‖1
.=
∑
i

|xi|

‖x‖0 `o quasinorm of x(e.g. number of
non-zero elements)

M � N the matrix M − N is positive
semidefinite.

Definition 1: A polynomial p(x) is said to be a sum
of squares polynomial (SoS), if it can be written as p =∑m
j=1 u

2
j for some polynomials u1, . . . , um.

B. The Problem of Moments

Next, we recall results from the classical theory of
moments that will play a key role in obtaining convex
(in)validation certificates. Let K ⊂ Rn be a compact
semi-algebraic set defined by a collection of polynomial
inequalities of the form gk(x) ≥ 0. Given a multisequence
of scalars {mα}, indexed by a multi-index α ∈ Nn, the
K-moment problem is to determine whether there exist a
probability measure µ supported on K that has {mα} as
its αth moments. That is:

mα = Eµ(xα) .=
∫
K

xαµ(dx) (1)

where xα = xα1
1 xα2

2 · · ·xαnn . As shown in [11], [5], exis-
tence of such a measure is equivalent to positive semidefi-
niteness of the (infinite) moment M(mα) and localization
L(gkmα) matrices. Truncated versions of these matrices,
involving moments of order up to 2N are given by:

MN (m)(i, j) = mα(i)+α(j) for all i, j ≤ SN . (2)

where SN
.=
(
N + n
n

)
(e.g. the number of moments

in Rn up to order N ), and where the moments have been
arranged according to a grevlex order of the corresponding
monomials, so that 0 = α(1) < . . . < α(SN ). Simi-
larly, if the polynomials defining the set K have the form
gk(x) =

∑
β x

β, with degree δk, the corresponding truncated
localization matrix is given by:

LN (gkm)(i, j) =
∑

β gk,β(l)mβ(l)+α(i)+α(j)

for all i, j ≤ S
N−

j
δk
2

k (3)

C. The Running Intersection Property and Sparse Polyno-
mial Optimization

Definition 2: Consider a polynomial optimization prob-
lem of the form:

p∗K := min
x∈K

p(x) (4)

where K ⊂ Rn is defined by d polynomial inequalities of the
form gk(x) ≥ 0, k = 1, . . . , d. Assume that the polynomial
p can be partitioned into p = p1 + . . . + pl such that each
pj and each gk contains only variables indexed by elements
of some subset Ik ⊂ {1, . . . , n}. If there exists a reordering
Ik′ of Ik such that for every k′ = 1, . . . , d− 1:

Ik′ ∩
k′⋃
j=1

Ij ⊆ Is for some s ≤ k′ (5)

then the running intersection property is satisfied.
The significance of this property is that it allows for

substantial computational complexity reduction. Specifically,
in the case of generic polynomials, a moments relaxation
of order N entails considering moments and localization
matrices containing O(n2N ) variables. On the other hand,
if the running intersection property holds, it can be shown
[12], [21] that it is possible to define d sets of smaller sized
matrices each containing only variables in Ik (i.e. number of
variables is O(κ2N ), where κ is the maximum cardinality of
Ik). Since typically κ� n, this leads to substantial reduction
in the number of variables in the optimization (and hence its
computational complexity).

D. Problem Statement

In the sequel, we consider multi-input, multi-output
(MIMO) switched affine autoregressive exogenous (SARX)
models of the form:

ξt =
∑na
k=1 Ak(σt)ξt−k

+
∑nc
k=1 Ck(σt)ut−k + f(σt)

yt = ξt + ηt

(6)

where ut ∈ Rnu , yt ∈ Rny and σt ∈ Ns
.= {1, . . . , ns}

denote the input,the measured output corrupted by the noise
ηt ∈ Rny , and the discrete state, respectively. Since in
this paper we do not make any dwell-time assumptions, the
mode signal σt can switch arbitrarily amongst subsets of the
ns subsystems Gi. In this context, the model invalidation
problem of interest, illustrated in Fig. 1, can be formally
stated as follows:

Problem 1: Given a nominal hybrid model of the form
(6) together with its ns submodels G1, . . . , Gns , an a pri-
ori bound ε on noise, and experimental data {ut,yt}T−1

t=0 ,
determine whether or not the a priori information and the a
posteriori experimental data are consistent, i.e. whether the
consistency set

T (η, σ) = {||ηt||∞ ≤ ε, σt ∈ Ns

subject to (6) ∀t ∈ [0, T − 1]}
is nonempty.

Remark 1: The formulation above does not place con-
straints on the admissible transitions of the mode variable
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Fig. 1. Problem Setup. The coefficient matrices of the submodels Gi and
a bound on the noise are known a priori. The experimental data consists
of input/output measurements, u and y. The mode signal σt and noise
sequence η are unknown.

σ (equivalently, the underlying graph is assumed to be
complete). In section IV we will briefly indicate how to
incorporate constraints on the set of admissible transitions.

III. CONVEX (IN)VALIDATION CERTIFICATES

In this section we present the main result of this paper:
convex necessary and sufficient conditions for a MIMO
SARX model to be (in)validated by experimental data. The
first step towards this goal is to show that the problem can
be reduced to a mixed integer linear program (MILP). While
in principle this problem in NP-hard, as shown here, convex
(in)validation certificates can be obtained by appealing to a
combination of sparsification and polynomial optimization
arguments.

A. A MILP reformulation

For notational simplicity, re-write equation (6) as

A1(i)(yt−1 − ηt−1) + . . .+ Ana(i)(yt+na − ηt−na)
−(yt − ηt) + C1(i)ut−1 + . . .+ Cnc(i)ut−nc + f(i) .=
gi,t − hiηt:t−na = 0

(7)
where we have defined hi

.=
[
−I A1(i) . . . Ana(i)

]
and ηTt:t−na

.=
[
ηTt . . . ηTt−na

]T
. Note that since the

mode signal σt is unmeasurable, the actual subsystem Gi
that is active at any given time t is not known. However,
regardless of the value of σt, the set of submodels given
as part of a priori information is not invalidated by the
experimental data if and only if Eq. (7) holds true for some
i ∈ {1, . . . , ns} for all t. Clearly, this condition is equivalent
to the existence of a set of “indicator” variables si,t and
admissible noise sequence ηt such that

si,t
(
gi,t − hiηt:t−na

)
= 0 ∀ t ∈ [0, T − 1]

subject to∑ns
i=1 si,t = 1

si,t ∈ {0, 1} and ‖ηt‖∞ ≤ ε

(8)

Equivalently, by defining the auxiliary variables ηi,t:t−na
.=

si,tηt:t−na , it can be easily shown that the condition above

is equivalent to feasibility of:

si,tgi,t − hiηi,t:t−na = 0
subject to
si,t ∈ {0, 1},

∑
i si,t = 1, ∀t ∈ [0, T − 1]

‖ηi,t:t−na‖∞ ≤ si,tε, and∑ns
i=1 ηi,t:t−na = ηt:t−na

(9)

Note that the problem above is a MILP feasibility problem
that can be solved with existing tools. However, while this
approach works well for small to medium sized problems, its
poor scaling properties make it impractical for larger sized
ones. As we show next, this difficulty can be circumvented
by exploiting recent results in sparsification and polynomial
optimization to derive convex certificates that can be com-
puted in polynomial time.

B. Sparsification Based Certificates

In this section we derive sparsification based sufficient
conditions for the model (6) to be (in)validated by the
experimental data. The starting point is the following result
relating feasibility of (9) to the cardinality of the solution to
a linear programming (LP) problem.

Lemma 1: Eq. (9) is feasible if and only if there exist a
solution s .= {s1, s2, . . . , st}, sj

.=
[
s1,j . . . sns,j

]
, with

‖s‖0 = T to the following set of (linear) inequalities:

si,tgi,t − hiηi,t:t−na = 0 ∀ i, t
0 ≤ si,t ≤ 1,∀ i, t∑
i si,t = 1, ∀ t

‖ηi,t:t−na‖∞ ≤ si,tε, and∑ns
i=1 ηi,t:t−na = ηt:t−na

(10)

Proof: Follows from the fact that feasibility of (9) is
equivalent to the existence, at each time instant t, of some
i ∈ [1, . . . , ns] such that (8) holds with si,t = 1, sj,t =
0, j 6= i. Hence (10) admits a solution with cardinality T .
On the other hand, since

∑
i si,t = 1, it follows that if (10)

admits a solution with cardinality T , this solution has exactly
one si,t = 1 at each time t.

From the result above, if follows that valida-
tion/(in)validation certificates can be obtained by finding
sparse solutions to the set of inequalities (10). In turn,
using the standard `1 norm based relaxation of cardinality,
combined with the re-weighted heuristic proposed in [4],
[7] leads to the Algorithm outlined below:

Algorithm 1: Sparsification Based (In)Validation Certificates

1.- Solve (iteratively)

minimizes,η
∑
i,t w

(k)
i,t si,t

subject to (10)
(11)

where w(k+1)
i,t = (s(k)i,t +δ)−1, s(k)i,t denotes the optimal

solution at the kth iteration, with w(1) = [1, 1, . . . , 1]T ,
and where δ is a (small) regularization constant.

2.- If the problem above is infeasible, then the experi-
mental data invalidates the model (6). On the other
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hand, if the problem is feasible and its optimal solution
so satisfies si,j ∈ {0, 1}, then the experimental data
is consistent with the model (6) and the a priori
information.

The algorithm above provides a computationally efficient
way obtaining convex (in)validation certificates –infeasibility
of (11)– or establishing that indeed the experimental data
is compatible with the assumed priors (when the solution
satisfies si,j ∈ {0, 1}). Note however that these conditions
are only sufficient, since they can’t elucidate the situation
when the relaxation above provides a feasible solution with
non-integer elements. Such a situation can arise both in the
case of valid models (when due to noise some data points
can be explained by more than one model), or invalid ones (if
one of the models can be obtained as a linear combination of
the others). In principle, one can attempt to address this case
proceeding in the spirit of MILP, by setting the variables with
non-integer values to all possible combinations in {0, 1},
and, for each combination, solving (11) with respect to the
rest of the variables, in an attempt to find an integer solution
or establish that such a solution is infeasible. However, this
approach becomes quickly intractable when the number of
non-integer elements in so is not small. To circumvent this
difficulty, next we use results from the theory of moments
to obtain a convex necessary and sufficient (in)validation
certificate.

Theorem 1: The following statements are equivalent:
(i) Problem (8) is feasible.

(ii) p∗ = 0, where p∗ denotes the optimal value of
the objective function in the following constrained
polynomial optimization problem:

p∗ = mins,η

∑
i,t s

2
i,t‖gi,t − hiηt:t−na‖

2

subject to
si,t = sni,t∑
i s

2
i,t = 1 ∀t

‖ηt:t−na‖∞ ≤ ε
(12)

(iii) p∗m = 0, where p∗m denotes the optimal value of the
following convex optimization problem:

p∗m = minm

∑
i,t li,t

s.t.
MT+1(m) � 0
LT+1(m) � 0

(13)

where each li,t is the linear functional of moments de-
fined as li,t(mt−na:t)

.= E
{
s2i,t‖gi,t − hiηt:t−na‖

2
2

}
,

E denotes expectation and where MT+1 and LT+1 are
the moments and localization matrices associated with
a truncated moments sequence containing terms up to
order 2(T + 1), as outlined in section II-B.

Proof: Only an outline is given, due to space con-
straints. (i) ⇐⇒ (ii) follows from the fact that since the
objective in (12) is a sum of squares, p∗ ≥ 0. Further, p∗ = 0
⇐⇒ there exist sequences {η} and {it} such that ‖η‖ ≤ ∞,

sit 6= 0 and
(
gt,it − hitηt:t−na

)
= 0. Next, let

p(s,η) .=
∑
i,t

s2i,t‖gi,t − hiηt:t−na‖
2
2 (14)

The main idea in establishing that (ii) ⇐⇒ (iii) is to first
use Lemma 3.10 in [14] to show that

p− p∗ = po +
∑
it βit(ε

2 − η2
it)

+ (
∑
I s

2
I − 1)p∗ (15)

for some 2(T + 1) order SoS polynomial po(ηi, sit,t) and
some 2T order SoS polynomials βit(sit,t), (where, given a
multi-index I, we defined sI

.= si1,1 . . . siT ,T ). The proof
follows now from Putinar Positivstellensatz (see for instance
section 3.6.2 in [14]) and Theorem 4.2 (b) in [11].

Remark 2: It can be easily shown that problem (12)
exhibits the running intersection property. Thus, when solv-
ing problem (13) one only needs to consider smaller mo-
ment matrices, each involving the moments of the variables
s1,t, .., sns,t,ηt,ηt−1 . . .ηt−na

From Theorem 1 and the fact that p∗ ≥ p∗m (see for
instance [11]), it follows that necessary and sufficient convex
(in)validation certificates can be obtained by solving a (finite)
sequence of convex optimization problems, as outlined in
Algorithm 2 below.

Algorithm 2: Moments Based (In)Validation Certificates

1.- Set N = 2
2.- Solve p∗m = minm

∑
i,t li,t subject to:

MN (mt−na:t) � 0
LN (mt−na:t) � 0

}
∀t ∈ [na, T ]

3.- If p∗m > 0
or p∗m = 0 and
rank[MN (mt−na:t)] = rank[MN−1(mt−na:t)]
or N = T + 1

then
stop.

else
set N = N + 1 and go to step 2.

4.- If p∗m > 0 the model is invalid, otherwise the data
record is consistent with the a-priori assumptions.

Remark 3: It is worth emphasizing that, while Theorem
1 provides a guaranteed stoping condition for the algorithm
above, in practice this condition has proved to be conser-
vative. Indeed, consistent numerical experience supports the
conjecture that only second order moment matrices need to
be considered. However, at the present time no formal proof
of this fact is available.

IV. INCORPORATING STRUCTURAL CONSTRAINTS

In many situations of practical interest, a-priori constraints
are available on the admissible transitions of the mode
variable. Incorporating these constraints can rule out models
that may otherwise be deemed valid. For instance, in systems
biology applications, only certain transitions can take place
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from a given metabolic stage. Similarly, when dealing with
human activities, only some sequence of activities are “nor-
mal”: for instance, depending on the context, a sequence such
as {run,walk,stop} could be normal, while {walk,stop,run}
may indicate an abnormal event. As we briefly discuss below,
one of the advantages of the proposed framework is that
structural constraints on the underlying graph can be easily
accommodated. Specifically, assume that the transition from
σt = i to σt+τ = j is not admissible (that is, if at time “t”
the state of the system is “i”, then it cannot be “j” τ stages
later). Clearly, such constraints are easily incorporated in our
framework by simply adding constraints of the form:

si,t + sj,t+τ ≤ 1 (16)

Similarly, situations where the state of the system at time t
constrains its state at time t + τ to some set It+τ simply
reduce to: ∑

i∈It

si,t =
∑

j∈It+τ

sj,t+τ (17)

(that is, at time t + τ the system can be in a state in It+τ
iff at time t it was in It)

A point worth noting is that these additional constraints
have relatively little effect on the overall computational
complexity when using the sparsification based approach
proposed in section III-B. On the other hand, they directly
impact the running intersection property noted in Remark
2, since they couple the variables in the set It to those in
the set It+τ . Thus, when solving the optimization problem
(13), a single larger moment matrix corresponding to all the
variables in It ∪ It+τ must be considered, rather than two
smaller ones.

V. EXAMPLES

In this section we illustrate the effectiveness of the pro-
posed method both using academic examples and a computer
vision application.

A. Academic Examples

The goal of these examples is to compare the perfor-
mance of the sparsification and moments based relaxations
introduced in this paper against the method in [16]. In
all cases, the resulting convex optimization problems were
solved using cvx [10].

A.1 Example without constraints on the switching sequence

In this example we considered data generated by a system
that switched randomly between the following three subsys-
tems:

ξt = 0.2ξt−1 + 0.24ξt−2 + 2ut−1 (G1)

ξt = −1.4ξt−1 − 0.53ξt−2 + ut−1 (G2)

ξt = 1.7ξt−1 − 0.72ξt−2 + 0.5ut−1 (G3)

and the measurement equation:

yt = ξt + ηt

with uniform random noise ‖ηt‖∞ ≤ εt = 0.5. The
results obtained from two different noise realizations are
summarized in Table I. The second and third columns in
the rows labeled “results using moments” and “results using
[16]” show both the order of the relaxation used and the value
of the objective function in the corresponding polynomial
optimization problem: a value p > 0 certifies that the model
is invalid, while a value p∗ ≈ 0, together with a flat-
extension, indicates that the data observed so far is consistent
with the a-priori assumptions.

TABLE I
INVALIDATION RESULTS FOR EXAMPLE A.1 (PART 1)

Actual G1, G2, G3 G1, G2, G3

A Priori Information G1, G2, G3 G1, G2, G3

Results using Sparsifica-
tion

feasible
si,t ∈ {0, 1}

feasible
si,t /∈ {0, 1}

Interpretation not invalidated no decision
Time (sec.) 3.6808 4.4611
Results using Moments 2 −3.0399e-07 2 −2.4735e-07
Interpretation not invalidated not invalidated
Time (sec.) 2 6.8146 2 6.4891
Results from [16] 3 −2.4832e-07 3 −1.0710e-07
Interpretation not invalidated not invalidated
Time (sec.) 3 76.4373 3 66.6724

Next, we tested the different approaches by attempting
to validate data obtained switching amongst a subset of
{Gi} against the hypothesis that it was generated using a
different subset. The results are summarized in Table II.
As shown in Table I and II, as expected, the sparsification
based approach runs considerably faster than the moments
based approaches. However, as illustrated there, in some
cases it fails to provide a conclusive certificate. Regarding
the moments based approaches, in the examples shown, both
approaches have comparable performance. Note that (when
exploiting the running intersection property), the approach in
[16] requires only nyna variables, compared to nyna+ns for
Algorithm 2. Thus, for the same order relaxation, the former
approach has substantially lower computational complexity.
On the other hand, empirical results show Algorithm 2
requires considering moment relaxations of order 2, versus
order ns for [16]. Thus, it is preferable for scenarios where
na or ns are large.

TABLE II
INVALIDATION RESULTS FOR EXAMPLE A.1 (PART 2)

Actual G1, G2, G3 G2, G3

A Priori Information G1, G2 G1, G2

Results using Sparsifica-
tion

infeasible infeasible

Interpretation invalidated invalidated
Time (sec) 0.1949 0.1980
Results using Moments 2 7.3123 2 14.2226
Interpretation invalidated invalidated
Time (sec.) 2 2.7642 2 2.4306
Results using [16] 2 6.8922 2 13.3500
Interpretation invalidated invalidated
Time (sec.) 2 5.2854 2 4.0118
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A.2 Example with constraints on the switching sequence

Next, we use a simple example to illustrate the ability of the
proposed methods to handle constraints on the admissible
transitions. The data was generated using the same ARX
submodels in A.1, and the measurement equation:

yt = ξt + ηt

with ‖ηt‖∞ ≤ 0.5. We further impose the constraint that
the underlying graph has the topology shown in Fig. 2, that
is one-step transitions from G1 to G2 are not admissible.
Following the idea outlined in Section IV, this translates into
a constraint of the form s1,t + s2,t+1 ≤ 1, ∀t. The results
obtained running both Algorithm 1 and 2 are summarized
in Table III. For completeness, we also report the results of
running these algorithms, as well as the one in [16], without
imposing the additional structural constraint. As shown in
the table, if this constraint is not enforced, then the model
is deemed to be valid.

G3

G1 G2

Fig. 2. A structurally constrained transition graph. One-step transitions
from G1 to G2 are not allowed.

B. Contextually Abnormal Activity Recognition

In this section we apply the proposed model invalidation
framework to a non-trivial problem arising in computer vi-
sion: activity monitoring. Following the framework proposed
in [16], we will model a sequence of activities as the output
of switched ARX system, where each submodel corresponds
to a given activity. As shown in [16], contextually abnormal
activities can be detected by simply invalidating the data
record against the set of trajectories that can be obtained by
switching among a set of known, normal activities, whose
associated models can be obtained using identification tools.
In this section, we further develop this framework and show
that using the algorithms proposed here allows for not only
recognizing abnormal activities, but also abnormal activity
sequences. The model obtained in [16] for the activities
{walk, wait, run}, given below for ease of reference, are:(

xt
yt

)
=
(

0.4747 0.0628
−0.3424 1.2250

)(
xt−1

yt−1

)
+
(

0.5230 −0.1144
0.3574 −0.2513

)(
xt−2

yt−2

) (walk)

TABLE III
INVALIDATION UNDER STRUCTURAL CONSTRAINTS

Actual G1, G2, G3 (with
transitions from G1

to G2)
A Priori Information G1, G2, G3 (transi-

tions from G1 to G2

not allowed)

Results using Sparsification without Con-
straints

feasible
si,t /∈ {0, 1}

Interpretation no decision
Time (sec.) 3.712371
Results using Sparsification with Con-
straints

infeasible

Interpretation invalidated
Time (sec.) 0.2695
Results using Moments without Con-
straints

2 −4.0371e-07

Interpretation not invalidated
Time (sec.) 2 3.1370
Results using Moments with Constraints 2 0.1751
Interpretation invalidated
Time (sec.) 2 64.8279
Results using [16] 3 −8.3433e-08
Interpretation not invalidated
Time (sec.) 3 27.3684

(
xt
yt

)
=
(

1 0
0 1

)(
xt−1

yt−1

)
(wait)(

xt
yt

)
=
(

0.6058 0.0003
0.2597 0.8589

)(
xt−1

yt−1

)
+
(

0.3608 0.1853
−0.2381 0.1006

)(
xt−2

yt−2

) (run)

where (xt, yt) denote the coordinates, at time t, of the
center of mass of the person. Sample frames from video
sequences involving combinations of these activities are
shown in Fig. 3. As in [16], background subtraction was
used to locate the person and (xt, yt) were estimated using
the silhouettes. Table IV summarizes the results of applying
Algorithms 1 and 2 to the resulting time series. For the
purpose of this example, we assumed that transitions from
run to walk were not admissible. Hence, a sequence of
the form {walk → run} should be labeled normal, while
{run→ walk} should be flagged as contextually abnormal.
As shown there, both the sparsification and moment-based
algorithms correctly distinguish between these two situations.

VI. CONCLUSIONS

In this paper we considered the model (in)validation
problem for switched ARX systems with unknown switches.
Given a nominal model, a bound on the measurement
noise and experimental input output data, we provided a
necessary and sufficient condition that certifies the exis-
tence/nonexistence of admissible noise and switching se-
quences such that the resulting output sequence interpolates
the given experimental data within the noise bound. The
main result of this paper shows that these certificates can be
computed by solving convex optimization problems. More-
over, these problems can be easily modified to incorporate
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Fig. 3. Detecting contextually abnormal activities in video sequences.
For the purpose of this example we assumed that transitions from running
to walking are not allowed. Hence the top sequence should be labeled
abnormal, while the bottom one (walking→ running) should not be flagged.

TABLE IV
INVALIDATION RESULTS FOR EXAMPLE B

Actual walk, run (with
transitions from
run to walk)

walk, run (without
transitions from
run to walk)

A Priori Information walk, run (transi-
tions from run to
walk not allowed)

walk, run (transi-
tions from run to
walk not allowed)

Results using Sparsifica-
tion with Constraints

infeasible feasible
si,t ∈ {0, 1}

Interpretation invalidated not invalidated
Time (sec.) 2.1836 1.0577
Results using Moments
with Constraints

2 0.001801 2 −3.3581e-08

Interpretation invalidated not invalidated
Time (sec.) 2 1.2968e+03 2 0.8407e+03

constraints on the topology of the underlying graph. In many
practical cases, a validation/(in)validation certificate can be
obtained by simply solving a sequence of LP problems.
Cases where this approach fails to ascertain the validity
of the model can be addressed, at the price of additional
computational complexity, by using a moments-based re-
formulation containing moments of order up to 2(T + 1),
where T denotes the number of experimental data points. The
effectiveness of the proposed method was illustrated using
both academic examples and a non-trivial problem arising in
computer vision: activity monitoring. An interesting feature
borne out by consistent numerical experience is the fact that,
when using the moments-based approach, flat extensions
(and hence exact solutions) were achieved for relaxations
involving only moments of order up to 4 (e.g. N = 2).
However, no formal proof of this fact is currently available.
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