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A Convex Optimization Approach to Worst-Case Optimal Sensor
Selection

Yin Wang Mario Sznaier Fabrizio Dabbene

Abstract— This paper considers the problem of optimal
sensor selection in a worst-case setup. Our objective is to
estimate a given quantity based on noisy measurements and
using no more than n sensors out of a total of N avail-
able, possibly subject to additional selection constraints.
Contrary to most of the literature, we consider the case
where the only information available about the noise is a
deterministic set-membership description and the goal is
to minimize the worst-case estimation error. While in prin-
ciple this is a hard, combinatorial optimization problem,
we show that tractable convex relaxations can be obtained
by using recent results on polynomial optimization.

I. INTRODUCTION AND MOTIVATION

Sensor selection problems, that is selecting n out of
N possible sensors in order to optimize a given criteria,
are ubiquitous in areas as diverse as robotics, chemical
process control, structural monitoring and target local-
ization and tracking. A large portion of the existing
literature adopts a stochastic approach, where the goal is
to select a suite of sensors that minimize the covariance
of the estimation error [1], or the Shannon entropy [2].
Alternative formulations focus on guaranteeing coverage
of a given region or covering the maximum number of
targets with the minimum number of sensors. A survey
of these formulations can be found in [3].

Since the sensor selection problem is known to
be generically NP-hard, several relaxations have been
proposed [1], [4]–[9]. While these approaches provide
efficient methods for sensor selection in the case of mea-
surements corrupted by Gaussian noise, many practical
situations do not fit this framework. Indeed, often no
information is available about the distribution of the
noise, beyond its support set. In these cases, a set-
membership approach can be adopted, seeking to min-
imize either the average or worst-case estimation error
over the set of estimates consistent with the available

This work was supported in part by NSF grant ECCS–
0901433; AFOSR grant FA9559–12–1–0271; and DHS grant 2008-
ST-061-ED0001. Y. Wang and M. Sznaier are with the ECE
Dept., Northeastern University, Boston, MA 02115, USA (e-mail:
wang.yin86520@gmail.com, msznaier@coe.neu.edu). F. Dabbene is
with the CNR-IEIIT Institute, Politecnico di Torino, Italy (e-mail:
fabrizio.dabbene@polito.it.)

measurements and noise description [10]. The latter is
precisely the framework adopted in the present paper.
Motivated by [10]–[14] we seek to select n sensors
out of a total of N available in such a way that the
resulting estimator is globally worst-case optimal (in
the sense that it minimizes the maximum estimation
error with respect to all admissible noise sequences and
initial conditions) over all feasible selections. The main
result of the paper is an efficient convex optimization
approach to solving this problem, based on recent results
on semi-algebraic and polynomial 0− 1 optimization.
These results provide a hierarchy of increasingly tight
convex relaxations that converge to the optimal solution,
along with conditions that certify that this optimum has
indeed been achieved. Further, in the case of `2 bounded
noise, explicit bounds on the order of the convex relax-
ation needed to guarantee optimality are available. These
results are illustrated with some academic examples
comparing the performance of the resulting estimators
against those obtained using the techniques in [1], [13].

II. PRELIMINARIES

A. Notation and Definitions
‖x‖p `p-norm of the vector x ∈ Rn

‖x‖pp
.
=
∑
i x

p
i , p <∞

‖x‖∞
.
= supi |xi|

‖S‖`p→`q `p to `q induced norm of S
‖S‖`p→`q

.
= sup‖x‖p=1 ‖Sx‖q

M � L M− L is positive semidefinite

B. Background on Information Based Complexity and
Worst-Case Optimal Estimation

Next, we recall some key results from Information
Based Complexity (IBC) [11], [13] required to establish
worst-case optimality of the proposed method.

Consider three Banach spaces, X,Y, Z over the real
field and two linear operators Sy : X → Y and Sz :
X → Z, where Sy is of the form y = Cx+ η with C
full column rank. The only information available about
the noise η is that it belongs to a bounded set N . The



goal of IBC based worst-case estimation is to develop
optimal (in a sense precisely defined below) estimators
of z from the noisy measurements y. Define the set

T (y) .= {x ∈ X : y = Cx+ η for some η ∈ N} (1)

containing all possible elements in X that could have
generated the observed data. Then for each y, the local
error e(A,y) of a given estimation algorithm A, defined
as ẑ = A(y), is given by

e(A,y) .= sup
x∈T (y)

‖Szx−A(y)‖. (2)

The global error e(A) of an algorithm A is defined as

e(A) .= sup
y
e(A,y). (3)

An algorithm Ao is called globally optimal if

e(Ao) = eo
.
= inf
A
e(A). (4)

Intuitively, an algorithm is globally optimal if it mini-
mizes the worst-case (over all possible measurements)
estimation error. Globally optimal algorithms have been
extensively studied [11]–[14]. In particular, the main
results in [13] show that in the case of spaces equipped
with either `∞ or `2 norms, the optimal worst-case
estimator is linear, of the form:

ẑ = SzC
†y (5)

where C† is a suitable constructed left inverse of C1.
Further, in the case where the noise set N is an ε ball
in the `p norm and error is measured in the `q topology,
then the optimal worst-case error is given by:

eo = ‖SzC†‖`p→`qε. (6)

C. The General Problem of Moments

Given a compact semi-algebraic set K ⊂ Rn defined
by d multivariate polynomial inequalities of the form
gk(x) ≥ 0, k = 1, · · · , d, and a multi-sequence of
scalars {mα}, indexed by a multi-index α ∈ Nn, the
K-moment problem is to determine whether there exist
a probability measure µ supported on K that has {mα}
as its αth moments. That is:

mα = Eµ(x
α)

.
=

∫
K

xαµ(dx) (7)

where xα = xα1
1 xα2

2 · · ·xαnn . As shown in [15], exis-
tence of µ is equivalent to M(mα) � 0 and L(gkmα) �
0. In the sequel, we will consider truncated version of

1In the case of `2 bounded noise, C† is the Moore–Penrose pseudo-
inverse, leading to the usual least square estimator.

these matrices, containing moments of order up to 2T .
The truncated moment matrix is given by

MT (m)(i, j) = mα(i)+α(j) for all i, j ≤ ST (8)

where ST
.
=
(
T+n
n

)
denotes the number of moments in

Rn up to order T . Similarly, if gk(x) =
∑

β gk,β(l)xβ
(l)

is one of the polynomials defining the set K with degree
δk, the corresponding truncated matrix is given by:

LT (gkm)(i, j) =
∑
β

gk,β(l)mβ(l)+α(i)+α(j)

for all i, j ≤ S
T− δk2

(9)

In the context of the problems addressed in this pa-
per, the results above allow for developing convex fi-
nite dimensional relaxations of polynomial optimization
problems over semi-algebraic sets. As shown in [15],
polynomial optimization problems of the form:

p∗K := min
x

∑
α

pαx
α subject to x ∈ K (10)

can be reduced to a monotonically convergent sequence
of Linear Matrix Inequalities (LMI) optimization prob-
lems of the form:

p∗T = minm
∑

α pαmα subject to:
MT (m) � 0,
LT (gkm) � 0, k = 1, · · · , d,

(11)

with p∗T ↑ p∗K as T →∞.
Remark 1: If for some T the sequence of relax-

ations satisfies rank [MT (m)] = rank [MT−1(m)] (the
so called flat extension property), then the T th order
relaxation is indeed exact [16].

D. Moments-based Nonlinear 0-1 Programs

In this paper, we will reduce the sensor selection opti-
mization program to a polynomial optimization problem
in 0-1 variables of the form:

p∗ := min
x∈{0,1}N

p(x) subject to x ∈ K (12)

where N denotes the total number of sensors available.
In this case, as shown in [17], the sequence of relax-
ations (11) of problem (12) is guaranteed to find the
optimal solution for some finite order matrices of order
T ≤ N .

III. THE CONSTRAINED SENSOR SELECTION
PROBLEM

As briefly outlined in section II-B, the results in
[13] show that, in the absence of constraints, worst-
case optimal estimators either entail using all available
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measurements (when using the `2 metric), or a subset of
these with cardinality nx (the dimension of X), when
considering the `∞ topology. In this case, the specific
optimal subset can be found by solving 2nz linear
programming problems, where nz denotes the dimension
of the quantity to be estimated. However, in many
cases of practical interest, sensor choices are subject
to additional selection rules. For example, transmission
medium access constraints or power considerations may
preclude certain sensors from being simultaneously used
or limit the number of sensors that can chosen in some
given subsets. In this context, the goal of this paper can
be simply stated as deciding a strategy for selecting n
sensors such that the estimator ẑ = SzC

†
selectedyselected

is globally (worst-case) optimal, under given selection
constraints. Formally, the problem can be stated as:

min
Cs admissible

‖SzC†s‖ (13)

where Cs, s = 1, 2, · · · , ns ≤
(
N
n

)
and ‖.‖ denote

all possible admissible choices of n sensors from the N
available, and a suitable norm, respectively. In principle,
this leads to a hard, combinatorial optimization problem.
However, as we show in the sequel, it can be reduced
to a 0-1 polynomial optimization, which in turn can
be relaxed to a convex optimization by appealing to
moments concepts.

For simplicity, in the sequel we will make the as-
sumption that z, the quantity to be estimated, is a
scalar. Note that in the `∞ case this assumption can
be made without loss of generality, since vector optimal
estimators simply consist of the optimal scalar estimator
ẑi of each component of z [13]. In the case of `2 norms,
this assumption is equivalent to designing independent
estimators (and hence potentially using different set
of sensors) for each component, rather than a single
(coupled) estimator.

A. `2 bounded noise
Consider first the case were the measurement noise is

characterized in terms of the `2 norm. In this case, for
a given choice s of sensors, C† in (6) is given by C†

.
=(

CT
s Cs

)−1
CT
s , where Cs denotes the submatrix of C

corresponding to the chosen sensors. Thus, by adding bi-
nary variables vi ∈ {0, 1}, i = 1, 2, · · · , N and forming
the sensor matrix Cv

.
= [v1c

T
1 v2c

T
2 · · · vNcTN ]T , where

ci denote the rows of C, problem (13) can be rewritten
in the following form:

min
v∈Sv

‖Sz(CT
vCv)

−1CT
v ‖2 subject to:

1Tv = n
vi ∈ {0, 1}, i = 1, · · · , N

(14)

where Sv is the set of admissible selections and 1
denotes a vector with all entries one. As we show
next, the problem above is equivalent to a polynomial
minimization over a semi-algebraic set. To this effect,
note that the objective in (14) can be rewritten as:

‖Sz(CT
vCv)

−1CT
v ‖22 = ‖Sz

adj(CT
vCv)

det(CT
vCv)

CT
v ‖22

=
‖Pv‖22
d2(v)

=
p2(v)

d2(v)

(15)

where adj(A) and det(A) denote the adjugate matrix
and determinant of a given matrix A, respectively. Here
Pv = [p1(v), p2(v), · · · , pN (v)] is a vector whose
entries are polynomials in the variables v1, v2, · · · , vN .
Since d(v) = det(CT

vCv) is also polynomial, it follows
that, by introducing an additional variable β, problem
(14) can be recast as the following (constrained) poly-
nomial optimization problem:

minβ subject to:
p2(v)− βd2(v) = 0
1Tv = n
vi ∈ Sv and v2i − vi = 0, i = 1, · · · , N

(16)

where the last equality enforces the condition
vi ∈ {0, 1}. In the case where Sv is semi-
algebraic (e.g. defined by a set of polynomial
constraints) then problem (16) can be solved using
the moments-based method outlined in section II-
C. In particular, simple constraints of the form:

(i) no more than ni sensors can be simultaneously
chosen from a given set Si.
(ii) sensors vi and vj cannot be simultaneously cho-
sen.

can be directly incorporated when forming the
moments matrix M(m), eliminating the need for
considering the moments localizing matrix L(m)
in the optimization problem (11). In the first case,
this is accomplished by setting all entries of M of
the form ,mα = Eµ(v

α1
1 vα2

2 · · · vαnn ) = 0 whenever∑
i∈Si αi > ni. Similarly, pairwise sensor exclusion

constraints reduce to setting mα = 0 whenever
αi + αj > 1.

Note that since (16) involves polynomials of degree
2n+1 in N +1 variables, this method requires consid-
ering moment matrices of size at least nm × nm where
nm =

(
n+N+2
N+1

)
. Thus, a more efficient implementation

can be obtained by simply performing a line search on
β, leading to the following algorithm:
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Algorithm I: `2 norm based sensor selection

1.- Initialize β0 equal to a positive scalar.
2.- Repeat

(a) Solve

vk = argmin
v

p2(v)− βkd2(v)

s.t.
1Tv = n
vi ∈ Sv and v2i = vi, i = 1, · · · , N

(b) Update βk+1 = p2(vk)
d2(vk)

.

Until βk+1 converges.

Remark 2: Note that each iteration of Algorithm I
involves only polynomials of degree 2n in the variables
vi ∈ {0, 1}. Thus, as outlined in Section II-D only
moments of order up to 2n need to be considered.

Theorem 1: The sequence βk in Algorithm I con-
verges to the solution of Problem (16).

Proof: To establish this result, we will show first
that the sequence βk is non-increasing. To this effect,
let J(v, β) .

= p2(v) − βd2(v). Since vk is a feasible
solution for the optimization at step k+1, it follows that
J(vk+1, βk+1) ≤ J(vk, βk+1) = 0 (by definition). Thus
p2(vk+1)−βk+1d

2(vk+1) ≤ 0, or, equivalently, βk+2
.
=

p2(vk+1)
d2(vk+1)

≤ βk+1. Since βk is a non-increasing sequence,
bounded below by zero, it follows that it converges from
above to some limit β̃. Similarly, since vk is bounded, it
has a convergent subsequence vki → ṽ. By construction
p2(ṽ∗)−β̃d2(ṽ∗) = 0. Hence, for any ε > 0, there exists
some K such that:

p2(vk+1)− βkd2(vk+1) ≥ −ε ∀ k ≥ K (17)

Denote by β∗ and v∗ the solution to (16). Then

p2(vk+1)− βkd2(vk+1) ≤ p2(v∗)− βkd2(v∗)
≤ p2(v∗)− β̃d2(v∗) = −d2(v∗)(β̃ − β∗)

(18)
If β̃ > β∗, then choosing ε < d2(v∗)(β̃ − β∗) leads to
a contradiction between (17) and (18). �

B. `∞ bounded noise

In this case worst-case optimal estimators have the
form ẑ = C̃−1ỹ, where C̃ is a full rank matrix formed
from the rows of C and ỹ denotes the subset of the
available measurements y corresponding to the chosen
rows (see [13] for details). The corresponding worst-case
estimation error is given by

eo
.
= ‖SzC̃−1‖`∞→`∞ (19)

Proceeding as in Section III-A, by introducing binary
variables vi, the optimal cost (19) can be rewritten as

eo
.
= ‖Sz(CT

vCv)
−1CT

v ‖`∞→`∞
subject to: 1Tv = n

(20)

where the constraint enforces the condition that exactly
n rows of Cv must be selected. Thus, in this case
the constrained sensor selection problem reduces to the
following semi-algebraic optimization.

min
∑
i |pi(v)|
d(v)

s.t.
1Tv = n
vi ∈ {0, 1}, i = 1, · · · , N
vi ∈ Sv

In turn, introducing the additional variable β leads to:

min{β,x+,x−,v} β
s.t.

1Tv = n
x+ ≥ 0
x− ≥ 0
x+(i)− x−(i) = pi(v)∑
i[x+(i) + x−(i)] = βd(v)

vi ∈ {0, 1}, i = 1, · · · , N
vi ∈ Sv

(21)
which can be reduced to a sequence of LMI optimization
problems by using a moments–based relaxation. It is
worth emphasizing that in this case, due to the additional
real variables x+,x− and β, the results in section
II-D no longer apply. Nevertheless, the results in II-
C show that the sequence of LMI problems converge
(monotonically) to the optimal solution and provide
optimality certificates for finite order relaxations (the flat
extension property).

Bound on the
number of times 3 2 1

that sensor 1
can be active

proposed method {(1,1) (2,1) { (1,1) (2,1) {(1,1) (2,2),
(time instant, (3,1)} (3,2} (3,3)}

sensor)
method in [13] All NA NA

max-det criterion {(1,1) (2,1) NA NA
used in [1] (3,1) }

random selection {(1,1) (2,2) {(1,2) (2,1) {(1,1) (2,2)
(3,1) } (3,1) } (3,2) }

TABLE I
COMPARISON OF SENSOR CHOICES FOR DIFFERENT ALGORITHMS
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Fig. 1. Comparison of the performance of the sensor selections strategies listed in Table 1, corresponding to different activation constraints. In all
cases the dashed line indicates the (optimal) worst-case bound. Top: No constraints; red squares (proposed method): Mean=-5.00e-3, Std=1.02e-
1; blue circles (random selection): Mean=6.18e-2, Std=3.86e-1; Green triangles [13]: Mean=-8.38e-3, Std=9.43e-2. Center: C1 active at most
twice; Red squares (proposed method): Mean=1.34e-2, Std=2.10e-1; Blue circles (random selection): Mean=2.60e-2, Std=3.68e-1. Bottom: C1

active at most once; Red squares line (proposed method): Mean=4.43e-2, Std=2.28e-1; Blue circles line (random selection): Mean=1.12e-1,
Std=4.93e-1.

IV. EXPERIMENTS

In this section we illustrate our results with two
academic examples.

A. Example1

Consider the linear system:

x(k + 1) =

−0.7321 0.7321 1
1 0 0
0 1 0

x(k)
y(k) = Cx(k) + η(k)

C =

−4.1466 −2.7676 −3.8185
0.5857 −0.7998 −0.1319
0.1676 0.9364 −0.3085


where ‖η‖2 ≤ 1. Assume that the sensor C(1, :), de-
noted as C1, has high energy requirements and therefore
it is of interest to limit its use. The goal is to estimate,
at each instant x(k) using the measurements y(k + 2),
y(k + 1), y(k). Table I summarizes the sensor choices
obtained using the proposed algorithm, the one in [13]
and the one in [1]. Figure 1 shows the results of 100

experiments with random initial conditions correspond-
ing to these sensor selections. As illustrated there, as the
constraints on usage of sensor 1 tighten, the estimation
error increases. In all cases, the estimation error for the
proposed method remains below the worst case bound
(dashed line) while the error corresponding to a random
sensor selection exceeds it.

B. Example2

Consider now the case of up to 9 measurements of a
vector x ∈ R3 given by y = Cx + η, where ‖η‖2 ≤ 1
and

C =



−4.0988 2.2718 2.1652
−4.1893 2.3651 −4.1625
3.9169 3.8809 0.6934
3.4704 −3.7338 −2.9529
−4.5053 1.9238 −2.0671
2.4785 0.3474 −1.7208
4.2102 3.2847 0.2299
−3.7732 −4.0766 1.7296
2.1043 4.8087 4.6235


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Fig. 2. Estimation error for different sensor selections in Example
2. Red squares (proposed method): Mean=-6.40e-3, Std=7.67e-2;
Blue circles (max-det selection): Mean=1.07e-2, Std=1.12e-1; Green
triangles (All sensors): Mean=-5.56e-3, Std=5.63e-2.

The goal is to select 3 sensors out of the available 9 to
estimate z .

= x1+x2+x3. In this case the optimal choice
according to the max-det criterion [1] is sensors #2, #4
and #8, while the proposed method selects #2, #3 and
#9. Figure 2 shows the estimation error corresponding
to these choices for 100 random experiments. Note that
in some cases the max-det selection error (blue circles)
indeed exceeds the optimal worst-case bound achieved
by the proposed method (red squares). As before, for
comparison purposes we also show (green triangles) the
error achieved by a worst-case optimal estimator that
uses all the sensors available, illustrating the additional
cost incurred when using only a subset of these.

V. CONCLUSIONS

This paper considers a constrained sensor selection
problem in a deterministic, set-membership setting. Such
situations arise in cases where no information is avail-
able about the distribution of the measurement noise,
other than its support set. Our main result shows that
in this case worst-case optimal selections can be found
by solving a sequence of convex optimization problems.
Moreover, in the case of `2 bounded noise, a priori
bounds on the size of the relaxation can be obtained by
exploiting recent results on 0-1 polynomial optimization.
These results were illustrated using simple examples
comparing the performance of the resulting suit of
sensors against those obtained using currently existing
methods. Future research seeks to extend the results
presented here to a probabilistic setup, where risk-
adjusted rather than worst-case optimality is considered.
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