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Abstract. In this paper, we consider the problem of optimal estimation
of a time-varying positive definite matrix from a collection of noisy mea-
surements. We assume that this positive definite matrix evolves accord-
ing to an unknown GARCH (generalized auto-regressive conditional het-
eroskedasticity) model whose parameters must be estimated from experi-
mental data. The main difficulty here, compared against traditional para-
meter estimation methods, is that the estimation algorithm should take
into account the fact that the matrix evolves on the PD manifold. As
we show in the paper, measuring the estimation error using the Jensen
Bregman LogDet divergence leads to computationally tractable (and in
many cases convex) problems that can be efficiently solved using first
order methods. Further, since it is known that this metric provides a
good surrogate of the Riemannian manifold metric, the resulting algo-
rithm respects the non-Euclidean geometry of the manifold. In the sec-
ond part of the paper we show how to exploit this model in a maximum
likelihood setup to obtain optimal estimates of the unknown matrix. In
this case, the use of the JBLD metric allows for obtaining an alterna-
tive representation of Gaussian conjugate priors that results in closed
form solutions for the maximum likelihood estimate. In turn, this leads
to computationally efficient algorithms that take into account the non-
Euclidean geometry. These results are illustrated with several examples
using both synthetic and real data.

Keywords: GARCH model · Jensen Bregman LogDet divergence ·
Covariance feature · Manifold · Optimal filter

1 Introduction

Covariance matrices are ubiquitous in computer vision, in problems ranging
from tracking [7,8,16–18,23,29,30,32] to object detection [27,28], person re-
identification [11], activity recognition [15], face recognition [21] and Diffusion
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Fig. 1. Two examples where covariance features are used to describe a target. On the
left, the appearance of the target car has roughly constant covariance. On the right,
the covariance of the appearance of the spinning ball changes over time.

Tensor Imaging (DTI) [9,22]. Applications outside the computer vision field
include economics [3], fault detection [20] and power systems [6].

Most of these applications require estimating the present value of a covariance
matrix from a combination of noisy measurements and past historical data, with
the main difficulty here arising from the need to account for the fact that these
matrices evolve on a Riemannian manifold. For example, [23] proposed to use as
covariance estimate the Karcher mean of the measurements, as a counterpart to
the use of the arithmetic mean update in Euclidean space. However, this app-
roach does not take into consideration measurement noise. Explicitly accounting
for this noise leads to recursive filtering methods. In this context, [29] considered
linear systems evolving on a Riemannian manifold and proposed a Kalman recur-
sive scheme where a matrix log mapping (given a so called base point), is used to
flatten the Positive Definite (PD) manifold prior to computing the predicted and
corrected states. However, it is known that flattening the manifold often leads
to less accurate distance calculation, resulting in poor prediction/estimation.
Intrinsic extensions of recursive filtering where the on-manifold distance is con-
sidered were proposed in [7,14]. A limitation of these approaches is that they
assume that the present value of the covariance evolves according to a known
first order model (that is, the present value of the covariance depends only on its
most immediate past value). However, these assumptions do not necessarily hold
in many practical scenarios where covariances evolve according to more complex
dynamics that are not a-priori known (see Fig. 1).

To address these limitations, in this paper we propose a new framework for
recursive filtering on the PD manifold using Generalized Autoregressive Con-
ditional Heteroskedasticity (GARCH) models for propagating past measure-
ments, combined with a maximum likelihood estimator based on minimizing
the Jensen Bregman LogDet divergence. Specifically, we introduce a new prob-
abilistic dynamic model for recursive filtering on the PD manifold based on a
generalized Gaussian distribution. As shown in the paper, under suitable con-
ditions, the generalized Gaussian conjugate prior can indeed be expressed in
terms of the JBLD distance between the observed and predicted data. This key
observation, combined with a data–driven GARCH model that propagates past
values of the covariance, leads to a filter that admits a closed-form solution and
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compares favorably, both in terms of the estimation error and computational
time, against existing approaches.

2 Preliminaries

2.1 Notation

R set of real numbers
S

n set of symmetric matrices in R
n×n

S
n
+(Sn

++) set of positive-semidefinite (-definite) matrices in S
n

x(X) a vector (matrix) in R

|X| determinant of X
X � 0 X is positive-semidefinite
X � Y X − Y � 0
N (μ,Σ) multivariate Gaussian distribution with mean μ and

covariance Σ
P1/2 for P ∈ S

n
+. P1/2 .= VS1/2VT where VSVT is the svd

of P
σ(P) (σ(P)) maximum (minimum) singular value of P
O(xn) infinitesimal of order xn as x → 0.

2.2 Metrics in S
n
++

The positive definite matrices form a convex cone in Euclidean space. However,
it has been shown that metrics that do not take into account the geometry of the
S

n
++ manifold have poor accuracy in practical applications [1,19]. As mentioned

in [2], symmetric matrices with nonpositive eigenvalues are at finite distance
from any PD matrix. Moreover, the Euclidean averaging of PD matrices often
leads to a swelling effect, i.e. the determinant of the Euclidean mean can be
strictly larger than the original determinants.

In order to take into account the non-flat manifold geometry of S
n
++, an

approximation to the geodesic distance can be obtained by using the matrix
log operator to project PD matrices into a plane tangent to the Riemannian
manifold. Then, the Frobenius norm of the difference between projections can
be used as a surrogate for the geodesic distance, leading to the Log-Euclidean
Riemannian Metric (LERM) [1]. However, as noted above, a potential pitfall
of this approach is that flattening the PD manifold often leads to less accurate
distance computation, which results in poor predictions. Alternatively, a full
blown manifold metric such as the Affine Invariant Riemannian Metric (AIRM)
[4,22] can be utilized. This approach uses the geodesic length along the manifold
curvature leading to the distance measure:

JR(X,Y) .= ‖ log
(
X− 1

2YX− 1
2

)
‖F
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The main disadvantages of this metric are its high computational cost, and for
the specific application in this paper, the lack of convexity1. More recently, a
family of metrics originating in the Jeffrey’s Kullback-Leibler divergence, which
measure the distance between distributions, has been investigated. The main
idea behind these metrics is to consider PD matrices as covariances of zero-mean
Gaussian distributions. One of these metrics is the computationally efficient and
empirically effective Jensen-Bregman LogDet Divergence [8]:

Jld(X,Y) � log
∣∣∣∣
X + Y

2

∣∣∣∣ − 1
2

log |XY| (1)

As noted in [13] the JBLD is geometry aware, has been proven to be non-flat
[12,26], and it is closely related to AIRM in how it measures geodesic length (see
Theorem 1 in [13]). Furthermore, from the standpoint of this paper, the JBLD
offers several advantages over the more traditional AIRM:

1. Jld(X,Y)
1
2 is a metric [25].

2. If 0 ≺ σI � X,Y � σI then Jld(X,Y) ≤ J2
R(X,Y) ≤ (2 log σ

σ )(Jld(X,Y) +
n log 2) [8].

3. For a fixed Y ∈ S
n
++, Jld(X,Y) is convex in the region {X ∈ S

n
++ : X �

(1 +
√

2)Y} [8].

Remark 1. The properties above, along with the empirically observed fact that√
Jld is a good proxy for JR [25], motivate its use in this paper.

2.3 Inverse Wishart Distributions and GARCH Models

For the problems of interest in this paper, we need to model the evolution of
a covariance matrix as a function of time. The models that we propose to use
originate in the conjugate prior distribution of multivariate Gaussian sampling.
Recall (see for instance [10]) that the likelihood function of the covariance matrix
P of n independent observations xi ∼ N (μ,P) is given by the inverse Wishart
distribution, that is:

L(P,Q) ∝ |P−1|n−1
2 e− tr(P−1Q)

2 (2)

where Q denotes the empirical covariance, e.g. Q .=
∑n

i=1(xi − x̄)(xi − x̄)T and
x̄ .=

∑n
i=1 xi

n .
Motivated by the models commonly used to propagate the parameters of

Wishart distributions [3], we propose a GARCH model of the form:

p(Pt|Pt−1, . . . ,Pt−r) ∝ e− Jld(Pt,
∑r

i=1 St−iAiSt−i)

2ω2 (3)

where St−i
.= P

1
2
t−i, r denotes the system order and where Ai � 0 are the

parameters that define the autoregressive model. Intuitively, the probability of
1 Convexity in the Euclidean sense, which gives access to efficient convex optimization

tools with well-developed theoretical support, i.e. ADMM.
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obtaining a given covariance at time t decays exponentially with its distance,
measured in the Jld sense, from the predictions of the model

∑r
i=1 St−iAiSt−i.

The effectiveness of this model in capturing the dynamics governing the evolution
of matrices in S++ will be demonstrated in Sect. 5 with several examples.

Remark 2. Note that (3) can be indeed considered a generalization of multi-
variate stochastic volatility models, commonly used in econometrics to propa-
gate covariances, to the case where the present value of the covariance depends
on several past values. Specifically, under suitable conditions (see Theorem1
in Sect. 4.1), Pt in (3) has an Inverse Wishart distribution with parameter
Q .=

∑r
i=1 St−iAiSt−i, which in the case r = 1 coincides with the WIC model

proposed in [3].

Remark 3. The proposed model includes as a special case the simpler scalar
model where Ai = aiI. On the other hand, allowing the use of matrices allows
modeling more complex sequences as illustrated by the next simple example. Con-
sider a (periodic) covariance sequence,

[
2 0
0 2

]
,

[
1 0
0 1

]
,

[
2 0
0 1

]
,

[
1 0
0 2

]
,

[
2 0
0 1

]
,

[
1 0
0 1

]
, . . .

The corresponding GARCH model is given by:

Pt = ST
t−2

[
1 0
0 0

]
St−2 + ST

t−3

[
0 0
0 1

]
St−3

which cannot be expressed as a scalar linear combination of Pt−1, Pt−2 and
Pt−3.

2.4 Problem Statement

In the context of the discussion in Sects. 2.2 and 2.3 the problem of interest in
this paper can be stated as:

Problem 1. Given a noisy observation Qt of a covariance matrix Pt and past
historical data Pt−r,Pt−r+1, · · · ,Pt−1, find the JBLD-based maximum likelihood
estimate (MLE) of Pt.

We propose to solve this problem by splitting it into two subproblems, (i) esti-
mating the propagation model parameters from training data and (ii) finding
a maximum likelihood estimate of Pt assuming that the propagation model is
known. Formally, this leads to the following two problems:

Problem 2. Given a sequence of training data {Pt}T
t=1 ∈ S

n
++, find the JBLD-

based maximum a posteriori estimate (MAP) of the parameters Ai, such that
the dynamic model is stable.

Problem 3. Given a noisy observation Qt, find the JBLD-based maximum like-
lihood estimate of Pt, assuming a known propagation model of the form (3).
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3 Estimation of the GARCH Model

Since the right hand side of (3) does not define a positive definite kernel for all
ω (or equivalent, the JBLD cannot be isometrically embedded in a Hilbert space
unless restricted only to commuting matrices [26]), it follows that the problem
of estimating the propagation model for Pt cannot be solved by mapping the
data to a Hilbert space and using classical, Euclidean geometry based techniques
there. Nevertheless, as we show in this section, Problem 2 can be reduced to a
convex optimization and efficiently solved by exploiting the properties of the
JBLD.

Given a sequence of training data {Pt}T
t=1, estimating the model parameters

in (3) is equivalent to solving the following MAP problem:

max
Ai

T∏
t=r

p(Pt|Pt−1, . . . ,Pt−r)

s.t. Ai � 0, ∀i = 1, · · · , r
r∑

i=1

St−iAiSt−i � (1 +
√

2)Pt

‖
∑

i

Ai‖2 ≤ 1

(4)

where the second constraint enforces that the prediction should be not too far
from the training data, and where the last constraint has been added to enforce
stability of the resulting model. Using (3) this problem reduces to:

min
Ai

T∑
t=r

Jld(Pt,
r∑

i=1

St−iAiSt−i)

s.t. Ai � 0, ∀i = 1, · · · , r
r∑

i=1

St−iAiSt−i � (1 +
√

2)Pt

‖
r∑

i=1

Ai‖2 ≤ 1

(5)

Since Jld(X,Y) is convex with respect to X in the region X � (1 +
√

2)Y [8]
it follows that, as long as the problem is feasible, then it is convex and can be
solved using for instance a first order, ADMM type method. Further, by using a
splitting-variable type argument, it can be shown that in this case all interme-
diate steps in the ADMM method admit a closed-form solution [31]. Combining
this observation with the adaptive method for adjusting the penalty parameter μ
in the corresponding augmented Lagrangian and the stopping criteria proposed
in [5], leads to a computationally very efficient algorithm for solving (5).
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4 A JBLD Maximum Likelihood Estimator

In this section, we show that a suitably modified version of Problem3 admits
a closed form solution. To this effect, we begin by re-examining the conjugate
prior of the multivariate Gaussian distribution.

4.1 A Generalized Gaussian Conjugate Prior

Combining (2) and (3) it follows that the MLE of Pt, the present value of the
covariance given an observation Qt and past values Pt−1

t−r satisfies:

L(P,Q,Pt−1
t−r) ∝ |P−1|n−1

2 e− tr(P−1Q)
2 ×

e− Jld(Pt,
∑r

i=1 St−iAiSt−i)

2ω2

(6)

In principle, this expression can be used to find a MLE of Pt. However, the result-
ing optimization problem is not amenable to closed form solutions. In addition,
the first factor in (6) does not take into account the manifold geometry. As we
show next, surprisingly, if ‖QP−1 − I‖ is small, that is the prediction and obser-
vation are roughly aligned, then (6) can be expressed in terms of the JBLD,
leading to closed form solutions.

Theorem 1. Let X .= P− 1
2QP− 1

2 and denote by λi the eigenvalues of Δ
.=

X−I
2 . Then,

e− 1
2σ2 Jld(P,Q) ∝ |P−1|n−1

2 e− tr(P−1Q̂)
2 + O(λi) (7)

where, for notational simplicity we defined 1
2σ2

.= n and Q̂ .= nQ.

Proof. From the explicit expression of Jld it follows that

e− 1
2σ2 Jld(P,Q) = |X| 1

4σ2

∣∣∣∣I +
X − I

2

∣∣∣∣
− 1

2σ2

= |X| 1
4σ2

d∏
i=1

(1 + λi)−n (8)

Next, note that

d∏
i=1

(1 + λi)−n = (1 − n
d∑

i=1

λi + O(λ2
i )) = e−n

∑d
i=1 λi + O(λ2

i )

= e
−n·tr(X−I)

2 + O(λ2
i ) = e

−n·tr(X)
2 e

nd
2 + O(λ2

i )

(9)

Replacing (9) in (8) and using the fact that

|X|n
2 = |X|n−1

2 |X| 1
2 = |X|n−1

2 |I + Δ + O(λ2
i )| = |X|n−1

2 (1 + O(λi)) (10)

yields:

e− 1
2σ2 Jld(P,Q) = e

d
4σ2 |X|n−1

2 e− tr(P−1nQ)
2 + O(λi)

∝ |P−1|n−1
2 e− tr(P−1Q̂)

2 + O(λi)
(11)
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Remark 4. The result above shows that, to the first order, the likelihood func-
tion of a Wishart distribution can be approximated by a kernel using the JBLD.
To the best of our knowledge,this is the first result establishing this connection,
which is the key to obtaining a fast MLE given in terms of the Stein mean.

4.2 An Explicit MLE

From Theorem 1 and (3) it follows that Problem 3 can be solved using a likelihood
function of the form:

p(Pt|Qt,Pt−1, . . . ,Pt−r) =
1
Zs

e
− Jld(Qt,Pt)

2φ2

×e− Jld(Pt,
∑r

i=1 St−iAiSt−i)

2ω2

(12)

where Qt denotes the noisy observation and Zs is a normalization factor. In this
context, the MLE of Pt is given by:

P∗
t = arg max

Pt

p(Pt|Pt−1, . . . ,Pt−r)p(Pt|Qt) (13)

or, equivalently,

P∗
t = arg min

Pt

(1 − λ)Jld(Pt,
∑

i

St−iAiSt−i)

+ λJld(Pt,Qt)
(14)

where, λ = ω2

ω2+φ2 . The solution to this optimization is a weighted Stein Mean,
which admits the following closed form solution [24]:

P∗
t = P̃t

[√
P̃−1

t Qt +
(2λ − 1)2

4
(I − P̃−1

t Qt)2

−2λ − 1
2

(I − P̃−1
t Qt)

] (15)

where P̃t =
∑r

i=1 St−iAiSt−i, leading to the JBLD recursive filter algorithm
outlined in Algorithm1.

5 Experiments

In this section, we illustrate the advantages of the proposed JBLD recursive filter
(JBRF) by comparing its performance using both synthetic data and real data,
against the following three state-of-the-art methods:

Manifold Mean. [23] proposed using the Karcher mean of past observations as
the estimator for the present value of the covariance. Note that the Karcher mean
is based on using the Affine Invariant Riemannian metric. Thus, for consistency,
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Algorithm 1. JBLD Recursive Filter (JBRF)

Inputs: past estimations {P̂t−1, · · · , P̂t−r}, Ŝt−i = P̂
1
2
t−i, observation Qt and λ =

ω2

ω2+φ2 .
Prediction:

P̃t =
r∑

i=1

Ŝt−iAiŜt−i

Correction:

P̂t =P̃t

[√
P̃−1

t Qt +
(2λ − 1)2

4
(I− P̃−1

t Qt)2

−2λ − 1

2
(I− P̃−1

t Qt)

]

Outputs: P̂t = JBRF(P̂t−1, · · · , P̂t−r,Qt).

we modified this method to use the Stein, rather than the Karcher, mean, since
the former is the manifold mean under the JBLD metric used in this paper. In
the experiments involving synthetic and video clips downloaded from Youtube,
we set the memory length of this method to 20, which allows it to use a larger
number of past observations compared to JBRF, IRF and LRF.

LRF. The recursive filter for linear system on PD manifold introduced in
[29] obtained using the Euclidean distance computed using the matrix log and
exp operator to flatten the manifold.

IRF. The intrinsic recursive filter on PD manifold proposed in [7].

5.1 Synthetic Data Experiments

The goal here is to compare all methods in a simple scenario: estimation of a
constant covariance matrix in S

3
++. Thus, a time sequence of corrupted observa-

tions was randomly sampled by adding Gaussian noise to an identity matrix I3.
First, a vector w ∈ R

6 was sampled from a Gaussian distribution N (0, σ2I6),
and used to form a matrix W ∈ S

3. Then the noise W was added to I3 using
the manifold exponential operator expX(v)

expX(v) = X1/2 expm(X−1/2vX−1/2)X1/2 (16)

Note that the manifold exponential operator maps the tangent vector v to the
location on the manifold reached in a unit time by the geodesic starting at X in
the tangent direction.

We chose σ2 = {0.1, 1, 2}, and for each value we generated 20 sequences
of length 1000, which can be viewed as random measurements of the identity
matrix. Our recursive filter was applied as an estimator of the sequence, as well as
the Manifold Mean method, IRF and LRF. The estimation error was computed
using the JBLD between the estimations and the ground truth I3. For each
value of σ2, we took the mean of the estimation error over the corresponding 20
sequences.
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(a) σ2 = 0.1 (b) σ2 = 1

(c) σ2 = 2

Fig. 2. Mean estimation error from 20 trials for the synthetic data experiment.

The value of the tuning parameters for IRF and LRF was chosen according
to the corresponding set-ups. For IRF, the parameters were set to φ2/ω2 = 200,
as reported in [7]. For LRF, we set Ω = ωI6 with ω = 0.0001 and Φ = σ2I6
as reported in [29]. For the base point of LRF, we used the first observation of
each sequence, which is the best information available about the sequence before
filtering. The justification for this setting is given in [7]. For our filter, we set the
parameters as φ2/ω2 = 50.

The mean estimation errors from 20 trials for each different noise level are
shown in Fig. 2a, b and c. It can be observed that both Manifold Mean and LRF
converge faster than JBRF in terms of the number of iterations. However, as
the noise level increases, the estimation error of LRF gets larger, which leads
to the worst performance compared to JBRF and IRF. On the other hand, the
performance of Manifold Mean is constant, and worse than JBRF and IRF but
better than LRF for larger noise level. The reason of this poor performance
of Manifold Mean on synthetic data is that a memory length of 20 is still not
enough to eliminate the noise effects. However, even for a memory length of
20, the Stein Mean computation is already the slowest in terms of computing
time. Both IRF and our method show robust performance with respect to dif-
ferent noise levels. In terms of running time, the proposed method is the fastest,



JBLD Divergence Optimal Filtering in the Manifold of PD Matrices 231

Frame 11 Frame 12 Frame 14

Frame 15 Frame 20 Frame 21

Fig. 3. Tracking under occlusion. Top: sample training data. Bottom: tracking results
using different filters.

with an average time of 0.11 s for each sequence, running on a iMAC with a
4 GHz CPU. This is about 6 times faster than LRF (0.66 s), around 20 times
faster than IRF (2.43 s) and almost two orders of magnitude faster than calcu-
lating the Stein mean (on average 10 s).

5.2 Tracking Under Occlusion and Clutter

This lab experiment was specifically designed to provide a very challenging envi-
ronment, shown in Fig. 3. The goal here is to track a multicolored spinning ball
in the presence of occlusion (frames 16−19) and clutter whose color covariance
descriptors are, in some frames, similar to those of the target. Note that, due to
the spinning, the appearances of the target as it enters and emerges from the
occlusion are different, thus necessitating a data-driven framework capable of
accurately predicting this change. We first used the information from frames 1
to 14 to identify an 11th order model of the form (3) that captures the evolution
of the covariance feature obtained from the coordinates and color of the target:

f(x, y) =
[
x y R(x, y) G(x, y) B(x, y)

]
(17)

Next, we used the different filters to estimate the covariance feature starting from
frame 15, which is the last unoccluded frame, based on the data from frames
1−14. To this effect, we first used the dynamical model to predict the covariance
feature in the next frame. Next, we searched for the best match (in the JBLD or,
in the case of IRF, AIRM, sense) by comparing against the covariance features
obtained using a sliding window. Changing target size was handled by dense
scanning (using the integral image trick) with target sizes ranging between 85 %
and 115 %, in increments of 5 %, of the last size. The best match was chosen as
the target in the frame and used as observation to perform the correction step
in all filtering methods. During the occlusion, no correction step was performed.
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Again, for LRF and IRF, the parameters were chosen as reported in [29] and
[7]. For this experiment, we also compared against the method proposed in [14]
(MUKF), using the code provided by the authors, where the target bounding
box was modified to be rectangular as in the other methods. For JBRF, we set
ω = 0.01, and φ = 0.01.

As shown in Fig. 3, only the proposed method is capable of sustained tracking.
This is due to the fact that the LRF, IRF, and MUKF methods cannot accurately
predict the evolution of the covariance because they use at most information of
the previous two frames and thus cannot handle long occlusions. Finally, the
Stein Mean method, even using information from more than the past 11 frames,
fails due to the fact that the updating methodology does not reflect the dynamic
evolution of the target.

5.3 Youtube Video Experiments

In this experiment, we evaluate the proposed filter using several Youtube videos
with more than 1000 frames in total. The videos contain a spinning multicol-
ored ball and fish schooling behavior. We divided each sequence into two parts:
training data (around 60%) and testing data (around 40%). For each sequence,
we first extracted RGB covariance features from the object (the spinning ball or
the entire fish school) and used the training data to estimate the model para-
meters for JBRF. The system order was determined empirically, by searching
for the best fit. The data was corrupted with Gaussian noise N (0, 0.01) prior to
extracting the covariance features. These corrupted covariance sequences were
then processed using the different estimation methods. The tuning parameters
for this experiment were set as follows. For JBRF and IRF, we first calculated
the fitting error of the state transition, in the corresponding non-Euclidean met-
ric, using the training sequence and associated system model. The parameter
ω for JBRF and IRF was then set to the unbiased estimation of the stan-
dard deviation using these fitting errors. For the parameter φ which controls
the variance of the observation noise, we performed a grid search with values
1e{−3,−2,−1, 0, 1, 2, 3} and used the one giving minimum estimation error. For
LRF, we set ω = 0.0001 as proposed in [29], and performed a grid search for
φ with values 1e{−3,−2,−1, 0, 1, 2, 3}. The results reported correspond to the
value that yielded the minimum estimation error.

The estimation error was again computed using JBLD between the esti-
mations and the ground truth (extracted from frames before corruption). The
mean estimation errors and average run time to filter 100 frames are shown in
the Table 1. Sample frames from several sequences are shown in Fig. 4 along with
their noise corrupted counterparts. Table 1 shows that indeed JBRF achieves the
minimum estimation error among all methods, while, at the same time being
60 % faster than the closest competitor. It is also worth emphasizing that the
performance improvement is not just due to the fact that the JBLR can use
higher order models. As shown in the last five columns of the table, using a
data driven model leads to substantial performance improvement, even when
the order of this model is comparable to the one used by competing methods.
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Table 1. Mean estimation error and running time for the experiments using Youtube
video clips (number in parenthesis denotes the system order of JBRF model)

Methods Spinning ball Fish #1 Fish #2 Fish # 3 Fish # 4 Fish # 5 Fish #6

Error JBRF 0.3565 (13) 1.2901 (3) 0.9664 (2) 0.5819 (2) 1.5692 (1) 1.6730 (1) 1.5302 (1)

IRF 0.4937 1.5266 1.7863 0.6691 1.9112 1.8701 1.8741

LRF 0.5792 1.5294 1.7900 0.6726 1.9116 1.8700 1.8746

Stein mean 0.6037 1.5350 1.8114 0.6744 1.9117 1.8719 1.8750

Baseline 0.4936 1.5266 1.8126 0.6829 1.9112 1.8716 1.8741

Running
time
(s/100
frames)

JBRF 0.0691 0.0320 0.0288 0.0291 0.0245 0.0241 0.0245

IRF 0.2519 0.2628 0.2484 0.2575 0.2613 0.2629 0.2700

LRF 0.0930 0.0989 0.1008 0.0976 0.0959 0.0953 0.1000

Stein mean 0.7345 0.7440 0.7444 0.7371 0.7293 0.7361 0.7601

Fig. 4. Sample frames from Youtube videos. Top: original sequences. Bottom:
sequences corrupted by noise.

6 Conclusion

Many computer vision applications require estimating the value of a positive
definite matrix from a combination of noisy measurements and past historical
data. In this paper, we proposed a framework for obtaining maximum likelihood
estimates of both the dynamic propagation model and of the present value of
the matrix. The main advantages of the proposed approach, compared against
existing techniques are (i) the ability to identify the propagation model and
to exploit it to obtain better predictions while taking into account the non-
Euclidean geometry2 of the problem, and (ii) the use of a generalized Gaussian
approximation to the Jensen-Bregman LogDet Divergence that leads to closed
form maximum likelihood estimates. As illustrated both with synthetic and video
data, the use of the identified manifold dynamics combined with the JBLD metric
2 Note that these results cannot be obtained by embedding the data in a Hilbert space

and using Euclidean geometry based filtering there, since, as shown in [12,26] the
JBLD can be isometrically embedded in a Hilbert space only when working with
commuting matrices.
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leads to filters that compare favorably against existing techniques both in terms
of the estimation error and the computational time required to compute the
estimates.
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