
A Convex Optimization Approach to Design of Information
Structured Linear Constrained Controllers

Y. Wang B. Ozbay M. Sharif M. Sznaier

Abstract— In this paper we consider the synthesis of
sparse stabilizing static state feedback controllers subject
to state and control constraints. The presence of infor-
mation constraints renders this problem generically NP-
hard. However, as we show in the paper, a convergent
sequence of tractable convex relaxations with optimality
certificates can be obtained by transforming the problem
into a polynomial optimization form. The effectiveness of
the proposed technique is illustrated with a numerical
example.

I. INTRODUCTION

Most realistic control problems involve both physical
and information flow constraints. The later typically
arise from the fact that using a centralized controller
may not be feasible, due to communications constraints.
In such cases using a decentralized controller can be
crucial. Indeed decentralized controllers are widely used
in many different application domains such as multi ma-
chine power systems [27], cooperative robotic vehicles
[8] and micro electromechanical systems (MEMS)[7].

Given its importance, the problem of constructing
decentralized controllers has been the object of con-
siderable recent attention. While it is known that this
problem is generically NP-hard, and hence intractable
[5], it has been shown that, if the so co-called quadratic
invariance property holds, then it reduces to a tractable
convex optimization via the Youla parameterization [20],
[22], [13]. Alternative approaches that do not rely on
the quadratic invariance property include LMI based
methods [30], [18], [21], [19]) and non-convex opti-
mization [28], [15], [14], [15], While successful in many
practical cases, LMI based approaches can only handle
a subset of information structures and plants. On the
other hand, optimization based approaches can handle
generic structures, but, due to the non-convexity of the
problem may result in sub-optimal solutions. Finally,
[26] recently proposed an approach based on polynomial
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optimization. However, no control or state constraints
were considered.

Similarly, the problem of synthesizing constrained
controllers has been extensively studied. A line of re-
search has approached this problem from the stand-
point of invariant sets, with earlier work concentrating
on polyhedral ones [24], [2], [25], [6], [16], while
later work also considered ellipsoidal sets characterized
in term of LMIs [10], [9], [1]. A potential difficulty
with these approaches is that the use of polyhedral
sets generally leads to bilinear optimization problems,
while the use of ellipsoids typically leads to conservative
results. Alternatively, constraints can be addressed in a
convex framework by using the Youla parameterization
[11], [23]. However, the resulting problem is infinite-
dimensional, necessitating some form of approximation,
and the resulting controllers can have arbitrarily high
order.

When addressing problems exhibiting both physical
and information flow constraints, if quadratic invariance
holds, in principle one could pursue a modified approach
based on [11] or [23]. However, as noted before, this
leads to potentially very high order controllers. Alterna-
tive, the LMI based approaches that handle information
and physical constraints could be combined, but this
approach will inherit the restrictions of the former and
the conservatism of the later.

Motivated by these difficulties, in this paper we pro-
pose a novel approach to solve the Information Struc-
tured Linear Constrained Regulation problem (ISLCRP),
that is, the problem of synthesizing stabilizing con-
trollers subject to information and physical constraints.
The key idea is to recast the problem into a poly-
nomial optimization form and use recent results in
the field to solve the latter via a convergent sequence
of convex optimization problems. Further, when com-
bined with rank-minimization ideas, this approach leads
to computationally efficient algorithms with optimality
certificates. The paper is organized as follows. Sec-
tion II provides background information about convex
relaxations of polynomial optimization problems and
polyhedral Lyapunov functions and a formal definition
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of the problem under consideration. Section III presents
the proposed polynomial optimization based approach,
including computational complexity considerations and
briefly discusses how to extend this approach to the
continuous time case. These results are illustrated in
Section IV with a numerical example. Lastly, we present
some concluding remarks in Section V.

II. PRELIMINARIES

In this section we present, for ease of reference, the
notation used throughout the paper, some background
results needed to transform the ISLCRP into a tractable
convex optimization and formally define the problem
under consideration.

A. Notation
R, N set of real number and non-negative

itegers
M ,x a matrix, vector of suitable size
M ≥ 0 each element of M is non-negative
M � 0 matrix M is positive semi-definite
σi(M) the i-th largest singular value of M
‖u‖∞ `∞ norm of u: ‖u‖∞

.
= maxi |ui|

‖H‖∞ `∞ to `∞ induced norm of H:
‖H‖∞

.
= maxi

∑
j |hij |

B. Convex relaxations of polynomial optimization prob-
lems

Consider the problem of minimizing a multivariate
polynomial over a semi-algebraic set K,

p∗ = min
x∈K

p(x) =
∑
α

pαx
α

(1)

where K = {x ∈ Rn : gk(x) ≥ 0, k = 1, · · · , N}.
Here the constraints gk(x) are polynomials of the form
gk(x) =

∑
α gk,αx

α, where α ∈ Nn, xα =
∏n
i=1 x

αi
i ,

and where pα and gk,α denote the coefficients corre-
sponding to the monomials xα. As shown in [12], this
problem is equivalent to the following convex, albeit
infinite dimensional, one

p∗ = min
µ∈P(K)

∫
p(x)µ(dx) = min

µ

∑
α

pαmα (2)

where P(K) denotes the set of probability measure
supported on K and mα

.
=
∫
K
xαµ(dx) is the αth

moment with respect to µ. Notice that the objective
function in (2) is an affine function of mα, subject to
the (convex) constraint that mα must be the moments of
some probability measure µ. As shown in [12], this con-
straint can be enforced by introducing several (infinite-
dimensional) positive semi-definite constraints of the
form M(mα) � 0 and L(gkmα) � 0, k = 1 . . . N ,
where M (the moment matrix) and L (the localizing

matrices) are affine in m. Finally, finite dimensional
relaxations of (2) with cost pdm can be obtained by
replacing these matrices with truncated versions, con-
taining moments of order up to 2d, of the form

Md(m)i,j = Eµ(xα(i)xα(j)), ∀i, j ≤ Sd
Ld(gkm)i,j = Eµ(xα(i)xα(j)gk(x)),

∀i, j ≤ S
d−d deg(gk(x))

2 e

(3)

where Sd
.
=
(
d+n
n

)
, xα(i) denotes the i-th element in

the lexicographical ordered polynomial ring and Eµ(.)
denotes expectation w.r.t. µ. As shown in [12], pdm ↑ p∗
monotonically. Further, if for some d

rank{Md(m)} = rank{Md−1(m)} (4)

then the relaxation of order d is exact, that is pdm = p∗.

C. Polyhedral Lyapunov Functions

Consider a discrete time linear system:

x(t+ 1) = Ax(t) (5)

and the function

V (x) = ‖Gx‖∞ (6)

where, G has full column rank.
Definition 1: V (x) is a polyhedral Lyapunov func-

tion for (5) iff along its trajectories

V (x(t+ 1))− V (x(t)) < 0 ∀x 6= 0
Remark 1: As shown in [3], existence of a polyhedral

Lyapunov function is a necessary and sufficient condi-
tion for asymptotic stability of (5).

D. Problem Statement

Consider a discrete-time system of the form

x(t+ 1) = Ax(t) +Bu(t) (7)

where A ∈ Rn×n and B ∈ Rn×m. Our goal is to design
a stabilizing static state feedback law u(t) = Fx(t)
subject to the constraints:

−d ≤ u ≤ d (8)

for all initial conditions x(0) in some initial condition
set Po, with an information structure of the form,

F ∈ S (9)

where d is a real vector with positive components and S
is a given matrix with 1/0 entries that specifies the de-
sired sparsity pattern for the controller. In the sequel, we
will refer to this problem as the Information Structured
Linear Constrained Regulation problem (ISLCRP).
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III. MAIN RESULT

A. Semi-Algebraic Characterization of All the Admissi-
ble State Feedback Gains

According to the Proposition 1 in [24], the existence
of a control law to the traditional linear constrained
regulation problem is equivalent to the existence of a
positively invariant set Ω ⊆ Rn of the resulting closed-
loop system such that

Po ⊆ Ω ⊆ P(F ,d) (10)

where, Po denotes the set of initial states, and
P(F ,d) = {x ∈ Rn : −d ≤ Fx ≤ d} denotes the
set in which the control inputs satisfy the constraint (8).
Furthermore, as shown by Proposition 3 in [24], a set
of the form P(G,w) = {x ∈ Rn : −w ≤ Gx ≤ w}
where G ∈ Rq×n is positively invariant for the closed
loop systemA+BF if and only if there exists a matrix
H ∈ Rq×q such that

G(A+BF ) = HG, ‖H‖∞ ≤ 1. (11)

Remark 2: Note that the condition above does not
necessarily imply asymptotic stability of A+BF . In-
deed, when rank(G) < n the equation above holds
even for unstable systems as long as the unstable modes
of A+BF are unobservable from G. As shown in
[24], guaranteeing closed loop stability requires either
explicitly enforcing that the closed loop poles lie strictly
inside the unit disk, or alternatively, requiring that G
has full column rank and slightly modifying (11) to
enforce a strict inequality. In this case, V (x)

.
= ‖Gx‖∞

is a polyhedral Lyapunov function for the closed loop
system.

Based on the observation above, we will look for a
full column rank matrix G and matrices F,H such that
the strict inequality in (11) holds. The next result will
be used to enforce the full column rank condition.

Lemma 1: Assume that (11) holds for some full col-
umn rank matrix G and some ‖H‖∞ ≤ σ < 1. Then,

there exist some ε such that Gε
.
=

[
εI
G

]
also satisfies

(11) for a suitable chosen Hε with ‖Hε‖∞ < 1.
Proof: Follows by selecting

Hε
.
=

[
0 H12

0 H

]
with H12 = ε(A+BF )(GTG)−1GT and selecting ε
small enough so that ‖H12‖∞ < 1.
Note that since G has full column rank, the set P(G,d)
is a compact polyhedron and thus, one can always select
ε small enough so that P(G,w) ⊂ {x : ε|xi| ≤ wi}.
Thus P(G,w) = P(Gε,w).

Consider now the constraint that the control action
must satisfy ‖u‖∞ ≤ d for all points x ∈ P(G,w),
that is

−d ≤ Fx ≤ d, ∀x ∈ P(G,w) (12)

By using Lemma 1 above, combined with the Extended
Farkas Lemma [11], it follows that (12) is equivalent to
the existence of a matrix Y such that

Y

[
Gε

−Gε

]
=

[
F
−F

]
Y

[
w
w

]
≤
[
d
d

]
Y ≥ 0

(13)

Finally, the information structure constraints can be
embedded easily as F[i,j] = 0 for all (i, j) such
that S[i,j] = 0. Combining all the observations above
leads to the following result, providing a semi-algebraic
characterization of all admissible state feedback gains

Theorem 1: The ISLCRP is solvable if and only if
there exist matricesG,F,H,Y , a vector w and a scalar
ε such that the following conditions hold:

Gε(A+BF ) = HGε, ‖H‖∞ ≤ σ

Y

[
Gε

−Gε

]
=

[
F
−F

]
Y

[
w
w

]
≤
[
d
d

]
Y ≥ 0

F[i,j] = 0, ∀(i, j) ∈ O

(14)

where, O = {(i, j) : S[i,j] = 0} denotes the locations
of non-available information channels.

B. Convex Optimization based Synthesis Approach

Theorem 1 above allows for reformulating the
ISLCRP as a (non-convex) polynomial feasibility prob-
lem. As we show next, a convex relaxation can be
obtained by exploring the moment-based relaxation in-
troduced in Section II. Note that it is often desirable to
maximize the region where the system can be stabilized
subject to the control constraints. In the sequel, we will
achieve this by maximizing a scaling factor δ−1, such
that

P(F ,d) ⊇ δ−1P(Gε,w) = {x :

[
Gε

−Gε

]
x ≤ δ−1

[
w
w

]
}

(15)
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which leads to the following optimization problem

min δ subject to
Gε(A+BF ) = HGε, ‖H‖∞ ≤ σ

Y

[
Gε

−Gε

]
=

[
F
−F

]
Y

[
w
w

]
≤ δ

[
d
d

]
Y ≥ 0

F[i,j] = 0, ∀(i, j) ∈ O

(16)

or, equivalently, the feasibility problem

Gε(A+BF ) = HGε, ‖H‖∞ ≤ σ

Y

[
Gε

−Gε

]
=

[
F
−F

]
Y

[
w
w

]
≤ δ̄

[
d
d

]
Y ≥ 0

F[i,j] = 0, ∀(i, j) ∈ O

(17)

Note that these are polynomial optimization problems of
the form of (1) and thus can be reduced to a sequence
of SDPs of the form1

min
m

f(m)

s.t. Md(m) � 0

Ld(gk(·) ≥ 0) � 0

Ld(hl(·) = 0) = 0

(18)

Here f(m) = m1,δ (the first order moment of δ) for the
optimization problem, and f(m) = 1 for the feasibility
problem; and Ld(gk(·)),Ld(hl(·)) denote the localizing
matrices corresponding to the inequality and equality
polynomial constraints in (16)-(17).

C. Computational Complexity Considerations and Low
Order Relaxations

In this section, we discuss the computational com-
plexity of the proposed method, and introduce a low cost
algorithm for the desired controller design. We will show
that, besides the universal property, the choice of poly-
hedral Lyapunov function also benefits our algorithm in
the sense of providing a low cost SDP based algorithm.
Note that the main computational cost stems from the
size of the matrices M and L, since the computational
complexity of interior-point SDP solvers scales polyno-
mially with the number of decision variables. Since the
size of these matrices is

(
d+n
n

)
(the number of moments

of order up to d in n variables) in order to reduce the
computational complexity, the idea is to make the value

1The detailed SDP formulation is omitted due to space constraints.
It can be obtained, along with the code to solve it by contacting the
authors.

of d as small as possible while still attempting to enforce
that the relaxation (18) be exact.

Since all the monomials in problems (16) and (17) are
of degree 2 at most, it follows that the lowest achievable
relaxation has order d = 1. Further, this relaxation is
exact if the corresponding moment matrices have rank
1. These observations motivate considering the following
rank constrained problem,

M1(m) � 0
L1(gk(·) ≥ 0) � 0
L1(hl(·) = 0) = 0
rank[M1(m)] = 1

(19)

Although this problem is non-convex, a convex op-
timization procedure that iteratively minimizing the re-
weighted nuclear norm can be applied on M1 to pro-
mote a low rank solution. For a discussion of conver-
gence property, the interested reader is referred to [17].
The idea above leads to Algorithm 1 below

Algorithm 1 Information Structured Linear Constrained
Regulation Design

Initialize: iter = 0, W (0) = I
repeat

Solve
min
m

Trace(W (iter)M1)

subject to
M1(m) � 0
L1(gk(·) ≥ 0) � 0
L1(hl(·) = 0) = 0

(20)

Update

W (iter+1) =
(
M

(iter)
1 + σ2(M

(iter)
1 )

)−1
iter = iter + 1

until rank{M1} = 1.

D. Extension to Sparsity Promoting Design

In the previous section, we presented a computation-
ally efficient algorithm for the case where the informa-
tion structure is given. However in practice, there also
exists situations where the goal is to maximize controller
sparsity, rather than enforcing a specific structure. For
instance, due to the cost of building communication
channels, one may want to use as less as possible chan-
nels while designing the stabilizing gain. In this section,
we extend Algorithm 1 to this sparsity promoting design
problem.

Notice that for an information channel of F to be zero
(non-available), we only need to enforce a localizing
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matrix to be 0, which is numerically equivalent to
enforcing a vector to be zero element-wise. Therefore,
sparsity of information channels can be maximized by
pursuing a group-lasso[29] problem on the elements of
the localizing matrices corresponding to F[i,j]. Hence,
we can simply involve a second term in the objective
function of (20), which leads to Algorithm 2. Note that
this algorithm includes a normalization step which aims
at balancing the weights between the rank minimizing
term and the sparsity promoting term, leading to im-
proved rank convergence.

Algorithm 2 Design Stabilizing Static Controller with
Maximal Sparse Pattern

Initialize: iter = 0, W (0) = I , w(0)
[i,j] = 1, ∀i =

1, · · · ,m, j = 1, · · · , n.
repeat

Solve

min
m

Trace(W (iter)M1)

+ λ
∑
i,j

w
(iter)
[i,j] ‖ vect[L1(F[i,j])]‖2

s.t. M1(m) � 0

L1(gk(·) ≥ 0) � 0

L1(hl(·) = 0) = 0

(21)

Update

W (iter+1) =
(
M

(iter)
1 + σ2(M

(iter)
1 )

)−1
S[i,j] = ‖ vect[L1(F[i,j])]‖2, ∀(i, j)

S = σ1(M
(iter)
1 )

S

‖S‖F

w
(iter+1)
[i,j] =

(
S[i,j] + σ2(M

(iter)
1 )

)−1
iter = iter + 1

until rank[M1(m)] = 1.

E. LP based Post-processing

By applying the Algorithm 1 or 2, an information
structured linear constrained gain can be obtained with
a δ̄-acceptable initial set. However, this feasible initial
set may not be the tightest subset of P(F ,d). Once
Gε and F are solved using either Algorithm 1 or 2, the
maximum initial set can be estimated using the Extended
Farkas Lemma to reduce the problem to the following

LP:
min
δ,Y

δ

s.t. Y

[
Gε

−Gε

]
=

[
F
−F

]
Y

[
w
w

]
≤ δ

[
d
d

]
Y ≥ 0

(22)

Let δ∗ denotes the minimum value achieved by the above
problems, then Gε ← δ∗Gε and the tightest initial set
will be P(Gε,w).

F. Extension to Continuous-time Case

In order to generalize our algorithms into continuous-
time case,

ẋ(t) = Ax(t) +Bu(t)

u(t) = Fx(t)
(23)

we recall that its Euler Approximation System (EAS) is
given by

x(t+ 1) = [I + τA]x(t) + τBu(t) (24)

It has been shown that stability of the EAS implies
the stability of the continuous-time system, and that
any positively invariant set of EAS is also positively
invariant for its continuous-time counterpart [4]. The
stability of (23) conversely implies the existence of
some τ > 0 such that its EAS is stable. Hence, given
a continuous-time plant, the algorithms we proposed
can be adopted according to the corresponding Euler
approximation with a small enough τ .

IV. NUMERICAL EXAMPLES

In this section, we illustrate the proposed method
with a discrete-time state feedback example. Since, to
the best of our knowledge, no existing constrained
control method can accommodate sparsity constraints,
we compare with two existing information structured
gain design methods: an SDP based method [26] and
an LMI based method[18].

Consider the following discrete-time system

A =

0.6593 −0.3911 0.2948
0.1906 0.7658 −0.3475
2.2012 1.5873 −0.8751


B =

0.6617 0.8344 0.5075
0.1705 −0.4283 −0.2391
0.0994 0.5144 0.1356


C = I

(25)
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the goal is to find a constrained (with d = 1, w = 1)
state feedback gain subject to the information structure

S =

1 1 0
1 1 1
0 1 1

 (26)

Applying Algorithm 1 with parameters ε = 0.1 and δ̄ =
0.5 results in a stabilizing gain

F =

−0.0453 −0.0103 0
−0.0297 0.0202 −0.0113

0 0.0473 −0.0271

 (27)

with ‖Gε‖∞ = 0.5425. Further applying the LP based
post-processing, the maximum set induced by this poly-
hedral Lyapunov function is ‖Ḡε‖∞ = 0.2590.

Using Algorithm 2 with parameter ε = 0.1 and δ̄ = 1
we trade in some volume of the initial set to achieve a
much sparser stabilizing gain

F =

 0 0 −0.0279
−0.0788 0 0

0 0 0

 (28)

with ‖Gε‖∞ = 0.7928. Further applying the LP based
post-processing, the maximum set induced by this poly-
hedral Lyapunov function is ‖Ḡε‖∞ = 0.6246.

For the proposed stabilizing gain (27) and (28),
we randomly sample 10000 initial state x0, such that
‖Ḡεx0‖∞ ≤ 1. Notice that, for (27) and (28), the matrix
Ḡε is different. In Figure 1, we show the maximum
absolute value of the 10000 control inputs sequences at
each time instance for both proposed gain, respectively.
The goal is to show that the control inputs u never
exceeds the upper bound d = 1, once the state x0 is
initialized inside the corresponding set P(Ḡε,w).

In order to achieve a fair comparison, for the static
gain designed by different methods, we show the ‖F ‖∞
in Table I. This value, regardless of the shape of Gε,
reflects the volume of the trivial initial set {x ∈ Rn :
‖x‖∞ ≤ 1

‖F ‖∞ }. It can be observed that, the trivial
initial set associated with the proposed static gains
possess much larger volume as compared to the existing
methods.

Method ‖F ‖∞
(27) 0.0744
(28) 0.0788
[26] 0.9754
[18] 15.3804

TABLE I
THE H∞ NORM OF THE STATIC GAIN DESIGNED BY DIFFERENT

METHODS

0 5 10 15

u
1

0

0.5

1
Maximum Absolute Value of Control Inputs

Given structure
Sparsity promoting

0 5 10 15

u
2

0

0.5

1

Time (Ts=0.1 sec)
0 5 10 15

u
3

0

0.5

1

Fig. 1. Maximum absolute value over time of control inputs from
10000 trials

V. CONCLUSIONS

In this paper, we consider the problem of finding
stabilizing state feedback gain under constraints on both
the information structure and the control effort. A semi-
algebraic formulation is introduced to parametrizing
all admissible controllers. Then, a convex optimization
based synthesis approach is proposed that exploits recent
results in polynomial optimization. Finally, we discuss
the computational complexity of the proposed method,
and present efficient algorithms with reduced complexity
for two practical cases: (i) enforcing a given informa-
tion structure; and (ii) maximizing controller sparsity.
A numerical example was presented to illustrate the
advantages of the proposed methods.
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