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Abstract— This paper considers the problem of identifying
sparse dynamical graphical models from input/output data.
Our main result shows that this problem can be recast into
an expanded atomic-norm minimization framework that allows
for enforcing block-sparsity. This approach leads to efficient
algorithms capable of handling large data sets, unknown inputs
and fragmented data records. These results are illustrated with
several examples.

I. INTRODUCTION

Recently, considerable attention has been devoted to the
problem of identifying dynamical graphical models, repre-
sented by a graph structure G = {V,E}, where the vertices
are associated with time series and the edges relate the values
of these series at different time instants. These models appear
in fields ranging from systems biology and chemistry to
economics and video-analytics.

In general, the problem is ill posed, since an infinite
number of topologies can explain a given set of finite, noisy
observations. Thus, typically a “sparsity’” prior is added to
regularize the problem, encapsulating the fact that usually
the solution with the fewest number of links is the correct
one. An example of this situation is when graphs are used to
encapsulate causal relationships between agents and predict
future behavior, exploiting the concept of Granger causality
[1]. Several approaches have been proposed to solve the
resulting problem. A cycling descent algorithm was adopted
in [2] that directly attempted to enforce sparsity and used
causal Laguerre basis functions to model the connections
between two time series. Since attempting to directly enforce
sparsity leads to non-convex problems, a large portion of the
existing literature uses the `1 norm as a convex surrogate for
sparsity, leading to a number of convex optimization based
algorithms [3], [4], [5], [6], [7].
`1 regularization based approaches tend to enforce sparsity

in terms of the total number of non-zero coefficients involved
in representing the graph. Thus, they do not, typically, lead
to sparse topologies, since the latter requires enforcing block-
sparsity, that is, all coefficients of the model associated with
a given edge should be zero simultaneously. This observation
motivated the use of group lasso based approaches [8], [9],
[10]. While these methods usually work well, in some cases
they fail to produce the sparsest topology, motivating the
introduction of re-weighted iterative algorithms [11], [12],
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[13]. These algorithms work well in practice, but the use of
a sum-of-`2 norms objective function leads to second-order
cone programs, whose complexity is larger than n3.

An alternative to the approaches above is given by orthog-
onal matching pursuit type algorithms. Cycling Orthogonal
Least Squares (COLS)[12] seeks to find sparse solutions
using a modified Orthogonal Least Squares algorithm. A
Block Orthogonal Matching Pursuit algorithm has also been
investigated [14], using a notion of coherence analog to the
one proposed in the context of compressive sensing [15]. A
further extension to cases where the blocks have different
sizes was presented in [16]. At the present time, these
approaches cannot handle cases, often arising in practice,
where the network is subject to unknown external inputs.

Finally, a Bayesian approach has been proposed to obtain
sparse topologies in [17], where the problem was posed as
sparse input selection for MISO LTI systems. A sparse plus
low rank criterion has been discussed in [18], in which a two
layer structure (manifest and latent) was assumed. Typically,
Bayesian approaches require strong prior information about
the system to be identified and the resulting algorithms have
relatively high computational cost.

As an alternative to the approaches above, inspired by
recent progress in obtaining sparse representations by ex-
ploiting the geometry of the problem, in this paper we
propose a new super-atomic norm based approach. This
proposed method aims at solving a similar problem as group-
lasso does. However, as we show next, due to the introducing
of super-atoms, we achieve substantial improvement in com-
putational efficiency. The main contributions of the paper are:

1) Extension of the original atomic norm framework
proposed in [19] for obtaining sparse solutions to sets
of linear equations to the block-sparse case. This is ac-
complished by introducing the concept of super-atoms
and its associated super-atomic norm, and showing that
minimizing this norm indeed minimizes the convex
envelope of cardinality of a set of vectors.

2) Showing that the approach above leads to efficient
algorithms for minimizing functions subject to block-
sparsity constraints that only require performing inner
products and thus can handle large data sets.

3) Recasting the network identification framework into
a constrained super-atomic norm minimization frame-
work, which allows for directly using these algorithms.

These results are illustrated with several examples where
the proposed approach compares favorably against existing
ones both in terms of recovery of the underlying network
and computational complexity.



II. PRELIMINARIES

A. Notation and Definitions

x,M a vector in Rn (matrix in Rm×n)
M(:, j) jth column of matrix M.
‖x‖2 `2 norm of a vector: ‖x‖22 =

∑
i x

2
i

‖x‖0 `0 quasi-norm, number of non-zero ele-
ments in x

‖x‖∞ `∞ norm, ‖x‖∞
.
= maxi |xi|

conv(A) Convex hull of the set A.
|E| cardinality (e.g. number of elements) of

the set E.

B. Atomic Norms and Sparsity

Let A be a centrally symmetric collection of atoms. Its
atomic norm, ‖x‖A is defined as [19]:

‖x‖A = inf{t > 0 : x ∈ t conv(A)} (1)

It can be easily shown that an equivalent definition is

‖x‖A = inf

{∑
a∈A
|ca| : x =

∑
a∈A

caa

}
(2)

As shown in [19], atomic norms play a key role when
searching for sparse solutions to problems of the form:

min
x
f(x) subject to ‖x‖A ≤ τ (3)

where the atomic norm constraint is used to encourage
sparsity. Further, as shown in [20], this problem can be
efficiently solved using the following Frank-Wolfe type al-
gorithm, which has a convergence rate of O( 1t ).

Algorithm 1 Generic Frank-Wolfe algorithm to minimize a
convex function over the τ -scaled atomic norm ball

1: x0 ← τa0 for arbitrary a0 ∈ A . Initialization
2: for t = 0,1,2,3,... do
3: at ← argmina∈A〈∂f(xt), a〉
4: αt ← argminα∈[0,1]f(xt + α[τat − xt])
5: xt+1 ← xt + αt[τat − xt]
6: end for

C. Problem Statement

As indicated in the introduction, in this paper we consider
models represented by a directed graph G = {V,E} struc-
ture, where each node V corresponds to a given time series,
and the edges E connecting these are linear shift invariant
operators. The corresponding equations are given by

xj(t) =
∑n
i=1

∑r
k=1 cj,i(k)xi(t− k) + ηj(t),

t ∈ [r + 1, T ], j = 1, . . . , n
(4)

where xj(.) denotes the time series at the jth node, cj,i(.) are
the coefficients of an ARX model relating the present value
of the time series at node j to the past values measured at

node i, and ηj(t) represents measurement noise. For ease of
notation, define

xj
.
=

[
xj(T ), . . . , xj(r + 1)

]T
ηj

.
=

[
ηj(T ), . . . , ηj(r + 1)

]T
cj,i

.
=

[
cj,i(1), . . . , cj,i(r)

]T
cj

.
=

[
cTj,1 . . . , c

T
j,n

]T
C

.
=

[
c1, . . . , cn

]
X

.
=

[
x1, . . . ,xn

]
Hi

.
=


xi(T − 1) xi(T − 2) . . . xi(T − r)
xi(T − 2) xi(T − 3) . . . xi(T − r − 1)

... . . . . . .
...

xi(r) . . . . . . xi(1)


H

.
=

[
H1 . . . Hn

]
Ξ

.
=

[
η1, . . . ,ηn

]
With this notation, the equations describing the complete
model can be written in compact form as:

X = HC + Ξ (5)

Our goal is to identify models of the form (5) from ex-
perimental data and a-priori information about the noise and
the order of the edge systems. As noted in the introduction,
due to the finite data record and the presence of noise, this
problem is ill–posed, admitting infinite solutions. However,
in the absence of additional information, amongst all these
solutions, the sparsest one, in the sense of having the smallest
number of edges, is often the most desirable. Thus, we will
add a “sparsity” prior leading to the following regularized
problem:

Problem 1: Given T measurements of n time series
xi(t), i = 1, . . . , n, t ∈ [1, T ], and upper bounds ε and r on
the noise level and edge model order, respectively, solve:

min
∑
j

∑
i ‖{cj,i}‖0 s. t. (5) and ‖ηj‖2 ≤ ε,

∀j = 1, . . . , n
(6)

where, cj,i ∈ Rr.
Thus, the objective function in this problem is precisely

|E|, the number of edges in the graph.
Note that due to its structure, the problem above decouples
into n subproblems of the form:

Subproblem 1:

min ‖{ci}‖0 s. t. ‖ηj‖2 ≤ ε and
xj =

∑
i Hici + ηj

(7)

where, by a slight abuse of notation, we have defined ‖{ci}‖0
as the number of non-zero vectors in the set {cj,i} given j.

III. SUPER ATOMS AND BLOCK SPARSITY

The class of problems considered in this paper require
enforcing block-sparsity, rather than sparsity. This will be
accomplished by considering super-atoms and the associated
super-atomic norm, rather than the traditional atomic norms.
Assume that the set A can be partitioned into N centrally
symmetric subsets Ai such that A = ∪iAi and Ai ∩ Aj =
∅, i 6= j. In the sequel, we will refer to the sets Ai as super-
atoms. Further, to each super-atom Ai = {ai,1, ..ai,ni

} we



will associate the matrix Ai having as its jth column ai,j ,
the coordinates of the atom ai,j in a suitable basis in X .

Definition 1: Given a set of super-atoms {Ai} and a point
x ∈ X , its super-atomic norm is defined as:

‖x‖sA
.
= inf

{
τ > 0: x =

∑
i

(τAi)ci and
∑
i

‖ci‖∞ = 1

}
(8)

Note that the definition above reduces to the usual atomic
norm definition when Ai = {ai}. This connection and
the connection with block-sparsity is highlighted by the
following easily shown result:

Lemma 1:

‖x‖sA = minc
∑N
i=1 ‖ci‖∞ s.t

x =
∑
i Aici

(9)

Remark 1: Recall that, given a vector sequence {c},
‖ci‖∞ ≤ 1, the convex envelope (e.g. the tightest convex
relaxation) of its cardinality is given by [21]:

‖{c}‖0,env =
∑
i

‖ci‖∞

Thus, from Lemma 1, it follows that, minimizing the super-
atomic norm is a good surrogate leading to block-sparse
representations, a key property that we will exploit in this
paper.

IV. SPARSE NETWORK IDENTIFICATION VIA
SUPER-ATOMIC NORM MINIMIZATION

From the results in the previous section, it follows that
Problem 1 can be recast into a collection of n super-atomic
norm minimizations of the form

min ‖z‖sA subject to ‖xj − z‖2 ≤ ε (10)

by simply defining each super-atom as the collection of
columns from the matrices Hi, (e.g a collection of vectors,
each containing delayed measurement of the respective time-
series):

Ai = {Hi(:, t)}, t = 1, . . . r

The problem above is convex and thus can be solved for
instance using interior point methods. However, while these
methods work well for moderate size problems, their poor
scaling properties render them impractical as the size of the
data grows. Thus, in this paper, rather than solving (10), we
will solve the related problem

min ‖xj − z‖2 subject to ‖z‖sA ≤ τ (11)

that is, we will impose soft, rather than hard constraints on
the fitting error. The advantage of the formulation (11) is
that it is amenable to be solved by the following extension
of Algorithm 1:

Algorithm 2 convex minimization subject to super-atomic
norm constraints

1: Data: set of super-atoms A = {A1, . . . ,Ai, . . . }
2: Initialize z(0) ← τa for some arbitrary a ∈ A
3: for k = 0,1,2,3,..., kmax do
4: L ← argminm

{
min‖c‖∞≤1〈∂f(z(k)),

∑
ai,mci〉

s.t. ai,m ∈ Am}
5: c← arg min

‖c‖∞≤1
〈∂f(z(k)),

∑
ai,Lci〉 s.t. ai,L ∈ AL.

6: a←
∑
i ai,Lci

7: αk ← argminα∈[0,1]f(z
(k) + α[τa− z(k)])

8: z(k+1) ← z(k) + αk[τa− z(k)]
9: end for

Steps 4–6 in the algorithm above correspond to step 3
in Algorithm 1. The first step selects the super-atom whose
elements yield the largest decrease in the cost function and
Steps 5 and 6 select the best linear combination of elements
in this super-atom. Thus, the combination of steps 4-6
guarantees that at each step, both the objective function will
improve, unless already at the optimum, that only elements
from a single super-atom will be added to the solution, and
that, at all times, ‖z(k)‖sA ≤ τ . Proceeding as in [20] it
can be shown that, as long as the objective function f(.)
is convex and smooth, the algorithm above is guaranteed to
converge to the optimum, with a convergence rate of O( 1k ).
Further, as shown below, all the steps in Algorithm 2 admit
an explicit solution once being applied to solve problem (11).

Lemma 2: Let Am denote the matrix having as columns
the coordinates of ai,m, the elements of the super-atom Am,
and assume that the super-atoms are centrally symmetric,
that is, a ∈ Am ⇒ −a ∈ Am. Then, explicit solutions to
steps 4-6 of Algorithm 2 are given by

(i) Step 4: L← argmaxm{‖[∂f(z(k))]TAm‖1}
(ii) Step 5: c = − sign([∂f(z(k))]TAL)

(iii) Step 6: a← ALc

Further, for the case where f(z) = 1
2‖xj − z‖22, the explicit

solution to Step 7 is given by αk = max{min{αo, 1}, 0}
where

αo
.
=

[τa− z(k)]T [xj − z(k)]

‖τa− z(k)‖22
(12)

Proof: (only a sketch given due to space constraints).
Follows from using the fact that the sets Ai are centrally
symmetric to show that the optimum in Step 4 is achieved
by the linear combination of atoms given by a = ALc with
ci = sign〈∂f(z(k)),ai,L〉, and using the explicit expression
for f(.) to compute ∂f/∂α.

The results above lead to the following Frank-Wolfe type
algorithm for the specific case of network identification:

Note that this algorithm requires computing only inner
products and sorting a vector and thus can comfortably
handle very large data sets.

V. EXTENSIONS

In this section we cover several extensions of the basic
algorithm needed to handle practical scenarios.



Algorithm 3 Topology Identification via Super-Atomic
Norm Minimization

1: Define A = {A1, . . . ,Ai, . . . } and φ =
{c1, . . . , ci, . . . }. Denote the l-th element as Al

and φl, respectively.
2: Initialize z(0) = 0 and φl = 0, ∀l = 1, 2, . . .
3: for k = 0,1,2,3,..., kmax do
4: L← argmaxl{‖[∂f(z(k))]TAl‖1}
5: c = − sign([∂f(z(k))]TAL)
6: a← ALc
7: αk ← max{min{αo, 1}, 0} where αo is defined in

(12)
8: z(k+1) ← z(k) + αk[τa− z(k)]
9: φl = (1− αk)φl, ∀l

10: φL = φL + (αkτ)c
11: end for

A. External inputs

Many practical situations require taking into account rela-
tively rate external events. Following [11], we will model
these interactions by adding at each node, a piecewise
constant signal uj(·), with a sparse derivative.

xj(t) =
∑n
i=1

∑r
k=1 cj,i(k)xi(t− k) + uj(t) + ηj(t),

t ∈ [r + 1, T ], j = 1, . . . , n
(13)

This extension fits naturally the proposed framework by
modifying the objective in (6) to

min ‖{ci}‖0 + λ‖{∆uj}‖0 (14)

where ∆uj
.
=
[
uj(2)− uj(1) . . . uj(t)− uj(t− 1) . . .

]
and

the parameter λ allows for trading-off graph versus input
sparsity. The problem above can be reformulated in terms
of super-atomic norm minimization, by simply adding the
following super-atoms to the set A:

Au =
1

λ
{u1, . . . ,uT } (15)

where ut is defined as the t-th column of a lower triangular
matrix with {0, 1} elements. Thus, Algorithm 3 can be easily
extended to handle external inputs by simply adding Au into
A and the corresponding coefficients to φ.

B. Missing data

Consider now a situation where some of the data is
missing, due for instance to sensor outages, or in the case
of video-based applications, occlusion. This scenario can be
handled by noticing that from (5) it follows that

M
.
=
[
X−Ξ H

]
does not have full column rank. Thus, missing data can be
recovered by minimizing the rank of M with respect to the
missing data and noise sequence, for instance by solving a
regularized nuclear norm minimization problem of the form:

min
m̂,X̂,Ĥ

‖
[
X̂ Ĥ

]
‖∗ + µ‖m̂−m‖∞ (16)

where,
[
X̂ Ĥ

]
denotes the low rank estimation of M,

m̂ and m denote the elements of
[
X̂ Ĥ

]
and

[
X H

]
,

respectively, at the positions where data is available.

C. Further sparsity enhancement via re-weighting

While often successful, in some scenarios Algorithm 3
may fail to find the sparsest solutions, specially in cases
where the super-atoms have a large variation in norm. To
address this issue, in this section we propose an iterative
reweighted heuristic variant of Algorithm 3, where at each it-
eration the weights assigned to each super-atom are adjusted,
in order to promote sparsity. This idea was first introduced
in [22]. Note that an approach in the same spirit was used,
in the context of network identification, in [13], in that case
involving a re-weighted group lasso type penalty. At each
iteration the modifies algorithm solves:

min
ci,pt

‖xj − z‖2

s.t. ‖z‖sA ≤ τ
(17)

where z consists of two type of super atoms, Aa obtained
from the data measured at each node, and Au that accounts
for (unknown) piecewise constant inputs, as outlined in
section V-A, with the corresponding coefficients denoted as
ci and pt, respectively. The algorithm proceeds by using the
solution to the optimization at the k iteration to scale the
super-atoms, with the initial weights given by their 2 norm.
The complete procedure is shown in Algorithm 4.

Algorithm 4 Reweighted Network Topology Identification
1: Initialize wai = ‖Aa(i)‖2/mean({‖Aa(i)‖2,∀i}), ∀i;
wut = 1, ∀t; si = 1, ∀i 6= j and sj > 1 (self-loop
penalty)

2: while not converge do
3: wai ← siw

a
i , wut ← λwut

4: Aa ← 1
wa ◦ Aa, Au ← 1

wu ◦ Au
5: Solve (17) using Algorithm 3
6: ci ← 1

wa
i
ci, pt ← 1

wu
t
pt

7: wai ← 1/(‖ci‖∞ + δ)
8: wut ← 1/(|pt|+ δ)
9: end while

VI. EXAMPLES

In this section, we illustrate the advantages of the proposed
approach using two examples. In both cases, we compare the
proposed method against Cycling Orthogonal Least Squares
(COLS)[12], Group Lasso (GL)[9] and its variant modified
to handle external inputs (GLEI) [13].

A. Synthetic Example

In this example, we first generated N nodes, and for each
node a signal of length 1000 was drawn from a Normal
distribution N (0, I). Then, in order to generate the time
series observed at the output node, we randomly chose na
nodes and generated random ARX models of order r ,
with coefficients uniformly distributed on (0, 1). Finally, the



r 2 6 10
Proposed 0.8232 5.4491 9.6660

Group Lasso 3.0599 76.0957 352.1598
COLS 3.8695 11.1641 19.7986

TABLE I
EXAMPLE 1: MEAN COMPUTING TIME AS A FUNCTION OF SYSTEM

ORDER (N = 500, na = 10)

na 5 10 20 50
Proposed 5.5009 5.4970 5.4772 5.6117

Group Lasso 52.3320 61.0487 53.2604 55.9573
COLS 2.7994 11.2746 47.1583 389.2545

TABLE II
EXAMPLE 1: MEAN COMPUTING TIME AS A FUNCTION OF NUMBER OF

LINKS (N = 500, r = 6)

output was then corrupted using Gaussian noise drawn from
N (0, 0.05I), achieving a Signal-to-Noise ratio around 25dB.

We considered three different scenarios obtained by fixing
two parameters from the set r, na and N and varying the
third. For each parameter setting, we ran 10 experiments
and compared the results against those obtained using Group
Lasso and COLS. All three approaches successfully identi-
fied the underlying system. However, as shown in Tables I,
II and III, Algorithm 3 outperforms the others in terms of
computational complexity as the size of the problem grows.

B. Human Interaction

The goal here is to identify causal relationships from video
data. For this experiment, we took the first example from
[13], which considers two video sequences from the UT
Human Interaction Data Set [24]. In both video sequences,
we use as data the position of each agent’s head in image
coordinates, normalized to the interval [−1, 1]. The proposed
reweighted algorithm (Algorithm 4), reweighted GLEI and
COLS were run using system order r = 2. For the proposed
method, we set the self-loop penalty equal to 10, λ = 0.05
and τ = 5. For the reweighted GLEI, we adopt the parameter
setting reported in [13]. Since COLS needs information on
the number of links, we used 1 for each agent which is
intuitively consistent with the ground truth, that is the fact
that the video consists mostly of pair-wise interactions.

For both sequence 6 and 16, a clip of around 100 frames
was used. The causal correlations between agents identified
by all three methods are shown in Figure 1 and 2, respec-
tively. Note that COLS fails to identify the correct relation-

N 100 200 300 400 500
proposed 0.4373 1.2237 2.6294 4.0679 5.4672

Group Lasso 0.5539 3.7758 12.7853 29.3695 51.5379
COLS 2.0871 4.2519 6.4819 8.7866 11.1526

TABLE III
EXAMPLE 1: MEAN COMPUTING TIME AS A FUNCTION OF THE TOTAL

NUMBER OF NODES (r = 6, na = 10)

Fig. 1. Sample Frames of the UT Sequence 6 showing the causally in-
teracting groups identified using different methods. Top: Proposed Method.
Center: reweighted GLEI. Bottom: COLS.

ships, since it does not take into account external inputs1. On
the other hand, both the proposed method and reweighted
GLEI correctly identified the causally interacting people.
However, the proposed method required less computing time
per iteration than reweighted GLEI. For sequences 6 and
16, the proposed method took 0.0643 and 0.1115 seconds
per iteration, respectively, while reweighted GLEI required
0.4867 and 0.3583 seconds per iteration. In this experiment,
both the proposed method and reweighted GLEI converged
in about the same number of iterations.

C. Youtube Tennis Game

In this example, the goal is to identify causally interacting
agents in a clip of 210 frames taken from a mixed double
tennis match at the London 2012 Olympics. The position of
the centroid of each player was recorded, and normalized to
interval [−1, 1]. In this experiment, we also set the system
order for each edge to r = 2. For both the proposed method
and reweighted GLEI, we set the self-loop penalty to 10
and λ = 0.5. In the proposed method, we used τ = 20.
For reweighted GLEI, we chose ε = 0.1. For COLS, we set
the link number on each player to 2 which is consistent to
the fact that each team consisted of two people. The causal
correlations identified by three methods are shown in Fig. 3.

In this case, intuitively it is expected that players will
react primarily to their opponents. Therefore, we would
expect links between player and his/her opponents. The graph
identified by COLS doesn’t match this intuition, while the
ones obtained using the proposed method and reweighted
GLEI do. For this experiment, Algorithm 4 and reweighted
GLEI also took about the same number of iterations to

1In this applications, these inputs account for interactions between an
agent and its environment.



Fig. 2. Sample Frames of the UT Sequence 16 showing the causally in-
teracting groups identified using different methods. Top: Proposed Method.
Center: reweighted GLEI. Bottom: COLS. The red circle denotes the agent
position recovered by solving (16)

Fig. 3. Causally interacting groups in Double Tennis. Top: Proposed
Method. Center: reweighted GLEI. Bottom: COLS.

converge. However. each iteration of the proposed method
required 0.3802 seconds versus 2.13 for GLEI.

VII. CONCLUSIONS

Many problems of practical interest require identifying a
dynamical graphical model from input/output data. As shown
in this paper, this can be efficiently done by recasting the
problem into an expanded atomic-norm minimization frame-
work that promotes block-sparsity and allows for exploit-
ing computationally efficient Frank-Wolfe type algorithms.
Further, the proposed framework can be easily expanded to
accommodate unknown exogenous inputs and missing data.
These results were illustrated with several examples drawn

from video-analytics, showing that the proposed method out-
performs existing ones, specially as the size of the problem
increases.
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