
Real-Time Imaging 8, 157–172 (2002)
doi:10.1006/rtim.2001.0272, available online at http://www.idealibrary.com on
Real-Time Implementation of Obstacle
Detection Algorithms on a Datacube
MaxPCI Architecture

T
he high-speed civil transport (HSCT) aircraft has been designed with limited cockpit
visibility. To handle this, the National Aeronautics and Space Administration (NASA)
has proposed an external visibility system (XVS) to aid pilots in overcoming this lack of

visibility. XVS obtains video images using high-resolution cameras mounted on and directed
outside the aircraft. Images captured by the XVS enable automatic computer analysis in real-time,
and thereby alert pilots about potential flight path hazards. Thus, the system is useful in helping
pilots avoid air collisions. In this study, a system was configured to capture image sequences from
an on-board high-resolution digital camera at a live video rate, record the images into a high-
speed disk array through a fiber channel, and process the images using a Datacube MaxPCI
machine with multiple pipelined processors to perform real-time obstacle detection. In this paper,
we describe the design, implementation, and evaluation of this computer vision system. Using this
system, real-time obstacle detection was performed and digital image data were obtained
successfully in flight tests conducted at NASA Langley Research Center in January and
September 1999. The system is described in detail so that other researchers can easily replicate the
work.

2002 Elsevier Science Ltd. All rights reserved.

Mau-Tsuen Yang1, Tarak Gandhi2, Rangachar Kasturi2, Lee Coraor2,

Octavia Camps2 and Jeffrey McCandless3

1Computer Science & Information Engineering, National Dong Hwa University, Taiwan
E-mail: mtyang@mail.ndhu.edu.tw

2Computer Science & Engineering, Pennsylvania State University, USA
E-mail: tarak_gandhi@hotmail.com. {kasturi,coraor,camps}@cse.psu.edu

3Human Information Processing Research Branch, NASA Ames research Center, USA
E-mail: jmccandless@mail.arc.nasa.gov
Introduction

Continued advances in the fields of image processing
and computer vision have increased the interest in their
ability to aid pilots in detecting possible obstacles in
their flight paths. Acknowledging that the design of the
1077-2014/02/$35.00
high-speed civil transport aircraft (HSCT) has a limited
cockpit visibility, the National Aeronautics and Space
Administration (NASA) has proposed an external
visibility system (XVS) in which high-resolution video
images are obtained using cameras mounted on the
aircraft. This system processes video images taken with
r 2002 Elsevier Science Ltd. All rights reserved.

158 MAU-TSUENYANG ETAL.
an on-board camera directed outside the aircraft. The
goal is to use computer vision algorithms to detect other
aircrafts in the sky by analyzing the images captured by
the on-board camera. The system is useful to help pilots
make decisions and avoid air collision.

This system is not designed to be a replacement of
radar sensors that are usually used for obstacle detection
in the flight path. It just provides an additional means to
detect an obstacle using visible light. The advantage to a
radar system is that it can detect targets under poor
visibility conditions caused by cloud cover or darkness.
The drawback to a radar system is that the scan rate is
typically only 451/s. As a result, the radar system
requires a fairly long time to cover a limited area. For
example, if a radar system produces a beam of 31� 31 to
scan for targets, 0.6 s are required to scan a 91� 91
region. Although the image-processing system is re-
stricted to conditions of good visibility, it can process a
91� 91 region in about 0.06 s, which is substantially
faster than the radar system.

Obstacle detection using image processing requires
robust, reliable, and fast techniques. These techniques
should provide a high probability of detection, while
maintaining a low probability of false alarm in noisy,
cluttered images of possible targets, exhibiting a wide
range of complexities. The size of the image target can
be quite small, from subpixel to a few pixels in size. As
an example, consider a Cessna aircraft that has a length
and a wing-span of approximately 9m (30 ft) and the
fuselage diameter of approximately 1.2m (4 ft). The
detection algorithm must be capable of detecting this
small target at least 25 s prior to a possible collision to
allow for corrective actions by the pilot. Assuming that
both aircrafts are traveling at 125m/s (250 knot), their
relative velocity can be as high as 250m/s (500 knot). In
such a case, the aircrafts would be 6.25 km (3.5 nautical
mile) apart 25 s before collision. Using a camera with a
resolution of 120 pixels/1, the image size of the aircraft is
10.0� 1.4 pixels from a side view, but only 1.4� 1.4
pixels from a front view. Furthermore, the detection
algorithm must report such targets in a timely fashion,
imposing severe constraints on their execution time.
Finally, the system must not only work well under the
controlled conditions found in a laboratory and with
data closely matching the hypothesis used in the design
process, but it must be insensitive – i.e., must be robust –
to data uncertainty due to various sources, including
sensor noise, weather conditions, and cluttered back-
grounds.
Extensive work has been done on the problem of
target detection. When the signal-to-noise ratio is low
and the image motion of the object is small, it is
preferable to use the ‘‘track before detect’’ approach. In
this approach, an object is tracked over multiple frames
before making a hard decision on the presence or
absence of a target. The simplest way to integrate the
input images over multiple frames is by temporally
averaging them. However, when the object has a
significant image motion, other approaches are required.
Nishiguchi et al. [12] proposed the use of a recursive
algorithm to integrate multiple frames while accounting
for a small object motion. A dynamic programming
approach was used by Barniv [2] and Arnold et al. [3] to
detect moving objects of a small size. The theoretical
performance of this approach was characterized by
Tonissen and Evans [4].

There have been many real-time systems proposed in
the past few years for object detection. Smith presented
a real-time system called ASSET-2 [5] using custom
hardware to detect and track moving objects against a
moving background. Melton et al. [6] designed a real-
time system using VLSI implementation to detect
different types of objects over a range of image
characteristics. Also, there have been many image-
processing systems achieving high-performance comput-
ing using either application-specific integrated circuits
(ASICs) [7] or field programmable gate array (FPGA)
[8]. A major problem with these special purpose
machines is that they require a low-level hardware
design that is difficult to accomplish for developers of
image-processing applications.

To avoid the inflexible and expensive process of
hardware design, a Datacube MaxPCI system (shown in
Figure 1) with multiple pipeline processors was used as
the computing engine in this study. The Datacube
MaxPCI system meets high-throughput low-latency
demands and has been found useful by researchers
working on real-time vision applications. A Datacube
MaxPCI system was configured to capture image
sequences from an on-board digital camera with
l k� l k resolution at a rate of 30 frames/s, record the
images into a high-speed 64GB disk array through a
fiber channel, and process the images using multiple
pipeline processors to perform real-time obstacle detec-
tion [17].

In this paper, we describe the design, implementation,
and evaluation of such a computer vision system. Using
this system, real-time obstacle detection was performed

Figure 1. Overview of the real-time obstacle detection system consisting of a Pentium workstation, an NTD Recorder, a
KODAK digital camera and two Datacube MaxPCIs image processing cards.

OBSTACLEDETECTIONALGORITHMS 159
and digital image data were obtained successfully in
recent flight tests conducted at NASA Langley Research
Center. The image sequences, containing more than
100,000 image frames with l k� l k resolution, were
captured in the real flights with different pre-designed
flight maneuvers. These image sequences have value to
further research on obstacle detection algorithms under
different conditions (size, contrast, background, etc.).
Several real-time vision applications (e.g. visual robot
navigation system, industrial parts inspection, and
medical diagnosis) require rapid image analysis by
computers. By discussing the key issues associated with
this system, the time needed by others to implement
similar real-time systems can be reduced.

The next section provides an overview of real-time
image capturing, recording, and processing by the
system. To follow the implementation issues regarding
obstacle detection, algorithms on the MaxPCI system
are dealt with. The aircraft maneuvers in the flight tests
and results of the system’s performance are then
described. In the final section, conclusions are presented.

System for Real-Time Image Capturing, Recording,
and Processing

This section provides an overview of real-time image
capturing, recording, and processing by the system. The
following sub-section describes real-time image captur-
ing using a high-resolution digital camera. The second
subsection explains real-time image recording using a
high-speed disk array and the subsequent one deals with
issues of real-time image processing using multiple
pipeline processors.

Image capturing using a remote digital CCD camera and
motorized lens

A critical component of the vision system is the imaging
sensor. A Kodak Megaplus ES1.0 charge-coupled device
(CCD) digital camera with a Cosmicar/Pentax 1 in
(50mm) motorized lens was chosen because digital
CCD cameras offer superior performance compared to
their analog counterparts [9]. Digital cameras are also
highly immune to the spatial and temporal artifacts
caused by transmission-line noise. The Kodak ESl.0
captures 30 frames/s with a 1 k� 1 k resolution in an 8-
bit format (256 gray levels) [10]. It was mounted in the
cockpit of a modified Convair C-131 aircraft, called the
total in-flight simulator (TIFS). Since the recording
system was located in the aft portion of the aircraft, a
l00-ft digital data cable transferred the image data
signals to the recording system. The synchronized clock
signals generated by the camera were also transferred
through the data cable. A good-quality cable with a low
capacitance prevents asynchronism and noise that can
occur with lengthy cables.

The dynamic range of the captured images was very
large due to variations in factors such as the sun
orientation, cloud conditions, and aircraft altitude. To
prevent saturation or very low gray levels in the
captured images, a motorized aperture lens was installed
on the camera and a remote aperture control box next to
the recording system (100 ft from the camera). With this
motorized aperture, the operator manually adjusted the

160 MAU-TSUENYANG ETAL.
aperture before the flight to prevent extremely bright or
dark images. No operator interaction is required during
the flight. The camera exposure control software
provided by Kodak was not used because it could
inadvertently produce blurred images (caused by ex-
tended exposures) or unacceptable noise levels (caused
by brief exposures).

Real-time recording of digital image sequences using new
technology disk (NTD)

A typical flight sequence with a target aircraft in the
field-of-view can last several minutes and produce
thousands of 1 k� 1 k images. One means of reducing
the massive amount of disk storage space needed to hold
these images is compressive algorithms. However,
because of the desirability of analyzing the camera’s
raw characteristics, uncompressed images were stored.
The task described in this paper requires a system
recording data at a rate of 30MB/s (or 1.8GB/min).

To satisfy these large bandwidth and storage require-
ments, a Pentium 233 workstation (running Windows
NT) with two internal MaxPCI cards from Datacube,
Inc., and an external disk array, called the new
technology disk (NTD), were used. The MaxPCI is a
real-time image-processing card with pipeline image-
processors that provide a cost-effective way to meet
high-throughput, low-latency demands. The data cable
was connected from the digital camera to one of the
MaxPCI cards. The camera sends images through two
channels, with odd lines in one channel and even lines in
the other channel. The MaxPCI card receives the images
through these two channels, with a throughput of
15MB/s from each channel. The MaxPCI card was
configured to merge the two channels in order to form
complete images in the MaxPCI’s memory. The images
are then sent via the MaxVGA bus to the MaxVGA
card for display, and via the PCI bus to the Adaptec
AIC-1160 disk controller card for storing. Transfer to
the disk controller card was accomplished using high-
speed image access (HSIA), a technique that moves data
directly back and forth between the disk controller card
and the MaxPCI’s memory, without being copied in an
intermediate memory buffer. This eliminates copying
data to the host memory, as would be required by other
disk storage products. Finally, the images are trans-
ferred through a fiber channel (FC) cable to the NTD,
where they are stored. The FC transmits data between
computer devices at a rate of up to 1GB/s. Since it is
three times faster than the small system computer
interface (SCSI), FC is expected to replace SCSI as the
transmission interface between servers and storage
devices. The NTD is a redundant array of independent
disks (RAIDS) subsystem that enables high-speed
lossless digital image recording and playback. The
NTD used was a four-disk array with 16GB per disk.
With the FC option, it is possible to achieve NTD
transports in excess of 32MB/s. To achieve the highest
access speed, there is no formatting of data storage on
the NTD – all images are recorded as plain raw data to
the NTD’s consecutive physical sectors. The NTD can
record and playback images at a real-time frame rate of
up to 40MB/s.

NtdIfLib, which stands for NTD ImageFlow Library,
is a C-callable library for programmers to use in creating
their own NTD access programs. The NtdIfLib is
integrated with ImageFlow, a C-callable library that
configures and manages data transfers on the MaxPCI
to perform real-time image processing. With the power
of the NtdIfLib and ImageFlow programming, the
system not only can record the digital images in real-
time, but it also can be extended to perform several
image-processing algorithms concurrently. Developing a
parallel program on the MaxPCI is complicated; the
programmer must know a good deal about the under-
lying hardware. Moreover, since there is no useful debug
tool for ImageFlow at this time, the programming task
using ImageFlow is time-consuming. However, a very
satisfactory system can be developed with appropriate
effort.

Real-time image processing using MaxPCI
image-processing cards

The MaxPCI is a real-time image-processing card with
pipeline processors manufactured by Datacube Inc. It
uses a Windows NT workstation as a host machine and
supports multiple simultaneous pipelines that can be
switched by software at read-time frame rates. Our
Datacube IP system is equipped with two MaxPCI IP
cards, each of which consists of five modular hardware
devices and a set of memories connected by a large
programmable switch (shown in Figure 2). The five
devices are (1) the MaxAcq acquisition unit that receives
either a digital or an analog signal from the camera; (2)
the MaxVGA display unit that outputs the video signal
to the MaxVGA video card; (3) the arithmetic unit (AU)
which performs arithmetic and logical operations; (4)
the look-up table (LUT) that performs pixel value
transformations; and (5) the advanced memories (AMs)
component which can receive an image from the cross-
point switch and transmit another image to the cross-

Figure 2. Architecture of a MaxPCI card. Each MaxPCI is
composed of a MaxAcq acquisition unit, a MaxVGA display
unit, five AMs, two AUs, two LUTs and two PSMOD add-on
modules.

Table 1. The number of main resources in each MaxPCI card

Abbreviation Amount (ID)

MaxPCI #0 resource
Arithmetic unit AU 2 (0–1)
Advanced memory AM 5 (0–4)
Look-up table LUT 2 (0–1)
Delay element DLY 2 (0–1)
General purpose add-on
PSMOD

GP 4 (0–3)

Storage96 add-on PSMOD ST 6 (0–5)
Analog acquisition module QA 1

MaxPCI#1 resource
Arithmetic unit AU 2 (0–1)
Arithmetic memory AM 5 (0–4)
Look-up table LUT 2 (0–1)
Delay element DLY 2 (0–1)
Convolver200 add-on
PSMOD

VD 1

General purpose add-on
PSMOD

GP 4 (0–3)

Digital acquisition module QI 1

OBSTACLEDETECTIONALGORITHMS 161
point switch at the same time. The AM also allows the
host computer to read or write pixels via the PCI bus.

Moreover, each MaxPCI may be extended by the
selection of two add-on processing and storage modules
(PSMODs). The variety of the PSMODs enables users
to balance their processing, memory and resource needs.
Up to two PSMODs can be installed on each MaxPCI.
The first MaxPCI in our system was equipped with a
Storage96 (ST) and a general purpose (GP) PSMOD,
while the second MaxPCI was equipped with a GP and a
Convolver200 PSMOD. These devices operate on pixel
arrays at 40MHz. The MaxPCIs communicate with
each other through two buses called Maxbuses, each of
which has a bandwidth of 160MB/s. The MaxVGA is a
separate display card which inputs images from the
MaxPCI through a private MaxVGA bus. Hence, the
display can be accelerated without interfering with the
PCI bus traffic. Table 1 lists the main resources in each
MaxPCI card. It should be noted that ST is the same as
AM, while GP is similar to AU. Another important
constraint is the communication channels (CHs) be-
tween the two MaxPCI cards. There are only eight CH
channels, with 8 bits in each channel. Thus, the traffic
between two MaxPCIs should be minimized to preserve
the precious CHs. The first MaxPCI was equipped with
an analog acquisition module (OA) to input an analog
signal, while the second MaxPCI was equipped with a
digital acquisition module (QI) to input a digital signal
from a camera. The next section provides the details and
implementation issues for both looming and translating
target detection algorithms.

Implementation of Obstacle-Detection Algorithms
on MaxPCI

This section deals with the implementation of obstacle
detection algorithms on the MaxPCI system. The first
subsection explains the concept of pipeline scheduling.
The second describes the important issues of MaxPCI
programming. The subsequent subsection summarizes
the obstacle detection algorithms for both looming and
translating targets. The fourth presents the implementa-
tion of the detection algorithm for translation targets,
while the implementation of the detection algorithm for
looming targets is presented in the last subsection.

Pipeline scheduling

To execute an algorithm efficiently, the concurrency
features in the algorithm should be exploited. The
concurrency can be divided into two types: spatial and
temporal. Spatial concurrency (parallelism) involves
tasks that can be executed by several processors
simultaneously, while in temporal concurrency (pipelin-
ing), chains of tasks can be divided into stages, with each
stage handling results obtained from the previous stage.
Spatial concurrency can be exploited to reduce the
execution time of a single image frame. Temporal
concurrency can be exploited to further increase
throughput whenever a long sequence of image-proces-
sing tasks is applied on a continuous image sequence. In
our project, we exploited both spatial and temporal
concurrencies (parallelism and pipelining) present in the
task graph. To avoid resource conflict in a pipeline
schedule, a processing pipe cannot flow through the
same resource more than once. Moreover, if several

Figure 3. Two kinds of flight maneuvers: (a) Translating
maneuver and (b) looming maneuver.

162 MAU-TSUENYANG ETAL.
pipes execute concurrently, none can share the same
resource.

The design of pipeline scheduling can be divided into
three steps: (1) partition the dependency graph into
several pipeline stages; (2) allocate resources for each
pipeline stage; and (3) schedule the operations inside
each pipeline stage using allocated resources. Tradition-
ally, a MaxPCI programmer must schedule an algorithm
to the available processors manually so that the
program is capable of running efficiently with several
processing units. However, this approach is time-
consuming and impractical in a system that must
perform a variety of different algorithms and should
incorporate new algorithms as they are developed. An
automatic pipeline scheduler developed for this purpose
is described in a separate report [11].

Important issues of MaxPCI programming

ImageFlow [12] is a low-level library of C-callable
functions that configure and manage data transfers on
the Datacube MaxPCI pipeline-processing devices.
ImageFlow allows the programmer to specify connec-
tions between the processing elements, as well as
between ports on the cross-point switch. It also provides
access to attributes associated with each processing
element. Programmers cannot simply state that two
image streams are to be added; they must specify which
ALU is to be used, where in memory the images are
stored, and the path the images will take to reach the
ALU. It is a programmer’s job to handle resource
conflicts. In our project, ImageFlow was used to develop
parallel programs for all obstacle-detection algorithms.

An algorithm should be defined as multiple parallel
pipes to accomplish the desired tasks efficiently. These
algorithms are then mapped to a sequence of pipeline
processing elements. Each ImageFlow program should
have at least three pipes: acquisition, processing, and
display. The acquisition pipe obtains image sequences
from the camera, while the display pipe offers a stable
output for the monitor. In our applications, handling
the whole processing in one pipe is too complicated –
thus, the processing is partitioned into many pipes.

To optimize the performance of our implementation,
there is an important feature in ImageFlow program-
ming called pipe altering thread (PAT) [12]. The use of
PAT can reduce rearm time for a pipe, and is vital to
efficient applications. PAT speeds up the image proces-
sing by pre-calculating the pipe delay and parameter
setting. However, it also increases the complexity of the
ImageFlow programming.

Obstacle-detection algorithms

We are interested in two types of targets (shown in
Figure 3): translating targets (the target aircraft cross-
perpendicular to the direction of the host aircraft); and
looming targets (target aircraft flying away from (or
near to) the host aircraft). The looming targets are more
dangerous because they are on a collision course.

Over the past year, several algorithms were combined
to form a composite system for the detection of looming
targets [9]. The steps to this composite system are as
follows:

(1) Temporal Averaging: For objects with a uniform
background, having a very small image motion,
such as those on a collision or near-collision course.
When the target motion is small, temporal averaging
improves the SNR and reduces the processing rate
required for subsequent steps.

(2) Pyramid construction with morphological filtering: In
this pre-processing step, a pyramid is constructed to
accommodate different sizes and velocities of
objects. Morphological filtering [13] is performed
at each pyramid level to remove large background
clutters due to clouds and/or ground to improve
performance.

(3) Dynamic Programming: A dynamic programming
algorithm [3] is performed on pre-processed frames
to integrate the signal over a number of frames by
taking the target motion into consideration.

It should be noted that one or more of these steps can be
bypassed so that any of the basic algorithms described
above can be tested individually using the same system.

OBSTACLEDETECTIONALGORITHMS 163
The above target-detection algorithms were implemen-
ted on the Datacube MaxPCI system.

In addition to detection of objects on a collision
course, it is useful to monitor the objects crossing in
front of the aircraft. For this purpose, a system was
designed to specifically detect objects which have a
translating motion in the image. To distinguish translat-
ing objects from ground or cloud clutter, the following
criteria were used:

(1) The object should have sufficient signal strength.
(2) The object should have an image velocity greater

than a threshold.
(3) The object should have a consistent motion.

The algorithm to detect translating objects also has been
implemented on the Datacube MaxPCI system to obtain
real-time performance. The system was mounted on the
host flight aircraft and performed well in detecting and
tracking objects. The algorithm is divided into two
concurrent parts. These parts are (1) image-processing
steps which remove most of the clutter, and isolate
potential features which could be translating objects and
(2) tracking these features using a Kalman filter to
distinguish genuine translating objects from background
clutter which was not separated by the simple image-
processing steps of the first part.

In the first part, these steps consist of temporal
differencing, low-stop filtering, non-maximum suppres-
sing (NMS) and feature extraction. Image-processing
operations are suitable for a pipeline architecture, and
can be done in integer format. Hence, these steps are
implemented on the Datacube MaxPCI machine. The
output of this part is a list of image points which are
likely to contain the target objects, along with their
signal strengths. In the second part, since the first part
has reduced the volume of data to be operated on, more
complicated target-tracking algorithms can be imple-
mented even on the host PC associated with Datacube.
The threshold used in the first part is adjusted
dynamically to give a nearly constant number of
features for the second part so that they can be
processed in real time using the slower host. This is
known as the rate constraint [14].

Implementation of obstacle-detection algorithm for
translating targets

The implementation of detection for translating targets
can be divided into three subsystems: record/playback,
image processing, and tracking. The first and second
subsystems are implemented on Datacube MaxPCI
cards, while the third subsystem is implemented on the
host CPU. All three subsystems should be executed
simultaneously to make the whole system run as fast as
possible. Hence, care should be taken to avoid any
resource conflict and reduce the communication be-
tween subsystems.

Real-time recording and playback from the NTD is
useful in algorithm testing and development. Both
portions of the record/playback subsystem need to
handle double-buffering because the NTD operates at
a faster rate than the MaxPCI. The HSIA port on the
MaxPCI offers a good performance in accessing image
data via the PCI bus. Basically, the implementation of
playback is similar to recording, with a reverse order of
pipeline connections, and is simpler because the camera
is no longer necessary, allowing us to skip the
acquisition pipe.

Image-processing subsystem for translating targets. This
subsystem performs the basic image-processing steps to
suppress clutter and extract features that could be
translating targets. The image-processing subsystem is
the most complicated subsystem and occupies the most
resources. Figure 4 shows an overview of this subsystem.
The first three steps are theoretically interchangeable,
since they are all linear filters.

Temporal differencing. Image differencing was per-
formed on the low-stop filtered images by subtracting
consecutive frames. This is equivalent to a low-stop filter
in temporal direction. Since the target aircraft was
assumed to cross the host aircraft, the target aircraft has
a significant translation in the image. On the other hand,
the objects corresponding to background clutter are
relatively stationary because their distances are usually
much longer than the distance of the target aircraft.
Image differencing suppresses stationary objects corre-
sponding to background clutter. Two AM units (Am1_2
and Am1_3) were used as a temporal buffer to store the
last two frames (shown in Figure 5). The difference
image was obtained by subtracting the frame before the
last frame from the current frame. Each arithmetic unit
(AU), or general purpose (GP) unit, in the MaxPCI can
be divided into separate linear (AU_Linear) and non-
linear (AU_Nonlinear) parts. The AU_Linear can be
configured to perform any arithmetic operation, while
the AU_Nonlinear can simultaneously perform any
logical operation. Both the AU_Linear and AU_Non-
linear are capable of handling four inputs at one time. In
this example, the AU_Linear section in a general

164 MAU-TSUENYANG ETAL.
purpose unit (Gpl_1) was configured to perform a
subtraction operation.

Subsampling. Subsampling was used to divide the image
size by a factor of two, so that the system was capable of
execution in real time. A low-pass filter was performed
before down-sampling to reduce the loss of subpixel
information. This step reduced the resolution of the
Figure 4. The temporal differencing algorithm for the detec-
tion of translating targets.

Figure 5. The implementation of a temporal differencing algorith
image by two. However, since the size of the translating
target was usually greater than 2 pixels, this step actually
enhanced the signal-to-noise ratio due to the spatial
integration performed by the low-pass filter. Figure 6
shows the implementation of a 5� 5 Gaussian low-pass
filter. A neighborhood multiply and accumulate unit
(VD_NMAC_A) in the Convolver200 is configured to
perform the low-pass convolution. Subsampling was
performed by adjusting both horizontal and vertical
zoom factors of the receiving gateway in an AM unit
(AMl_4).
m on Datacube MaxPCI. (a) Flowchart (b) Hardware mapping.

Figure 6. The implementation of sub-sampling and low-stop
filter on Datacube MaxPCI. (a) Flowchart (b) Hardware
mapping.

OBSTACLEDETECTIONALGORITHMS 165
Low-stop filtering. A low-stop filter [15] was applied to
the reduced image to suppress background clutter. The
filter was formed by subtracting a large-sized low-pass
filter from a small-sized low-pass filter (shown in Figure
6). The effect of a low-stop filter is similar to a high-pass
filter in that low-frequency components are eliminated
while high-frequency components are reserved. The
filter mask is used. The filter effectively subtracts from
each pixel the mean of its neighborhood, thereby
suppressing uniform background intensity and weak
clutter. Since a half set of Convolver200 resources was
occupied by subsampling, only 100 points of the
neighborhood multiply and accumulate units
(VD_NMAC_C and VD_NMAC_D) in the Convol-
ver200 can be used in this step. To
use these 100 points efficiently, two sequential 7� 7
low-stop filters were used to simulate a big 13� 13
kernel low-stop filter.

Non-maximum-suppressing. Direct use of the output
from previous steps would increase the number of
features for an extended target. NMS was used to
extract the local maximum, and to get a single feature
(or sometimes a small number of features) for the entire
target. If the magnitude of a pixel was not greater than
all the neighbor magnitudes, then the magnitude of the
pixel was set to zero. After applying NMS, the number
of final features can be reduced and the overall
throughput can be increased. A 3� 3 NMS was
implemented in three steps. First, a 3� 3 dilation image
was performed by replacing each pixel in the original
image by the maximum of its 3� 3 neighborhood.
Second, the difference image between the original image
and the 3� 3 dilation image was obtained. A pixel in the
Figure 7. The implementation of a non-maximum suppressing
difference image was zero if and only if the pixel was a
3� 3 local maximum in the original image. Finally, the
difference image was thresholded to extract those pixels
that were equal to zero in the difference image (that were
local maximum in the original image).

Pixels can have both positive or negative values
corresponding to bright and dark targets, respectively. It
is desired to detect both positive and negative targets.
However, two sets of 3� 3 dilation would consume a lot
of resources, especially AUs. To save precious resources,
an absolute operation was performed before NMS, so
that only one set of dilation was required (shown in
Figure 7). Every pixel that is not at a local maximum in
its 3� 3 neighborhood is marked. The marked pixels are
set to zero in the original image. In this example, the
nonlinear section in an AU (AUl_1) was configured to
perform a maximum operation with three inputs. The
three inputs form a 3� 1 neighborhood window, i.e.
(x, y), (x+l,y), and (x+2,y).

Histogram accumulation and automatic threshold selec-
tion. To extract candidate features, the image obtained
from the above steps should be thresholded. Further-
more, the threshold should be chosen so that the
number of features neither overloads the tracking
subsystem, nor keeps it unnecessarily idle. Hence, the
threshold was selected so that the number of pixels
exceeding the threshold was less than or equal to a fixed
rate that matches the operation speed of the tracking
subsystem. For this purpose, a histogram of the image
was constructed. The threshold then is determined as the
smallest pixel value for which the number of elements in
the histogram bins above this value does not exceed the
on Datacube MaxPCI. (a) Flowchart (b) Hardware mapping.

166 MAU-TSUENYANG ETAL.
fixed rate. Applying this value as the threshold ensures
that the number of features remains bounded. A
histogram processor (HP) in MaxPCI can generate a
histogram consisting of 256 bins, with 2B in each bin.
The histogram was accumulated using an AU (AU0_1)
to determine the threshold value. An LUT (LUT0_0)
was configured according to the automatic selected
threshold value. Finally, pixels in the image with an
amplitude value smaller than the threshold value were
suppressed using LUT0_0.

Feature extraction. The pixels in the image with an
amplitude greater than the threshold are separated as
features. The position and amplitude of each feature
were transmitted to the tracking subsystem, with
information extracted using the statistic module inside
an AM. Feature coordinates were extracted using an
AM unit (AMO_2), while feature amplitudes were
extracted using another AM unit (AMO_3). Since the
threshold value in the last step was selected so that the
number of pixels exceeding the threshold would be less
than a fixed rate, the number of features was guaranteed
to fit into the memory surface safely. Since the tracking
subsystem was implemented using the host CPU, the
features were transferred from the MaxPCI to the host
memory so the tracking subsystem could read from the
host memory directly. The technique of HSIA was used
to perform efficiently the feature transmission through
the PCI bus.

Tracking subsystem. This subsystem maintained a list of
tracks containing the frame number, a unique ID,
position, velocity, and amplitude. The feature amplitude
is defined as the magnitude of the feature pixel after the
image-processing steps described in the prior section are
applied. Refer to [16] for the detailed description and
parameters of the tracking subsystem. In summary, the
following steps were repeated for each frame:

(1) Input: The list of features was received from the
image-processing subsystem.

(2) Track update: For each track in the list of tracks, the
list of features was scanned to obtain features in a
neighborhood window around the track’s position.
If there were any such features, then the strongest
was selected as the continuation of the track. Using
the coordinates of this feature, as well as current
track position and velocity, the expected position
and velocity for the next frame were estimated using
a Kalman filter. If no such feature was found in the
neighborhood of the track, position and velocity
were extrapolated in the same Kalman filter
framework, using only the current values for the
track. The track amplitude was updated using
recursive averaging with a forgetting factor:

Fnþ1 ¼ fn þ �Fn

Where Fn and Fn+1 are the track amplitudes for the
current and next frames. fn is the feature amplitude.
a is the forgetting factor.
The feature amplitude fn is zero if no feature is
found.

(3) Formation of new tracks: After all current tracks
were updated, features in the feature list were used
to check for new tracks. For every feature, the list of
tracks was scanned to see if a track was already in its
neighborhood. If not, a track was created out of the
feature. Its position should be the same as the
feature position, whereas velocity was initialized to
zero. The actual velocity was computed only in the
next frame.

(4) Pruning the list of tracks: If the number of tracks is
too large, the subsystem can get overloaded and fail
to operate in real time. To eliminate this possibility,
if the number of tracks was greater than a particular
number, the weakest tracks were deleted.

(5) Merging similar tracks: Two or more tracks may be
formed corresponding to the same object. Hence,
tracks that were very close to each other and had
nearly the same velocity were merged, retaining the
one with larger amplitude.

(6) Output: Tracks that satisfy object criteria, including
amplitude larger than a threshold, and other factors
were output as potential objects.

The tracking subsystem not only tracked targets
moving horizontally across the image, but was generally
enough to track any target moving in a consistent
direction. In addition, the system was able to track
several targets simultaneously since several tracks were
maintained simultaneously. Table 2 summarizes the
execution iteration period for the operations described
in this section. The required resources are based on the
implementations on the Datacube MaxPCI system. The
reported execution iteration period is based on an input
image with 1 k� l k resolution.

Implementation of obstacle-detection algorithm for
looming targets

The implementation of the detection algorithm for
looming targets can be divided into two subsystems:
record/playback and image processing. The record/
playback subsystem is identical to the record/playback

Table 2. The execution response time for operations imple-
mented on the Datacube MaxPCI system

Iteration
period (ms)

Operations for translating targets (input size)
NTD record/playback (1 k� 1 k) 24.9
Camera acquire (l k� l k) 34.1
Temporal differencing (1 k� l k) 29.7
Lowstop filter (1 k� l k) 29.7
Non-maximum suppression (l k� l k) 29.7
Feature extraction (1 k� 1 k) 29.7

Operations for looming targets (input size)
Pyramid construction (3 levels) 39.2
Morphological filter (1 k� l k) 29.7
Temporal averaging (1 k� l k) 29.7
Dynamic programming (1 k� l k) 29.7

Figure 8. The algorithm for the detection of looming targets.

OBSTACLEDETECTIONALGORITHMS 167
subsystem for translating targets (explained in previous
section). The image-processing subsystem is explained
below.

The image-processing subsystem for looming targets
performs the basic image-processing steps to suppress
clutter and extract features that could be looming
targets. The algorithm uses a pyramid construction
operation as a pre-processing step and performs three
morphological filter operations followed by six dynamic
programming operations (shown in Figure 8). The
algorithms can be separated into several individual
operations.
Pyramid construction. Spatial integration can be per-
formed by forming an image pyramid to detect targets
of a number of different sizes and velocities. A hierarchy
of images, each with half the resolution of the previous
one, was formed. A low-pass Gaussian filter was
performed before down-sampling to reduce the loss of
subpixel information. A three-level pyramid construc-
tion can be divided into three sequential pipes (shown in
Figure 9). The first pipe smoothed and subsampled the
original l k� l k image into a 512� 512 image, and
copied the l k� l k image to the destination memory
surface. The second pipe smoothed and subsampled a
512� 512 image into a 256� 256 image, and copied the
512� 512 image to the destination memory surface.
Finally, the third pipe copied the 256� 256 image to the
destination image. These three pipes cannot be executed
concurrently because they need to write into the same
destination: the AM (Am1_3).

Morphological filter. A morphological filter [13] can
remove large-sized features (usually clutter), while
retaining small-sized features (usually targets). A differ-
ence between the original image and its morphological
opening (top-hat transform) outputs small-sized positive
targets – i.e. bright targets in dark background, whereas
the difference between the morphological closing and
the original image (bottom-hat transform) outputs
negative targets, i.e. dark targets in bright background.
Each of these images can be used separately to detect
targets.

The flowchart of a morphological filter is shown in
Figure 10(a). A branch of a morphological filter is either
a dilation followed by an erosion (closing), or an erosion
followed by a dilation (opening). A dilation (erosion)
can be done by configuring an AU to perform a
maximum (minimum) operation. Delay elements
(DLY0, DLY1, DLY2, and DLY3) were included in
the pipe to adjust the alignment properly (shown in
Figure 10(b)).

Temporal averaging. To decrease the probabilities of
false alarms and missed detections, observations can be
integrated spatially or temporally. In the case of
stationary targets, optimal detection can be achieved
by adding (or averaging) the images in the sequence and
thresholding the output. A recursive filter was used with
a forgetting factor a between 0 (full forgetting) and 1 (no
forgetting). The output F(k) at time k is given in terms of
the input f(k) as

Fð0Þ ¼ 0; FðkÞ ¼ ð1� aÞf ðkÞ þ aFðk � 1Þ

Figure 9. The implementation of pyramid construction algorithm on Datacube MaxPCI. (a) Flowchart (b) Hardware mapping.

Figure 10. (a) Morphological filter. (b) The implementation of a branch of morphological filter on Datacube MaxPCI.
(a) Flowchart (b) Hardware mapping.

168 MAU-TSUENYANG ETAL.
To minimize the truncation error, a 16-bit averaging
operation was used instead of an 8-bit averaging
operation. An AU was configured to perform weighted
16-bit averaging. An AM unit (Am0_0) was set to store
the high byte, while another AM (Am0_1) stored the
low byte of the averaging output.

Dynamic programming. In the case of moving
targets, the temporal averaging filter does not improve
detection. A dynamic programming algorithm [3]
is more effective in detecting moving targets. The
algorithm is based on shifting the images before
averaging them, to align the target to be detected.
Since the velocity of the target could be arbitrary, the
velocity space (u, v) is discretized within the range of
possible target velocities. For each discrete velocity on
the grid, an intermediate image F is created recursively
using

Fðx; y; u; v; 0Þ ¼ 0

Fðx; y; u; v; kÞ ¼ f ðx; y; kÞ

þ a max
ðx0 ;y0Þ2Qðx;yÞ

Fðx0 � u; y0 � v; u; v; k � 1Þ

Finally, a maximum operation is performed at time K,
when the result is to be reported:

Fmðx; y;KÞ ¼ max
ðu;vÞ

Fðx; y; u; v;KÞ

Figure 11. (a) Dynamic programming (DP) algorithm. (b) The implementation of a branch of DP algorithms on Datacube
MaxPCI. (a) Flowchart (b) Hardware mapping.

OBSTACLEDETECTIONALGORITHMS 169
Each dynamic programming consists of four branches
(shown in Figure 11(a)). Each branch is a recursive
temporal averaging operation with an additional
dilation (maximum) operation in the loop (shown in
Figure 11 (b)). A GP unit (GP0_0) was configured to
perform the weighted averaging, while another GP unit
(GP0_1) was configured to perform a maximum
operation with four inputs. Two delay elements
(DLY0, DLY1) were inserted in the proper position to
achieve the correct alignments for the four inputs of the
maximum operation.

Table 2 summarizes the execution throughput for the
operations described in this section. The required
resources are based on implementations on the Data-
cube MaxPCI system. The reported execution through-
put is based on an input image with l k� l k resolution.
A smaller input size should result in a larger throughput.

Results of the Flight Tests

Two aircrafts were involved in flight tests at NASA
Langley Research Center. A TIFS was the host aircraft,
which carried the Kodak camera and Datacube com-
puter. A Beechcraft King Air B-200 was the target
aircraft. The purpose of the flight tests was to obtain
images containing different maneuvers conducted by the
target aircraft. For all maneuvers, the host aircraft had
an altitude of 3500 ft and a speed of 159 knot.

Two classes of maneuvers were flown. In the
translating maneuver (shown in Figure 3(a)), the target
aircraft translated (moved) in the image sequence, which
was performed with the target aircraft crossing perpen-
dicular to the direction of motion of the host aircraft.
The speed of the target aircraft was 159 knot. This
maneuver was performed for different vertical and
horizontal separations. Images were recorded with the
target aircraft 500 ft below and 500 ft above the host
aircraft at distances of about 1,2,3,4, and 5 nautical
miles. Recording ended when the target aircraft left the
camera’s field of view.

In the looming maneuver (shown in Figure 3(b)), the
target aircraft maintained a fixed position in the image
surface as it flew away from the host aircraft. The target
aircraft speed was 209 knot. Images were recorded, with
the target aircraft ascending at 500 ft/min, descending at
500 ft/min, or maintaining a fixed altitude. Recording
ended when the target aircraft was about 5mile from the
host aircraft. The images from this sequence can be
played backwards to simulate the target aircraft motion
that occurs in a collision.

Two flight tests to evaluate the system were conducted
over several days by NASA Langley Research Center.
During the first flight test in January 1999, image
sequences were captured and recorded successfully at a
rate of 30 frames/s. Ten real-time image sequences with
translating targets, and six image sequences with
looming targets were obtained, containing 86GB
(49mins, 87,819 frames, lMB/frame) of digital data.
The tracking algorithms were designed and fine-tuned
using these image sequences. During the second flight
test in September 1999, not only real-time image

Figure 12. Tracking algorithm applied on an image sequence
with the target aircraft translating from the right to the left side
of the image.

170 MAU-TSUENYANG ETAL.
capturing and recording was performed but also the
translating target-tracking algorithm was executed con-
currently at a rate of 15 frames/s. Algorithm output was
displayed on an XVS display screen in the cockpit. Nine
real-time image sequences with translating targets were
obtained, containing 23GB (26min, 23,254 frames,
1MB/frame) of digital data. By recording images over
a multiple-day period in each flight test, a range of
contrast conditions was obtained. In addition, the
background of the target varied depending on its
altitude. This approach provided a comprehensive set
of images for testing the image-processing algorithms
under different conditions.

It was observed that the system successfully detected
and tracked translating objects during the flight tests.
Figure 12 demonstrates a trace of the tracking algorithm
applied on an image sequence with the target aircraft
translating from the right to the left side of the image at
a distance of 3 nautical mile. The target aircraft is
located at the end of the track and occupies about 15� 3
pixels in this l k� l k image. A detection is shown by
drawing a small black square around the detected
position. The image was created by superimposing the
detection squares through the image sequence to the last
image in the sequence. The series of squares across the
image shows the consistent detection of a translating
target using this system. There was no false alarm in this
image sequence. The distance between the host and
target aircraft was 3 nautical mile in this image sequence.
Table 3. The performance of the translating target-tracking algori
algorithm was executed at a rate of 15 frames/s on the Datacube

No. Target
Type

Target
Dist.

1 � 1.5
2 � 1.8
3 � 3.0
4 þ 4.7
5 þ 5.0
6 � 1.5
7 � 2.0
8 � 3.0
9 � 4.7
10 � 1.2
11 � 2.4
12 � 3.0
13 � 3.0
14 � 3.0
15 � 5.0
16 � 5.4

*(‘‘%’’) means light ground (sky) clutter.
**(‘‘%%’’) means heavy ground (sky) clutter in the background
The performance of the target-tracking algorithm was
evaluated using the image sequences obtained from the
flight tests. Table 3 summarizes the performance of the
translating target-tracking algorithm for a number of
distances between the host and target aircraft. The
scenarios are divided into three categories: (1) scenarios
with target aircraft 500 ft below the host aircraft
(Scenario NO l–5); (2) scenarios with target aircraft
500 ft above the host aircraft (Scenario NO. 6–9); and
(3) random traffic encounter (RTE) in that no altitude
thm for a number of target distances in nautical miles (nmi). The
MaxPCI system

Clutter MD FA

0.061 0.000
0.113 0.000

* 0.056 0.000
** 0.363 0.180
** 0.803 0.147

0.061 0.000
0.092 0.000

% 0.057 0.000
** 0.335 0.183
%% 0.159 0.063

0.059 0.000
* 0.053 0.000
% 0.089 0.000
%% 0.524 0.386
* 0.192 0.038
*% 0.643 0.000

through the image sequence.

Figure 13. Three levels of background clutters and their
enlarged image areas with target aircrafts: (a) No background
clutter; (b) light background clutter; (c) heavy background
clutter, and (d–f) enlarged image area with target in (a–c).

OBSTACLEDETECTIONALGORITHMS 171
constraint of target aircraft was imposed on the
scenarios in this category (Scenario NO 10–16). A target
is classified as a positive target if it is brighter than its
background, while it is classified as negative target if it is
darker than its background. A target aircraft may travel
from left to right, or from right to left of the host
aircraft. The false alarm (FA) rate is measured as the
ratio of the total number of FAs throughout the
sequence to the number of image frames in the sequence.
The miss detection (MD) rate is measured as the ratio of
the number of frames in which the target was missed to
the total number of frames. The false alarm rate depends
on the amount of clutter in the images, whereas the MD
rate depends on the target size and contrast, and
therefore increases with the target distance in most
cases. Thus, the tracking performance degrades as the
amount of background clutter or the target distance
increases. Figure 12 demonstrates the three levels of the
background clutter and their enlarged image areas with
target aircrafts. The small squares in (a–c) represent the
image areas with targets that are zoomed in (d–f). The
resolution of (a–c) is 1024� 1024, while the resolution of
(d–f) is 100� 100.

In image sequence numbers 4, 5, 9, 15, and 16, the
MD rates are high because the target distance is close to
or longer than 5 nautical mile. In image sequence
numbers 4, 5, 9, and 14, the FA rates are high because
of the heavy background clutter. It is possible to get a
better performance by adjusting tracking parameters
individually according to the characteristics (such as
clutter level and target size) of each image sequence.
However, in this experiment, all tracking parameters are
fixed for all sequences – not adjusted from sequence to
sequence. Since FAs can be very annoying to pilots, a
low FA rate was more desirable than a low MD rate.
Hence, the parameters of the tracking algorithm were
selected deliberately to reduce the FA rate.

In addition to background clutter and target distance,
the FA rate is significantly high as the host aircraft
changes direction or rotates about its own axis (such as
image sequence number 14). These FAs are due to
misidentification of some static background clutters as
moving targets because of the relative movements.
Therefore, it should be possible to reduce the system’s
FA rate by considering the aircraft navigation data of
the host aircraft. If the aircraft navigation data for the
host aircraft can be acquired as system input, then the
tracking can be adjusted to compensate for the move-
ment of host aircraft, thereby improving the target
detection. If the aircraft navigation data are unavailable,
then the background motion should be modeled to
separate independent object motion.

Conclusions

A system was designed to capture image sequences from
a digital camera with 1 k� l k resolution at a rate of
30 frames/s, record the images into a high-speed 64GB
disk array through fiber channel, and process the images
using multiple pipeline processors to perform real-time
obstacle detection. The system’s feasibility was demon-
strated in two flight tests conducted by NASA. The first
flight test focussed on image capturing and recording,
while the second flight test performed image capturing,
recording, and processing concurrently. All image
sequences are valuable for those conducting further
research on either translating or looming obstacle
detection algorithms under different conditions (size,
contrast, background, etc.). The system successfully
detected and tracked translating objects during the flight
tests.

References

1. Nishiguchi, K., Kobayashi, M. & Ichikawa, A. (1995)
Small target detection from image sequences using
recursive max filter. Proceedings of SPIE, 2561: 153–l66.

2. Barniv, Y. (1985) Dynamic programming solution for
detecting dim moving targets. IEEE Transactions on
Aerospace and Electronic Systems, 21(1): 144–156.

172 MAU-TSUENYANG ETAL.
3. Arnold, J., Shaw, S. & Pasternack, H. (1993) Efficient
target tracking using dynamic programming. IEEE
Transactions on Aerospace and Electronic Systems, 29(l):
44–56.

4. Tonissen, S. & Evans, R. (1996) Performance of dynamic
programming techniques for track-before-detect. IEEE
Transactions on Aerospace and Electronic Systems, 32(4):
1440–1451.

5. Smith, S. (1998) ASSET-2: Real-Time Motion Segmenta-
tion and Object Tracking. Journal of Real-Time Imaging,
4(1): 21–40.

6. Melton, R., Tsai, C., Alford, C. & Becker, L. (1996) A
VLSI system implementation for real-time object detec-
tion. IEEE International Symposium on Circuits and
Systems, 4: 320–323.

7. Majumdar, A.K. (2000) Design of an ASIC for
straight line detection in an image. Proceedings of the
Thirteenth International Conference on VLSI Design,
pp. 128–133.

8. Reza, A.M. & Turney, R.D. (1999) FPGA implementation
of 2D wavelet transform. Proceedings of the Thirty-Third
Asilomar Conference on Signals, Systems, and Computers,
Vol. 1, 584–588.

9. Kasturi, R., Camps, O., Coraor, L., Gandhi, T., Hartman,
K. & Yang, M.T. (2000) Obstacle detection algorithms for
aircraft navigation. Technical Report, Department of
Computer Science and Engineering, The Pennsylvania
State University, CSE-00-002.
10. Eastman Kodak Company. (1997) Kodak Megaplus
Camera Model ES 1.0 Opto mechanical Specification and
Imaging Performance Specification. Eastman Kodak
Company.

11. Yang, M., Kasturi, R. & Sivasubramaniam, A. (2001) An
automatic scheduler for real-time vision applications.
Proceedings of the International Parallel and Distributed
Processing Symposium, April 2001.

12. Datacube Inc. (1999) PC ImageFlow Programmer’s
Manual. Datacube Inc.

13. Casasent, D. & Ye, A. (1997) Detection filters and
algorithm fusion for ATR. IEEE Transactions on Image
Processing, 6(l): 114–125.

14. Bird, J.S. & Goulding, M.M. (1992) Rate-constrained
target detection. IEEE Transactions on Aerospace and
Electronic System, 28(2): 49l–503.

15. Burt, P. (1981) Fast filter transforms for image processing.
Computer Vision, Graphics and Image Processing, 16:
20–51.

16. Gandhi, T. (2000) Image sequence analysis for object
detection and segmentation. PhD thesis, Department of
Computer Science and Engineering, The Pennsylvania
State University.

17. Yang, M., Gandhi, T., Kasturi, R., Coraor, L., Camps,
O., & McCandless, J. Real-time obstacle detection system
for high-speed civil transport supersonic aircraft. Proceed-
ings of the IEEE National Aerospace and Electronics
Conference, October 20, pp. 595–601.

	Introduction
	Figure 1

	System for Real-Time Image Capturing, Recording, and Processing
	Figure 2
	Table 1

	Implementation of Obstacle-Detection Algorithms on MaxPCI
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 2
	Figure 8
	Figure 9
	Figure 10
	Figure 11

	Results of the Flight Tests
	Table 3
	Figure 12
	Figure 13

	Conclusions
	References

