
Line-Based Recognition Using A
Multidimensional Hausdorff Distance

Xilin Yi, Member, IEEE, and Octavia I. Camps, Member, IEEE

AbstractÐIn this paper, a line-feature-based approach for model based recognition using a four-dimensional Hausdorff distance is

proposed. This new approach reduces the problem of finding the rotation, scaling, and translation transformations between a model

and an image to the problem of finding a single translation minimizing the Hausdorff distance between two sets of points in a four-

dimensional space. The implementation of the proposed algorithm can be naturally extended to higher dimensional spaces to

efficiently find correspondences between n-dimensional patterns. The method performance and sensitivity to segmentation problems

are quantitatively characterized using an experimental protocol with simulated data. It is shown that the algorithm performs well, is

robust to occlusion and outliers, and that it degrades nicely as the segmentation problems increase. Experiments with real images are

also presented.

Index TermsÐHausdorff distance, line-feature-based recognition, multidimensional distance transform.

æ

1 INTRODUCTION

THE Hausdorff distance measures the distances between
two sets of points. Thus, it can be used to measure the

similarity between two patterns of points when they are
superimposed on one another. A correlational method
using the Hausdorff distance to determine if there is any
model pattern in a given image was proposed by
Huttenlocher et al. [8], [7], and extended by Rucklidge
[14], [16]. This method can be used in a wide range of
applications, such as real scene recognition, tracking [14],
engineering drawing understanding, and aerial image
analysis [19].

Two important properties of this approach are 1) the use
of the Hausdorff distance makes it robust to data
uncertainty and the presence of outliers and 2) implementa-
tions of the algorithm using point features (edge pixels or
edgels) have been developed, some of them exploiting
specialized computer graphics hardware [8]. While this
approach works well and it is computationally efficient in
the presence of model translation in the image, it is
significantly time consuming when the model has also
been rotated and scaled [14].

In this paper, a line-feature-based four-dimensional
recognition algorithm that overcomes the above problem
is proposed. The main idea of the new approach is to reduce
the problem of finding translation, rotation, and scaling
transformations in the (two-dimensional) image domain to
the problem of finding a translation transformation in a
four-dimensional space. This is accomplished by using line
segments as features represented in a four-dimensional
space defined as follows. Each model and image segment is

associated the coordinates of its mid-point �x; y�, the

logarithm of its length log l, and its orientation �, and is

represented as a point in the �x; y; log l; �� space. Then,

translations in the x; y directions, rotation, and scaling in the

two dimensional image domain correspond to translations

in the x; y; �, and log l directions in the new four-dimen-

sional domain, respectively.
In [18], we presented a matching algorithm using this

approach that found a suboptimal solution by decomposing

the problem of finding the four-dimensional translation into

the problem of finding two two-dimensional translations,

one corresponding to the rotation and scaling, the other

corresponding to the translation in the image. In this paper,

we present a new algorithm that finds the optimal solution,

where the translation, rotation, and scaling between the

model and the image are all simultaneously determined. As

a result, the new algorithm overcomes many of the false

alarms occurring with our previous solution.
We will first review the definition of the Hausdorff

distance between two point sets and briefly summarize the

algorithm proposed by Huttenlocher et al. in [8]. Next, we

describe the new approach and how to find the translation

minimizing a four-dimensional Hausdorff distance effi-

ciently. It is shown that the running time of the proposed

algorithm grows linearly with the dimension of the problem

and that its memory requirements are significantly reduced

by exploiting the data sparsity. Thus, the algorithm can be

easily adapted to perform efficient pattern matching in

higher dimensions [4]. Following that, we present an

extensive system evaluation protocol using simulated data

to characterize the performance of the algorithm in the

presence of noise and segmentation problems. Finally, we

present the test results with real images.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999 901

. X. Yi is with ENSCO Inc., Springfield, VA 22151.

. O. Camps is with theDepartment of Computer Science and Engineering,
The Pennsylvania State Unversity, University Park, PA 16802.
E-mail: camps@whale.ee.psu.edu.

Manuscript received 16 Dec. 1998; revised 9 Mar. 1999.
Recommended for acceptance by P. Flynn.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 107755.

0162-8828/99/$10.00 ß 1999 IEEE

2 THE HAUSDORFF DISTANCE BETWEEN TWO

POINT SETS

Given two point sets A and B, the Hausdorff distance

between A and B is defined as

H�A;B� � max�h�A;B�; h�B;A��; �1�
where h�A;B� � maxa2A minb2B kaÿ bk, and k:k denotes

some norm on the points of A and B. The functions

h�A;B� and h�B;A� are called the directed Hausdorff

distances from A to B and B to A, respectively.
Outliers can be handled by generalizing the directed

distances h�B;A� and h�B;A� to the partial directed

distances hK�B;A� and hL�A;B� [8]:

hK�B;A� � Kth
b2B min

a2A
kaÿ bk �2�

with hL�B;A� defined similarly. The partial bidirectional

Hausdorff distance is then defined as

HLK�A; t�B�� � max�hL�A; t�B��; hK�t�B�; A��; �3�
where t�:� denotes a transformation of a set. The partial

distance measures the difference between a portion of the

model and the image and, thus, it is more robust to

occlusion and outliers.

Dubuisson and Jain [6] have studied 24 different
variations of this distance, including the one given above,
and they have compared them in the presence of noise.
Although their results showed that a modified Hausdorff
distance (MHD) using the average distance between the
points of one set to the other set gives the best result for
object matching, we have chosen to use the partial
Hausdorff distance defined above, which performs closely
to the MHD, but requires substantially less memory with
our algorithm.

If a transformation t�:� is applied to the model point set,
we are interested in the Hausdorff distance as a function of
the transformation of the set B, or

d�t� � HLK�A; t�B��: �4�
Hence, to recognize a model-like image, we can apply
different transformations to B: If d�t� is less than a certain
threshold, a match between the model and image can be
hypothesized.

If A is a set of image points and B is a set of model
points, the matching process of finding d�t� � HLK�A; t�B��
is called forward matching. If a certain Hausdorff distance
is set as a threshold to this process, a fraction of model
points satisfying this threshold for a transformation t�:�may
be found. This fraction f�t� is called the forward matching
fraction. On the other hand, if A is translated instead of B,

902 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

Fig. 1 Illustration of transforming the image and model to the �log l; �� domain.

this is called the reverse matching process. Accordingly,

there are a reverse Hausdorff distance threshold and a

reverse matching fraction g�t�.

3 POINT FEATURE-BASED MATCHING ALGORITHM

Huttenlocher et al. [8] developed an algorithm to search for

the transformation t�:� that minimizes the Hausdorff

distance between two set of 2D points, A � fa1; . . . ; apg

and B � fb1; . . . ; bqg.
The main idea behind their algorithm is summarized in

the following steps:

1. Compute the distance transformÐi.e., the distance
for any point �x; y� to the nearest point in a set of
source pointsÐfor the sets A and B, using a two pass
algorithm like the one in [1]. Let D�x; y� denote the
distance transform of A and D0�x; y� the distance
transform of B. That is, D�x; y� and D0�x; y� specify
the distance between the pixel �x; y� and the nearest
points in A and B, respectively.

2. Compute the pointwise maximum of all the trans-
lated distance transform arrays to determine the
Hausdorff distance as a function of translation:

F �x; y� � max
n

max
a2A

D�ax ÿ x; ay ÿ y�;

max
b2B

D0�bx � x; by � y�
o
;

where �ax; ay� and �bx; by� are the 2D coordinates of
a 2 A and b 2 B.

3. Finally, find the translation that minimizes the
function F �x; y�.

This algorithm also uses several pruning techniquesÐrul-
ing out circles, early scan termination, and skipping
forwardÐto avoid computing the Hausdorff distance for
translations that cannot be a minimum, resulting in
considerable time speed ups. The resulting algorithm is
very efficient in the case that the transformation t�:� is a
pure translation. However, if t�:� includes rotation and/or
scaling, the algorithm requires computing the Hausdorff
distance as a function of all possible transformations and,
hence, the computational time increases dramatically [14],
[15]. In this paper, we present a new algorithm, inspired by
the one outlined above, that uses line features in a four-
dimensional space to overcome this problem.

4 PROPOSED APPROACH

In this section, we introduce the use of line features to
define a four-dimensional search space, the basic idea of our
approach.

It can be observed that, when the model is rotated, the
orientation angles of the line segments in the image are
increased or decreased by a constant with respect to the

YI AND CAMPS: LINE-BASED RECOGNITION USING A MULTIDIMENSIONAL HAUSDORFF DISTANCE 903

Fig. 2. Illustration of the modified version of transforming the image and model to the new domain.

orientation of the corresponding model segments, but
remain unaffected when the model is translated or scaled.
On the other hand, the lengths of the image segments are
multiplied by a constant factor when the model is scaled,
but are invariant under translation and rotation. Next, we
show how these properties can be used to find rotation and
scaling transformations efficiently.

Model and image line segments can be represented by
four-dimensional points with coordinates equal to their
mid-point coordinates, the logarithm of their length, and
their orientation. Note that, although the choice of using the
logarithm of the length over using simply the length of the
segment may be surprising at first glance, it is rather natural
when the previous observations are taken into account.

Let sm be a model segment with coordinates
�xm; ym; log lm; �m�. Consider an ideal image si of sm
obtained by rotating sm by an angle �Rot and scaling it by
a factor S, and the projections of the four dimensional
points corresponding to sm and si onto the plane �log l; ��.
The logarithm of the length and the orientation of the image
segment si are given by

log li � logS � log lm

�i � �m � �Rot:
Thus, it is seen that rotating and scaling a model segment

is equivalent to translating the corresponding four-dimen-
sional point along the directions log l and � by an amount
logS and �Rot, respectively.

To simply illustrate the above idea, consider the
following example. Suppose, we have two polygons, where
one is a rotated and scaled version of the other, as shown on
the upper half of Fig. 1. Matching these polygons is
equivalent to find the rotation and scaling transformations
that transforms one into the other. The projections into the
�log l; �� plane of the 4D representations of the given
polygons are shown in the lower half of Fig. 1. These
projections are the vertices of two polygons of identical
shape and dimensions, differing only in a translation that
corresponds precisely to the rotation and scaling factors in
the original domain.

Without any further modifications, the image and model
in the new domain will have a range in the � axis from 0o to
180o. However, applying the translational Hausdorff dis-

tance to the projections of the transformed segments will

not always result in the correct rotation angle �Rot. For
example, if the model is rotated 110o, the model segment

AD that has an orientation of 90o will have a corresponding

image segment with an orientation of 20o and the new

polygons in the plane �log l; �� will not have the same shape.

This problem can be easily solved by extending the image

orientation range from 0o to 360o. The image pattern from

180o to 360o is an exact copy of the pattern from 0o to 180o.

There is no need to modify the model pattern. Fig. 2 shows

the modified approach. As we can see, in this modified

version, the image pattern will be identical to the model

pattern except for some spurious points in the lower and

upper range of � and, therefore, the image scale and rotation

transformations can be found as a translation in the new
�log lm; �m� domain. The remaining image translation trans-

formation can be found as a translation in the new �xm; ym�
domain, between the coordinates of the image midpoints

and the rotated and scaled coordinates of the model

midpoints.
However, before this approach can be used, there are

two important issues that need to be addressed:

1. In the transformed domain, log l and � are measured
using different units. While applying Hausdorff
matching, distances are computed. Thus, compatible
measurements in both axes are needed. Adding a
scaling factor to one of the axes is one way of solving
this problem. In our approach, we use a Ks factor for
the log l axis. This factor Ks is also related to the
resolution of the �log l; �� plane in a discrete
implementation. If a line has length uncertainty �,
it is desirable for this line to fall into the same ªbinº
that the ideal line without uncertainty would. Thus,
Ks must satisfy:

jKs � log�l� l � �� ÿKs � log�l�j
� jKs � log�1� ��j < 1

2. If a line is broken into two or more pieces, the
Hausdorff distance using the log l and � parameters
will be incorrect. This is because the original line
splits into lines with smaller lengths that have no

904 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

Fig. 3. Representation of distance transform of sparse data. (a) Distance transform for four sparse points, marked in black. (b) Distance transform for
only those points with a distance transform less or equal to 8. (c) The distance transform for all other points is assumed to be infinity.

relation to the original length. Since this problem is
not easy to fix, it is important to characterize the
sensitivity of the algorithm to segmentation pro-
blems to evaluate its merit. This is done as part of
our experimental protocol in Section 6.

5 LINE FEATURE-BASED MATCHING ALGORITHMS

Once the model and image line segments are represented in
the new 4D domain, the problem of finding the translation,
rotation and scaling transformations that best align the
model and image segments reduces to the problem of
finding the best translation between the corresponding 4D
points.

5.1 The 2D-2D Matching Algorithm

In [18], an algorithm was presented that attempted to solve
this problem by decomposing it into the problem of finding
two optimal 2D translations, one on the �log l; �� plane, the
other on the image plane. Thus, this algorithm is referred to
as the 2D-2D matching algorithm.

The first 2D translation provided the scaling factor and
the rotation angle. Once these transformations were found,
the model in the original image domain was rotated and
scaled using these parameters. Then, the best translation
between the updated model and the image was found by
running the matching algorithm once more, this time on the
image plane.

The main advantage of this approach is that the required
2D translations can be efficiently found by simply using
twice the 2D point-based matching algorithm outlined in
Section 3.

5.2 The 4D Matching Algorithm

There are some disadvantages with the 2D-2D matching
algorithm outlined above. First, this procedure allows
errors in the first matching step to propagate to the second
matching step. For example, small errors in the rotation
angle or the scaling factor may result in a distorted
transformed model that will not be matched in the second
step. Furthermore, if the rotation angle is between 180o and
360o, say 180o � �, the first matching step will also find � as
the rotation angle, since the length and orientation of the
lines will match even if the image is rotated 180o. Thus, this
first matching will introduce false alarms that may or may
not be eliminated by the second step and that will increase
the running time of the algorithm in either case. Finally,
finding the optimal translations in the two 2D domains does
not guarantee that the obtained solution is optimal in the
original 4D domain.

All of the above problems arise from the loss of some of
the inherent geometrical constraints of the problem, caused
by the artificial separation of the 4D data into two sets of 2D
data. Hence, it is desirable to perform the search for the
translation, rotation and scaling transformations simulta-
neously.

In principle, the algorithm summarized in Section 3
could be generalized to run in four dimensions in a straight
forward manner. In practice, however, this is not possible
due to the following considerations:

Memory requirements. The large size of the transformed

4D domains makes, impractical to use arrays to store the

patterns. Consider, for example, an image of size 480� 512.

Then, the corresponding 4D space should be 480� 512 for

the sliced x and y plane. The range for the rotation angle

should be 180 for the model and 360 for the image,

considering increments of one degree. The range for the

logarithm of the length of the segments varies depending on

the factor Ks. Since the longest possible line in the image is

the diagonal, this range is, for a value of Ks � 50, equal to

142. Thus, the corresponding 4D spaces are 480� 512�
180� 142 for the model and 480� 512� 360� 142 for the

image. Assuming that each point can be stored using one

bit, the memory space required to store them in 4D arrays is

785:2 Gbytes for the model pattern and 1; 570:4 Gbytes for

the image pattern, while the memory space required to

store their distance transforms is even larger.

Computation efficiency. Computing the distance transform

in four dimensions using mask based algorithms, such as

the one in [1], is significantly more expensive, in terms of

time and memory, than the two-dimensional case. Given

the size of the 4D space, this problem becomes particularly

critical.

YI AND CAMPS: LINE-BASED RECOGNITION USING A MULTIDIMENSIONAL HAUSDORFF DISTANCE 905

Fig. 4. Computation of the distance transform using the algorithm
proposed by Saito and Toriwaki [17]. The black pixels correspond to
foreground pixels. The image in the top shows the result of the first
transformation for the kth slice of a three dimensional image. The bottom
of the figure shows how to apply the second transformation to pixel
�6; 6; k�.

The solution to these issues is to exploit the sparseness of
the data and to use a distance transformation algorithm
whose run time grows linearly with the domain dimen-
sions, as discussed below.

5.2.1 Memory Management

As was illustrated above, it is not practical to use a 4D array
to store the patterns due to the dimensions of the
transformed domain. However, since we are dealing with
segments instead of points, the actual data is very sparse.
Thus, we propose storing only the data points and
sufficiently large neighborhoods around these points. All
other points in the space are considered too far from any
data point to be of any interest and, therefore, are assigned a
distance transform of infinity. This is illustrated in Fig. 3
where (a) shows a 2D slice of a distance transform with only
four data points (the points with zero distance transform
are marked in black), (b) shows the data points surrounded
by their close (distance transform less or equal to 8)
neighbors, and, finally, (c) shows that all the other points
(distance transform greater than 8) are assumed to have a
distance transform of infinity.

5.2.2 Computing the 4D Distance Transform

Obtaining the Hausdorff distance requires the computation
of the distance tranform (DT) for the model and the image
patterns. There are several approaches to compute the 2D
distance transform [2], [5], [3], [10], [9], [12]. The commonly
used chamfer methods [2], [5], [10] simply template a mask
over the image. The parallel version of this method
performs the calculations iteratively to update the result.
The serial version of the algorithm requires two passes of
the masks (left to right, then top to bottom).

On the other hand, multidimensional distance trans-
forms (3D and above) are more complicated, due to

memory and speed requirements. Borgefors presented
algorithms for 3D and 4D distance transforms in [1]. The
algorithms take different number of masks depending on
the dimensions, and perform the serial computations in
forward and reverse template fashion along each axis. Two
masks consisting of five planes are needed for the four-
dimensional n-neighbor and chamfer cases. The forward
mask has to move in the increasing direction of each axis,
while the backward mask does it in the reverse way.
Therefore, there are a total of eight times of updated
computations for the final DT of each rexel (4D point).
Other algorithms are the one by Mullikin [11] extending the
Euclidean DT of Danielsson's type [5] to the three-
dimensional space with improved accuracy of distance
values, and the one presented by Ragnemalm [13] which
suggests a suboptimal scan algorithm for arbitrary-dimen-
sional pictures.

All the above algorithms use different masks or weighted
matrices in local operations to propagate distance values.
Therefore, they are not error-free. Furthermore, as the
dimension of the space grows higher, they require a higher
number of masks and scannings.

Saito and Toriwaki [17] proposed a method that obtains
the exact Euclidean distance transform and the Voronoi
diagram based on the exact Euclidean metric for an n-
dimensional picture. This algorithm requires only an n-
dimensional array to store input output pictures and a
single one-dimensional array for a work area. It does not
use any mask, it is easy to implement regardless of the
dimension, and it is fast. Thus, this algorithm has been
selected for the proposed approach. The basic steps of the
algorithm are outlined below for the three dimensional
case, without any loss of generality.

C o n s i d e r t h e i n p u t i m a g e F � ffijkg w i t h
�1 � i � L; 1 � j �M; 1 � k � N�. Then, the 3D distance

906 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

Fig. 5. Computation of the distance transform for sparse data.

transform is obtained by applying the following three
transformations:

Transform 1. Transformation in the i-axis direction. Derive
from F a new image G � fgijkg:

gijk � min
x
�iÿ x�2; fxjk � 0; 1 � x � L
n o

: �5�

Transform 2. Transformation in the j-axis direction. Derive
from the above image G a new image H � fhijkg:

hijk � min
y

giyk � �jÿ k�2; 1 � y �M
n o

: �6�

Transform 3. Transformation in the k-axis direction. Obtain
an image S � fsijkg from the above image H:

sijk � min
z

hijz � �kÿ z�2; 1 � z � N
n o

: �7�

In [17], it is shown that the obtained image S � fsijkg is
the squared Euclidean DT of the image F � ffijkg. In other
words, a voxel �i; j; k� in the image S has a value equal to
the square of the Euclidean distance from the voxel �i; j; k�
to the closest data voxel in the image F .

Fig. 4 illustrates how the algorithm works. The top of the
figure shows the result of the first transformation for the kth
slice of a three-dimensional image with foreground pixels
marked in black (with distance 0). The bottom of the figure
shows the computations necessary to carry out the second
transformation for pixel �6; 6; k�.

Computing the 4D Distance Transform for Sparse Data.

Saito and Toriwaki's algorithm [17] can be easily adapted to
compute the distance transform only at the data points and
their neighbors for the case when the data is sparse. The
only required modification is that, at each transformation,
only the points considered at the previous transformation
and their neighbors in the direction of the current
transformation should be considered, starting with the data
points in the first step. The new points, as well as all other
points, are assumed to have an infinity distance transform.

The procedure is illustrated in Fig. 5 for the image shown in

the top left corner with four isolated data points marked in

black. The first step adds neighbors in the horizontal

direction; the second step computes the first distance

transformation at these points; the third step adds the

vertical neighbors of all the points considered in the second

step; finally, the last step shows the result of applying the

second distance transformation to these points. The number

of neighbors added at each side must be large enough such

that all the points with distance transform less than the

selected threshold are considered. The modified algorithm

can be efficiently implemented by sorting the set of data

points and their neighbors before each transformation. For

example, before the transformation for the � axis is

performed, the points must be sorted by xm; ym; log l, and

�, such that all points with same values of xm; ym and log l

are grouped together. These steps are summarized in Fig. 6.

5.2.3 Computing the Hausdorff Distance

The 4D transform obtained using the algorithm described in

the previous section is used to compute the Hausdorff

distance as a function of translation. Suppose I and M are

the sets of 4D line feature points and their surrounding

points in the image and the model, respectively. For a given

translation t � �x; y; l; �� and fractions f1 and f2 of the image

and model line feature points to be considered, respectively,

let K be the f1 fraction of the total image feature points, and

L be the f2 fraction of the total model feature points. Then,

the directed generalized partial distances for the model and

the image are given by

YI AND CAMPS: LINE-BASED RECOGNITION USING A MULTIDIMENSIONAL HAUSDORFF DISTANCE 907

Fig. 6. Implementation of the distance transformation for sparse data. The list of points is sorted and expanded with neighbors in one direction before
each transformation.

908 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

Fig. 7. Determination of factor Ks. Probability of correctly detecting using the 4D matching algorithm (a) rotation angle, (b) scaling factor, and (c)
translation. Probability of correctly detecting using the 2D-2D matching algorithm (d) rotation angle, (e) scaling factor, and (f) translation.

YI AND CAMPS: LINE-BASED RECOGNITION USING A MULTIDIMENSIONAL HAUSDORFF DISTANCE 909

Fig. 8. The simulation results from the 4D matching (a to h).

DM �x; y; l; �� � hK�t�M�; I�
� Kth

m2M
�

4DT �i�
k i 2 I ; � � m� x; y; l; �� �	

DI �x; y; l; �� � hL�I; t�M��
� Lthi2I

�
4DT �m�

k i 2 I ; � i � ÿx; y; l; ��	;
where 4DT �:� represents the four-dimensional distance
transform. Finally, the generalized partial Hausdorff dis-
tance is given by

D�x; y; l; �� � HLK�I; t�M��
� max DI �x; y; l; ��; DM �x; y; l; ��ÿ �

:

5.2.4 Searching Efficiently

The number of features required to describe the model and
the image using line-based features is significantly smaller
(by at least an order of magnitude) than the number of
features required when using point-based features such as
edgels. Thus, the time required to compare a transformation
of the model with the given image is significantly less when
the proposed 4D method is used than when point-based
methods such as [8], [16] are used. Further efficiency can be
attained by extending pruning techniques, such as ªruling
out circles,º ªskipping forwardº [8], and ªcell subdivisionº
[16], derived for the point-feature-based algorithm to be
used in four dimensions.

Ruling Out Circles. The slope of DM �x; y; l; �� cannot
exceed 1Ði.e., the function does not decrease faster than a
linear relationship along any direction. That is, if
DM �x1; y1; l1; �1� � d, then DM �x; y; l; �� cannot be less than
threshold � in a circle of radius dÿ � about �x1; y1; l1; �1�,
where d > � . Thus, it is possible to jump out of the circle of
radius dÿ � without loosing a possible translation candi-
date. On the other hand, DI �x; y; l; �� does not necessarily
hold the same property due to the fact that only a small
window around the model is being considered. The proof of
this property is a trivial generalization of the 2D case
proven in [8].

Skipping Forward. This technique follows the ruling out
circles claim. However, instead of jumping out of a circle,
the algorithm skips along one axis (one row). In our
algorithm, it is chosen as the �y direction.

Following the notation introduced in [8], let DM
�y be the

distance in the increasing y direction to the nearest location
where DM < � and 1 if there is no such location:

DM
�y�x; y; l; �� � min

�y�0;DM �x;y��y;l;����
�y :

and let DM
K �x; y; l; �� be given by

DM
K �x; y; l; �� � Kth

m2MD
M
�y�m� �x; y; l; ��� :

Then, if DM
K �x; y; l; �� is 0, K of the values of DM

�y probed

must have been 0, and K of the probed values of DM would

be less or equal than � . Also, if DM
K �x; y; l; �� � �y > 0, then

DM �x; y; l; �� > � and DM �x; y� 1; l; ��; . . . ; DM �x; y��yÿ
1; l; �� > � [8].

Cell Subdivision. The pruning technique of ªcell

subdivisionº recently introduced in [16] can also be

extended to the proposed 4D approach. A ªcellº of

translations t � �tx; ty; tl; t�� is defined by two translation

vectors, tl � �tlx; tly; tll; tl�� and th � �w;w; w;w� � tl, with w a

positive integer, such that tl � t � th, component-wise. The

box distance transform of the image I for a box of size w4 is

defined [16] as:

D0w4 �x; y; l; �� � min
0�x0;y0;l0;�0�w

DI �x� x0; y� y0; l� l0; �� �0�;

where any portions of the distance transform DI �x; y; l; ��
outside the boundary of the image array is treated as being

infinite.

Let m be a point and � � tl�m�; t�m� and th�m� its

translations using the vectors tl; t, and th, respectively.

The value D0w4 ��� is the minimum value that could be

achieved by DI �t�m��, independent of the vector t, as long as

it lies in the cell defined by tl and th. Thus, the box distance

transform can be used to rule out cells that do not have a

large enough fraction of values of D0w4 below the threshold

� . On the other hand, cells with a large enough fraction of

low values of D0w4 , can be subdivided into smaller ones to

refine the translation. It must be noted that this technique,

as the previous two, only eliminates transformations that

are not optimal.
The price paid to use this technique is the table D0w4 .

While this table can be computed in O�log�w�� passes

through the distance transform DI , it requires significantly

more memory than the original DI table, even for moderate

values of w. This can be easily seen by considering an

isolated data point in the image 4D domain and its

neighbors with finite distance transform. Let d4 be the

number of points of this neighborhood (typically, d � 3).

Then, the corresponding neighborhood in the box distance

transform D0w4 , has �d� 2wÿ 2�4 points. In other words, the

bigger the size of the cells, the less sparse the box distance

transform is. Clearly, this limits the practical size of the cells

that can be used with this technique.

6 EXPERIMENTS aND PERFORMANCE

CHARACTERIZATION

In this section, the method performance and sensitivity to

segmentation problems are characterized using experimen-

tal protocol with simulated data designed to model clutter

as well as broken and noisy lines. The algorithm is also

tested with real images.

6.1 Experimental Protocol

The experimental protocol consists of: 1) ideal data

generation; 2) noise models to generate perturbed data

with annotated ground truth; and 3) tests for performance

characterization. While this protocol was designed with the

proposed matching algorithm in mind, it can be easily

adapted to characterize any algorithm requiring image

segments.

910 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

Fig. 9. The simulation results from the 2D matching algorithm (a to h).

6.1.1 Simulated Data

Model Generation: A set of lines (30) with random
orientations, lengths, and locations are generated for the
model such that the coordinates of their mid-points are
uniformly distributed within a 512� 512 image, their
orientations are uniformly distributed between 0� and
180�, and their lengths are normally distributed with mean
length of 70 pixels and a variance of 45 pixels.

Image Generation: Two types of images are generated:
images containing a model and clutter and images contain-
ing clutter only. The images with a model are generated by
rotating, scaling, and translating the model segments to a
known location. There is no restriction in the selection of the
rotation angle and the scaling factor. In our experiments, we
used a rotation angle of 30� and a scaling factor of 0:8.
Different types of noise perturbations are then added to the
resulting set in order to generate the image line segments.
The clutter-only images are obtained by generating random
line segments uniformly distributed as described below.

6.1.2 Noise Perturbations

The following noise perturbations are used to simulate
segmentation problems:

Clutter: A fixed percentage (100 percent) of random line
segments are added to the image as outliers. Lengths of
these lines are uniformly distributed between 0 and 128.
Orientations are also distributed uniformly between 0� and
180�. Locations of the mid-points are uniformly distributed
in the image except for the area where the model is
expected to lie. A fixed smaller percentage (2 percent) of
lines are uniformly added to that area later.

Length Uncertainty: A Rayleigh distribution with para-
meter �l is used to model the uncertainty in the length of the
lines.

Broken Lines: The number of points where a line is broken
is modeled using a Poisson distribution with parameter pb.
The points where the line is to be broken are then obtained
using a uniform distribution along its length. The length of
the gap to be created is obtained using a Rayleigh
distribution.

Orientation Uncertainty: The orientation of the line is
perturbed using a Gaussian distribution with zero mean
and standard deviation of �t=l, where l is the length of the
line. This is done since longer lines are expected to have less
angular perturbation than shorter lines.

6.1.3 Determination of the Factor Ks

The factor Ks should be selected such that the probabilities
of correctly detecting the rotation angle, the scaling factor,
and the translation are maximized. These probabilities are
obtained for �t � �l � 0:5 and varying Ks.

6.1.4 Performance Characterization

The performance of the 4D and 2D-2D matching algorithms
is characterized in terms of the accuracy of the computed
translation, rotation, and scaling transformations. Let
f�x1; y1; �1; L1�; f�x2; y2; �2; L2� . . . f�xn; yn; �n; Ln� b e t h e
matching fractions from the forward or reverse Hausdorff
matching results when noise is added to the image, where

x1; x2; . . . ; xn and y1; y2; . . . ; yn are the corresponding trans-
lations in the x and y directions, �1; �2; . . . ; �n are the rotation
angles, and L1; L2; . . . ; Ln are the logarithms of the scale
factors S times Ks. The transformation with the maximum
fraction is the one selected:

�x̂; ŷ; �̂; L̂� � max
i�1;n

f�xi; yi; �i; Li�

The following observations are made:

1. The selected forward matching fraction is averaged
for 20 simulations and plotted against the rotation
perturbation �� and the length perturbation �l.

2. The probability of the selected forward matching
fraction being greater than a threshold (0.4, 0.6, and
0.8) is found and it is plotted against the noise
parameters �t and �l.

3. A plot is made for the probability of successful
detection of the rotation angle against �t. A
rotational angle is said to be successfully detected
if the difference between the estimated angle �̂ and
the ground truth �true is less than a threshold (one,
two, and three degrees).

4. A plot is made for the probability of successful
detection of the true translation against
�l. The detection is successful when
jf�x̂; ŷ� ÿ f�xtrue; ytrue�j < threshold, where xtrue and
ytrue are the ground truth translation coordinates and
the threshold was taken as 1.5, 2, and 3.

5. A plot is obtained for the probability of successful
detection of the scaling against �l. A scaling factor is
said to be successfully detected if the difference
between the estimated scaling and the ground truth
is less than a threshold (0.1, 0.15, and 0.2).

6. The probability of a false match is also studied by
matching models against clutter, only images. The
ratio between the number of lines in the model and
the clutter image is taken as 1, 2, and 3 for this
experiment. A false match is said to happen if the
matching fraction is found to be greater than a given
threshold. The results of the experiments are
averaged for 20 simulations and plotted as a
function of the threshold.

All of the above experiments are conducted for the 2D-
2D and the 4D matching algorithms in order to compare
their performance.

6.2 Results with Simulated Data

6.2.1 Determination of Factor Ks

The plots of the probabilities of correctly detecting the
rotation, scaling, and translation transformations as Ks are
varied are shown in Figs. 7a, 7b, and 7c for the 4D matching
algorithm and in Figs. 7d, 7e, and 7f for the 2D-2D matching
algorithm. It is seen that there is no single Ks value that can
maximize all three probabilities. As a compromise, we
chose Ks � 60 for the rest of the experiments.

6.2.2 Performance Characterization

All the plots resulting from conducting the experiments
described in Section 6.1.4 are shown in Fig. 8 and Fig. 9 for
the 4D and 2D-2D matching algorithms, respectively. It is

912 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

YI AND CAMPS: LINE-BASED RECOGNITION USING A MULTIDIMENSIONAL HAUSDORFF DISTANCE 913

Fig. 10. Examples using real images. The running time for the first example was under 550 seconds on a SUN SPARC 5 and for the last three
examples was under 400 seconds on a SUN Ultra 1.

observed from the results for the 4D matching algorithm

that:

1. The matching fraction averaged for the 20 simula-
tions plotted against the rotation perturbation and
the length perturbation �l in Figs. 8a and 8b
decreases as the noise deviations �l and �t increase.

2. The probability of the matching fraction being
greater than thresholds of 0.4, 0.6, and 0.8 plotted
against the noise parameters �t and �l are shown in
Figs. 8c and 8d. It is seen that the probability
decreases as the noise deviations �t and �l increase.
However, the probability decreases faster with
respect to �t. This is expected because if a line is
deviated from its ideal orientation, most of the line
points deviate away from the ideal positions.
However, if there is some uncertainty for the line
length, a large number of points may still stay at
their ideal positions.

3. Figs. 8e and 8f show the relation between the
probability of the angle � being within a threshold
of the true rotation angle against �t and the relation
between the probability of getting the scaling within
the threshold of the true scaling value and �l,
respectively. It is seen that the probability of
obtaining the true scaling is very robust to the noise
(�t).

4. Fig. 8g shows the probability of the translation being
within threshold of the true translation against �l. It
is seen that the probability of computed translation
within the true translation is also very robust with
respect to �l.

5. Finally, Fig. 8h shows the plots for the false matches
when the ratio between the number of segments in
the image and the model were one, two, and three
(for images without a model).

Comparing the above results to the ones obtained when
using the 2Dÿ 2D matching algorithm shown in Figs. 9a,
9b, 9c, 9d, 9e, 9f, 9g, and 9h, it can be observed that:

1. The matching fraction in the 4D case is more robust
to �t than in the 2D case; however, there is no
significant improvement with respect to �l.

2. All the probabilities of obtaining the correct transla-
tion, rotation and scaling in the 4D case are much
more robust than in the 2D case.

3. Finally, the false alarms in the 4D case decrease
much faster to the increase of the matching threshold
than in the 2D case.

6.3 Results with Real Data

The algorithm was also tested using real images taken in

our laboratory. Rotation and translation were modeled by

moving the camera with a robot arm, and scaling was

modeled by zooming the camera. Fig. 10 shows four

examples, where the left column corresponds to the models,

the center column to the given images, and the last column

to the alignment results, respectively.
The first example is an image with relative little clutter

and some occlusion. The second example does not present

occlusion, but it has heavy background clutter with many

distracting linear features. The third and fourth examples
have similar background to the previous one, but the model
is moderately occluded and severely occluded, respectively.
The obtained model alignments are in close agreement with
the given images, except for the last one. The misalignment
in the fourth case happened because many of the lines
corresponding to the model in the given image were broken
due to severe occlusion. The first image is 512� 480 and run
in less than 550 seconds on a SUN SPARC 5 station, while
the remaining three are 256� 256 and run in less than 400
seconds on a SUN Ultra 1.1 The above execution times
where attained without using ªcell subdivisionº and it is
expected that if it were used, the running time would be
less. Finally, it is important to notice that, since we are
actually dealing with sparse line features and we are using
a sparse data structure in our implementation, the running
time is rather a function of the number of lines than of the
image size.

7 CONCLUSIONS

In this paper, a method for model-based recognition using
line features and a four-dimensional Hausdorff distance
was presented. The proposed method separates rotation,
scaling, and translation into three parts and associates them
with the line's orientation, length, and middle points,
respectively. The original image is transformed into a 4D
new domain where the rotation and scaling transformations
in the original domain are mapped into a translation in the
new domain. As a result, the rotation, scaling, and
translational relationship between the image and model
can be obtained simultaneously using the four-dimensional
Hausdorff distance. Computational efficiency is achieved
by exploiting the sparseness of the proposed representation.
Furthermore, this method greatly improves the false alarm
rate obtained in our previously developed 2D-2D matching
algorithm.

The performance of the method and its sensitivity to
segmentation problems were characterized by using a
rigorous experimental protocol modeling the most common
types of errors in segment extraction. The algorithm
performs well, degrading smoothly as the perturbations
increase. The comparisons between the 4D matching
algorithm and previous 2D matching algorithm show that
4D matching algorithm is more robust to the noise and it
has smaller false alarm rate. The method was also tested on
real images with and without partial occlusion and in the
presence of clutter with runing time significantly less than
previous methods.

APPENDIX

Algorithms

BEGIN: Computation of Distance Transform
Read in all the image and model line segments,
generate line feature points;

914 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

1. As a comparison, times reported in [15] are between 2,379 and 19,780
seconds, and times reported in [16] are 3,166 and 14,726 seconds for images
of similar complexity as the last three examples shown here.

Part 1: Add the surrounding points and calcu-
late DT

For each axis, do:
Sort the points;
Add surrounding points in the
corresponding direction;
Calculate partial distance transformations;
Obtain the final DT for four-dimensional
feature points:

End do
Part 2: Calculate D�y

For each of the 4D points, do:
Find the set R of points with the same
x; l; �
Within R, do:

Forward D�y calculation;
Backward D�y calculation;

End do
End do

Part 3: Hash table for image points/surrounding
points

Allocate the memory;
For each point, do

Hash address = hash_function(x; l; �);
Add this point to the link list of this
address;

End do
END: Computation of Distance Transform.

BEGIN: Model and Image Matching
Part 1: Find translations for the forward
matching

For scaling from Smin to Smax, do:
For � from 0 to 180, do:

Rotate_Scale_Model;
For translation x from 0 to xmax, do:

Set translation y � 0;
Set minimun Dymin to a large value,
Dymin � ymax;
While translation y < ymax, do:

For each point in the image/
surrounding list, do:

Match_model_pts to the
image/surrouding pts, get Dy;
If Dy > 0, Then
Dymin � min�Dy;Dymin�;
If no match or Dy > th1, Then
increment no match COUNT;
If COUNT > th2, Then break
and go to next y;
Else go to the next element;

End do
If COUNT < th2, Then write to
the translation list;
Increment y � y�Dymin;

End while
End do

End do
End do

Part 2: the backward matching
For each translation �x; y; l; t� obtained above

compute DI �x; y; l; t�
obtain D�x; y; l; t� defined in the text

End do
END: Model and Image Matching

Details for Match_Model_pts function:
Let y be the current translation;
Input model point: Key;
Hash Key from the image/surrounding
point lists;
Search through the list until x, l, and � are
the same;
If cannot find a match, Then:
Dy � yMax ÿ �Key! y� y�;
Return Dy and no match signal;

Else
Starting from the list, find how many pts
have the same x, l, and �, say it is Kr

Let ym � Key! y� y;
For i � 0 to Kr, do:

If ym < y�list element�, Then:
Dy � y�list element� ÿ ym;
Return no match signal;

End if
If ym �� y�list element�, Then:
Dy � D�y�list element�;
Return match signal;
Else, increament i;

End do

ACKNOWLEDGMENTS

The authors would like to thank Dr. Huttenlocher for

providing the software for point-based Hausdorff distance

matching, Tarak Gandhi for his help in implementing some

of the source code and designing the experimental protocol,

and Dr. Sznaier for many fruitful discussions. The authors

would also like to thank the anonymous reviewers for

suggesting the use of cell subdivision to speed up the

algorithm and for making comments on how to make the

paper more clear.

REFERENCES

[1] G. Borgefors, ªDistance Transformations in Arbitrary Dimen-
sions,º Computer Vision Graphics and Image Processing: Image
Understanding, vol. 27, pp. 321±345, 1984.

[2] G. Borgefors, ªA New Distance Transformation Approximating
the Euclidean Distance,º Proc. Conf. Eighth Information Center for
Physics Research, pp. 336±339, 1986.

[3] G. Borgefors, ªHierarchical Chamfer Matching: A Parametric
Edge Matching Algorithmº Int'l J. Computer Vision, vol. 10, no. 6,
pp. 849±865, 1988.

[4] A. Califano, R. Mohan, ªMultidimensional Indexing for Recogniz-
ing Visual Shapes,º IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 16, no. 4, pp. 373±392, Apr. 1994.

YI AND CAMPS: LINE-BASED RECOGNITION USING A MULTIDIMENSIONAL HAUSDORFF DISTANCE 915

[5] P.E. Danielsson, ªEuclidean Distance Mapping,º Computer Gra-
phics Image Processing, vol. 14, pp. 227±248, 1980.

[6] M. Dubuisson and A.K. Jain, ªA Modified Hausdorff Distance for
Object Matching,º Proc. Int'l Conf. Pattern Recognition, pp. 566±568,
1994.

[7] D.P. Huttenlocher, G. Klanderman, and W. Rucklidge, ªCompar-
ing Images Using the Hausdorff Distance under Translation,º
Technical Report 1211, Dept. of Computer Science, Cornell Univ.,
1991.

[8] D.P. Huttenlocher, G. Klanderman, and W. Rucklidge, ªCompar-
ing Images Using the Hausdorff Distance,º IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 15, no. 9, pp. 850±863, Sept.
1993.

[9] A.V. Karzanov, ªQuick Algorithm for Determining the
Distance from the Points of the Given Subset of an Integer
Lattice to the Pionts of its Complement,º Cybernetics and
System Analysis, pp. 177±181, Apr.±May, 1992.

[10] F. Leymarie and M.D. Levine, ªFast Raster Scan Distance
Propogation on the Discrete Rectangular Lattice,º Computer Vision
Graphics and Image Processing: CVGIP: Image Understanding, vol. 55,
pp. 84±94, 1992.

[11] J.C. Mullikin, ªThe Vector Distance Transform in Two and
Three Dimensions,º Computer Vision Graphics and Image
Processing, vol. 27, pp. 526±535, 1992.

[12] D.W. Paglieroni, ªDistance Transform: Properties and Machine
Vision Applications,º Computer Vision Graphics and Image Proces-
sing, vol. 54, pp. 56±74, 1990.

[13] I. Ragnemalm, ªThe Euclidean Distance Transform in Arbitrary
Dimensions,º Pattern Recognition Letters, vol. 14, pp. 883±888, 1993.

[14] W. Rucklidge, ªEfficient Computation of the Minimum Hausdorff
Distance for Visual Recognition, Technical Report, Dept. of
Computer Science, Cornell Univ., 1995.

[15] W. Rucklidge, ªLocating Objects Using the Hausdorff Distance,º
Proc. IEEE Int'l Conf. Computer Vision, pp. 457±464, 1995.

[16] W. Rucklidge, ªEfficiently Locating Objects Using the Hausdorff
Distance,º Int'l J. Computer Vision, vol. 24, no. 3, pp. 251±270, 1997.

[17] T. Saito and J. Toriwaki, ªNew Algorithms for Euclidean Distance
Transformation of an n-Dimensional Digitized Picture with
Application,º Pattern Recognition, vol. 27, no. 11, pp. 1,551±1,565,
1994.

[18] X. Yi and O.I. Camps, ªLine Feature-Based Recognition Using
Hausdorff Distance,º Proc. Int'l Symp. Computer Vision, pp. 79±84,
Nov. 1995.

[19] J. You, E. Pissaloux, J.L. Hellec, and P. Bonnin, ªA Guided Image
Matching Approach Using Hausdorff Distance with Interesting
Points Detection,º Proc. Conf. First Image Processing, vol. 1, pp. 968±
972, 1994.

Xilin (Steven) Yi received the BSEE degree
from Beijing University in 1988, the MSEE
degree from Tsinghua University, China, in
1991, the MS degree in physics from Temple
University, Philadeplphia, Pennsylvania, in
1993, and the PhD in electrical engineering
from The Pennsylvania State University, Penn-
sylvania, in 1997. He joined the Intelligent
Machine Technology Division of ENSCO, Inc.
as a machine vision staff scientist in 1997. At

ENSCO, Inc. Dr. Yi has been responsible for many machine vision
project designs such as food quality control, lumber grading, postal mail
tray sorting, and railway air hose inspection. He is also a board member
of Web2Click, Inc., an online company that provides Internet web
design/service, web hosting, and community chat center. Dr. Yi has a
broad interest in science and engineering, especially in machine vision,
imaging processing, and internet renovation. Dr. Yi is a member of SPIE
and a member of the IEEE.

Octavia I. Camps received the BS degree in
computer science and the BS degree in electrical
engineering from the Universidad de la Repub-
lica (Uruguay) in 1981 and 1984, respectively,
and the MS and PhD degrees in electrical
engineering from the University of Washington,
Seattle, in 1987 and 1992, respectively. In 1992,
she joined the faculty at The Pennsylvania State
University, where she is currently an associate
professor in the Department of Electrical En-

gineering and the Department of Computer Science and Engineering,
and a co-director of the Center for Intelligent Information Processing
(CIIP). Dr. Camps was awarded the SWE Outstanding Female
Engineering Student Award in 1988, a GTE Fellowship Award in 1990,
and A United States NSF Research Initiation Award in 1993 for her work
on robust 3D object recognition. Her current research interests include
object recognition, active vision, reverse engineering systems, image
processing, and pattern recognition. Dr. Camps is a member of the IEEE
Computer, Robotics and Automation, and Signal Processing Societies,
the ASEE, and Tau Beta Pi.

916 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 9, SEPTEMBER 1999

