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Abstract 
A point-based (edge pixels) correlational method us- 

ing the Hausdorff distance to determine if there is any 
model pattern in a given image was proposed by Hut- 
tenlocher et a1 [3]. While this approach works well and 
it is computationally efficient in the presence of model 
translation in the image, it is significantly time con- 
suming when the model has been rotated ancl scaled. 
In this paper, we propose a line-feature based approach 
for model based recognition using the Hausdorff dis- 
tance. This new approach reduces the problem of find- 
ing the rotation and scaling to the problem of finding 
two translations, therefore exploiting the efficiency of 
the algorithm proposed in [3]. 

The use of line features separates the rotation, scal- 
ing and translation so that each of them can be handled 
individually. The line features in the original domain 
are first transformed into a new 2-D domain consisting 
of the orientation and the logarithmof the length of the 
line. In this way, rotation and scaling in the original 
domain correspond to a translation in the new domain 
and the Hausdorff point-based matching is useld to find 
it. Next, the model is rotated and scaled using the re- 
sult from first matching and second Hausdorff distance 
matching is performed to determine the model trans- 
lation. 

The method performance and sensitivity to segmen- 
tation problems are characterized using and experi- 
mental protocol with simulated data. It wits found 
that the algorithm performs well, degrading nicely as 
the segmentation problems increase. The algorithm 
was tested with real images as well. 

KEY WORDS: Hausdorff distance, object recog- 
nition, pattern recognition, line-features. 

1 Introduction 
A correlational method using the Hausdorff distance 

to determine if there is any model pattern in a given 
image was proposed by Huttenlocher et a1 131. The 
Hausdorff distance approach is robust in the presence 
of uncertainty and it can be made robust to outliers. 
So far, only point features (edge pixels) have been used 
for recognition with this approach. The technique has 
successfully recognized translated, scaled ancl rotated 
models in images. Efficient implementations of the al- 
gorithm have been developed, some of them exploiting 
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specialized computer graphics hardware [3]. However, 
the computational time is dramatically increased when 
there is scaling and rotation with respect to the trans- 
lation only case 141. In this paper, we propose a line- 
feature based recognition approach that overcomes this 
problem. 

The proposed approach uses line segments as fea- 
tures. Each segment has associated the coordinates 
of its mid-point (2, y), the logarithm of its length logl, 
and its orientation 8. Thus, both model and image seg- 
ments can be represented as points in the four dimen- 
sional space (z, y, log I, e). Then, the matching algo- 
rithm consists on applying twice the point-based Haus- 
dorf€ matching algorithm to determine two translation 
vectors. The first matching is run on the (log1,O) 
plane between the projections on this plane of the four 
dimensional points representing the image and model 
segments. This matching will give us the rotation angle 
and the scaling factor. The second matching provides 
the translation factor and also serves as a verification 
stage for the previous step. It uses the results from 
the first matching to rotate and scale the model, and 
does the image and updated model point-based (edges) 
matching. 

An extensive system evaluation is performed using 
simulated data. Random model and image line fea- 
tures are generated with a few probability distributions 
and perturbed to simulate different types of segmenta- 
tion problems. The probabilities of success for the first 
matching and the second matching are then obtained. 
The relations between the maximum average fraction 
of matching segments and the line length and orienta- 
tion uncertainties are also found. The approach is also 
tested using several real images. The processing time 
is recorded and compared with previous approaches. 

2 The Hausdorff Distance 
We leave the detail of the Hausdorff distance theory 

behind, since it has been addressed very thoroughly by 
Huttenlocher's group[l, 2, 3, 41. However, for the sake 
of completeness, we give a brief introduction. 

Given two point sets A and B, the Hausdorff dis- 
tance between A and B is defined as 

H ( A ,  B )  = max(h(A, B ) ,  h(B, A ) )  , 
where 

h(A, B) = maxminlla - blI , 
aEA bEB 
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and 1 1 . 1 1  denotes some norm defined on the plane. 

hL(B, A )  are used instead, where 
To handle outliers, partial distances hK(B, A )  and 

K& denotes the K t h  ranked distance, and hL(B, A)  
is defined in a similar way. The partial bidirectional 
Hausdorff distance is now defined as 

N L K ( A ,  t (B) )  = m z ( h L ( A ,  t ( B ) ) ,  hK(t(B), A))  

where t(.) denotes a transformation of a set. The par- 
tial distance therefore measures the difference between 
a portion of the model and the image. 

If a transformation t is applied to the model point 
set, we are interested in the Hausdofl distance as a 
function of the transformation of the set B, or 

d ( t )  = H L K ( A , t ( B ) ) .  
Therefore, to recognize a model-like image A, we can 
apply different transformations to the model B. Then, 
if d ( t )  is less than a certain threshold we are convinced 
that a match between the model and the image exists. 

The process of finding d ( t )  = H L K ( A ,  t ( B ) )  is called 
forward matching. If we set a certain Hausdorff dis- 
tance as threshold to this process, we may be able to 
find a fraction of model points satisfying this thresh- 
old for a certain transformation t .  This fraction f ( t )  
is called the forward matching fraction. On the other 
hand, if we transform A instead of B, this will be called 
the reverse matching process. Accordingly, there is 
a reverse Hausdorff distance threshold and a reverse 
matching fraction g ( t ) .  

Huttenlocher et a1 [3] presented an efficient algo- 
rithm to search for the transformation t that mini- 
mizes the Hausdorff distance. For pure translation, 
a 360 x 240 size image and a 115 x 199 size model, 
they reported a computation time of approximately 20 
seconds on a Sun-4 (SPARCstation 2). However, with 
rotation and a 640x480 image the algorithm took 44 
minutes and 47 seconds [4]. We assume that the com- 
putational time will be even longer when scaling is in- 
volved. Due to this reason, an alternative method us- 
ing line features is proposed for matching in the pres- 
ence of translation, as well as rotation and scaling. 

3 Proposed New Approach 
It can be observed that the orientation angles of the 

image line segments get increased or decreased by a 
constant when the model is rotated, but remain un- 
affected under translation and scaling. On the other 
hand, the lengths of the segments get multiplied by a 
constant factor when the model is scaled but they are 
invariant under rotation and scaling. In this section it 
will be shown that these properties can be used to find 
the rotation and scaling transformations efficiently. 

Model and image line segments can be represented 
by four dimensional points with coordinates equal to 
their mid-point coordinates, the logarithm of their 
length and their orientation. Let s, be a model seg- 
ment with coordinates (z,, ym, logl,, Om).  Consider 
an ideal image si of sm obtained by rotating s, by an 

I" I 
Figure 1: Illustration of transforming the image and 
model to the (log I, 6) domain. 

angle ORot and scaling it by a factor S and the projec- 
tions of the corresponding four dimensional points to 
s, and si onto the plane (logZ,6). The logarithm of 
the length and the orientation of the image segment si 
are given by 

loglj = logl, + l o g s  
Oi = em +@Rot 

Thus, it is seen that rotating and scaling a model 
segment is equivalent to translating the projection of 
the corresponding four dimensional point on the plane 
(log 1,6) by an amount t = (log S, 6 ~ , t ) .  This transla- 
tion can be found very efficiently using the algorithm 
given in [3]. In the sequel, the plane (log I ,  6 )  will also 
be referred a8 the new domain or the transformed do- 
mam. 

To simply illustrate the above idea, consider the 
following example. Suppose, we have two polygons, 
where one is a rotated and scaled version of the other 
as shown on the upper half of Figure 1. Matching 
these polygons is equivalent to find the rotation and 
scaling transformation that transforms one into the 
other. The representation of the given polygons in the 
(logl,8) plane is also shown in the lower half of Fig- 
ure 1. One can see that two new polygons are formed 
in this plane, with their vertices corresponding to the 
sides of the original polygons representations in the 
new domain. The new polygons have identical shape 
and dimensions, and differ only in a translation corre- 
sponding to the rotation and scaling factors. 

If we do not make any further modifications, the 
image and model in the new domain will have a range 
in the 0 ax is  from Oo to 180O. However, applying 
the translational Hausdorff distance to the transformed 
segments will not always give the correct rotation an- 
gle ORot. For example, if the model is rotated l l O o ,  the 
model segment AD that has an orientation of 90' will 
have a corresponding image segment with 20' and the 
new polygons in the (log1,O) plane will not have the 
same shape. Fortunately, this problem can be solved 
by extending the image orientation range from 0" to 
360". The image pattern from 180" to 360° is an ex- 
act copy of the pattern from Oo to 180". There is no 
need to modify the model pattern in the new domain. 
Figure 2 shows the modified approach. As we can see, 
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Figure 2: Illustration of the modified version of trans- 
forming the image and model to the new dom<ain 

in this modified version, the image will still be able to 
keep the same pattern in the new domain with spurious 
points in the lower and upper range of 8. 

The above approach works well for rotation angles 
between 0' and 180'. However, if the rotalion an- 
gle is between 180' and 360°, say 180' + #, then the 
Hausdorff distance matching will give # as the rotation 
angle, since the length and orientation of the lines will 
match even if the image is rotated by 180'. This is not 
a problem: when we perform the second matching we 
can simply rotate the model by # and 180' + # sepa- 
rately, and do the matching twice to see if there is any 
match. 

Once the rotation and scaling parameters are ob- 
tained from the first matching, the model in the orig- 
inal domain is transformed using these parameters. 
Then, the updated model is matched with the im- 
age using the usual point-based Hausdorff distance to 
search for the translation. In this stage, false alarms 
from the previous stage can be eliminated. 

There are some important issues that need to be 
addressed: 

1. 

2. 

3. 

In the transformed domain, logl and 0 etre mea- 
sured using different units. While applying Haus- 
dorff matching, distances are computed Thus, 
compatible measurements in both axes are needed. 
Adding a scaling factor to one of the axes is one 
way of solving this problem. In our approach, we 
use a K factor for the logl axis. This factor K is 
also related to the resolution of the (log I, 8) plane 
in a discrete implementation. If a line has uncer- 
tainty p for its length, we would like to have this 
line still fall into the same "bin" as the iideal-line 
without uncertainty would. Thus, K must satisfy: 

~K*Iog(Z+I*p)-K*Zog(I)~ = IK*Iog(l-l-p)l < 1 

If a line is broken into two or more parts, the Haus- 
dorff distance using the log I and 8 parameters will 
be incorrect. This is because the original line splits 
into lines with smaller lengths that have no rela- 
tion to the original length. The sensitivity of the 
algorithm to this problem is characterizeid during 
our experiments. 

model-like object fall. Also, lines from some 
other objects may form the same pattern that the 
model-like object forms in the new domain. As a 
result, the matching fraction in the new domain 
may be low and we may get some false alarms. 
However, these false alarms will be eliminated in 
the second stage for most of the cases as it is shown 
by our experiments. 

4 Experimental Protocol 
The experimental protocol consists of: (1) Perfor- 

mance characterization using simulated data and (2) 
testing with real data. 

4.1 Simulated Data 
Model Generation: A set of lines (30) with ran- 
dom orientations, lengths and locations are generated 
for the model, such that the coordinates of their mid- 
points are uniformly distributed within a 512 x 512 
image, their orientations are uniformly distributed be- 
tween O D  and 180°, and their lengths are normally dis- 
tributed with a mean of 70 pixels and a variance of 45 
pixels. 

Image Generation: Two types of images are gen- 
erated: images containing a model and clutter and im- 
ages containing clutter only. The images with a model 
are generated by rotating, scaling, and translating the 
model segments to a known location. There is no re- 
striction of picking the rotation angle and the scaling 
factor. In our experiments we used a rotation angle of 
30' and a scaling factor of 0.8. Different types of noise 
perturbations are then added to the resulting set in 
order to generate the image line segments. The clutter 
only images are generated by generating random line 
segments uniformly distributed as described below. 

Noise Perturbations: The following noise pertur- 
bations were used to simulate segmentation problems: 

(1) Clutter: A fixed percentage (100%) of ran- 
dom line segments are added to the image as outliers. 
Lengths of these lines are uniformly distributed be- 
tween 0 and 128. Orientations are also distributed 
uniformly between 0' and 180'. Locations of the mid- 
points are uniformly distributed in the image except 
for the area where the model is expected to lie. A 
fixed smaller percentage (2%) of lines are uniformly 
added to that area later. (2) Length uncertainty: 
A Rayleigh distribution with parameter cq is used to 
model the uncertainty in the length of the lines. (3) 
Broken lines: For modeling broken lines, the follow- 
ing method is used: The number of points where a line 
is broken is chosen using a Poisson distribution with 
parameter pa. The points where the line is to be broken 
are then obtained using a uniform distribution along 
its length. The length of the gap to be created is ob- 
tained using a Rayleigh distribution. (4) Orientation 
uncertainty: The orientation of the line is perturbed 
using a Gaussian distribution with zero mean and stan- 

In a complex image with a model-like sub-image, 
some lines from other objects can fall in i;he same 
area in the new domain that the lines from the 

dardudeviation of ot/l where 1 is the length of the line. 
This is done since longer lines are expected to have less 
angular perturbation than shorter lines. 
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Performance Characterization: 
1. Determination of factor R: The probability of 

correctly detecting the rotation angle, scaling fac- 
tor, and translation are obtained for ut = U( = 0.5 
and varying K. The factor K should be selected 
such that these probabilities are maximum. 

2. First Matching: The Hausdorf€ distance is com- 
puted between the model and the image for all 
translations in the new domain corresponding to 
rotation and scaling in the original domain. Let 
f(&, LI), f(h, La) ... f(&, La) be the matching 
fractions from the forward or reverse Hausdo8 
matching results when noise is added to the image, 
where &,& ..A, are the seuched rotation angles, 
and L1, L2 ... L, are the logarithms of the scale 
factors S times K .  The pair (&,L i ) ,  such that 
f(&, Li) is maximum is the one selected. 
The following observations are made: 

3. 

The selected forward matching fraction is av- 
eraged for 20 simulations and plotted against 
the rotation perturbation uo and the length 
perturbation cl. 

The probability of the selected forward 
matching fraction being greater than a 
threshold was found and this was plotted 
against the noise parameters ut. 
A plot was made for the probability of suc- 
cessful detection of the rotation angle against 
ut. A rotational angle is said to be success- 
fully detected if the difference between the 
estimated angle 9 and the ground truth etrue 
is less than a threshold. 
A plot was obtained for the probability of 
successful detection of the scaling against crl .  
A scaling factor is said to be successfully de- 
tected if the difference between the estimated 
scaling and the ground truth is less than a 
threshold. 
The probability of a false match is also stud- 
ied by matching models against clutter only 
images. The ratio between the number of 
lines in the model and the clutter image is 
takes as 1, 2, and 3 for this experiment. A 
false match is said to happen if the matching 
fraction is found to be greater than a given 
threshold. The results of the experiments are 
average for 20 simulations and plotted as a 
function of the threshold. 

Second matching: The model and image seg- 
ments are rasterized and the image edge pixels lo- 
cations are perturbed with using a Gaussian distri- 
bution with z-ero mean and variance 0.5. The rota- 
tion and scaling obtained from the first Hausdorff 
distance matching is then applied to the simu- 
lated model. Next, the second Hausdorff distance 
matching is run between the rotated and scaled 
model and the noisy image. The best forward 
matching fraction f(z, y) and the corresponding 
translation (t. , tY) is selected from each matching 
result. 
The following observations are made: 

Figure 3: The probabilities for correctly detecting (a) 
rotation angle, (b) scaling factor, and (c) translation 

(a) The probability of the matching fraction be- 
ing greater than a threshold is found and it 
is plotted against the noise parameter F t .  

(b) A plot is made for the probability of suc- 
cessful detection of the true translation 
against ul. The detection is successful when 

where xtrue and ytTue are the ground truth 
translation coordinates. 

I f ( x i  1 ~ i )  - .f( atrue i Ytrue )  1 < t h r e s h 4  

4.2 Real Data 
Real objects were used to test the effectiveness of 

the method. The 512 x 480 images were taken in our 
vision laboratory. Rotation and translation were mod- 
eled by twisting and translating the camera with a 
robot arm and scaling was modeled by zooming the 
camera. Matchings were done using first and second 
Hausdorf€ distance and the resulting parameters of ro- 
tation, scaling were compared with the ground truth 
values. 

5 Results 
5.1 Simulated Data 

1. Determination of K. The plots for the proba/- 
bilities of correctly detecting the rotation, scaling 
and translation factors are shown in Figure 3. As 
we can see there is no single K that can maximize 
all three probabilities. Furthermore, it is certain 
that if we use different nt and 01 values, the results 
will be different. In our experiment, we chose K 
as 60 as a good compromise. 

2. First Matching. All the plotted results from 
the simulation for the first matching are shown 
in Figure 4. It is observed that (1) the matching 
fraction averaged for the 20 simulations plotted 
against the rotation perturbation and the length 
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Figure 4: The simulation results from the first, match- 
ing(a to g) 

perturbation ul in Figure 4 (a) and (b) go down 
as the noise deviations ul and ut increase. (2) the 
probability of the matching fraction being greater 
than a threshold plotted against the noise parame- 
ters ut and cf are shown in Figure 4 (c) and (d). It 
is seen that the probability decreases as the noise 
deviation ut increase. However, the probability 
decreases faster with respect to ut. This is ex- 
pected because if a line is deviated from t,he ideal 
angle, we may expect most of the line points devi- 
ate away from the ideal positions. However, if we 
have some uncertainty for the line length, we may 
still have a large number of points staying at  the 
ideal positions. (3) Figure 4 (e) and (f) show the 
relation between the probability of 8 being within 
threshold of the true rotation angle against crt and 
the relation between the probability of getting the 
scaling within the threshold of the true scaling 

Figure 5: The matching results from the second match- 
ing. 

value and q, respectively. As we can see both 
probabilities decrease with the increase of ut and 
ul. (4) Figure 4 (g) shows the plots for the false 
matches when the ratio between the number of 
segments in the image and the model were 1, 2, 
and 3 (for images without a model). It is seen that 
the probability of a false match decreases as the 
ratio of number of lines and the forward matching 
threshold increase. 

3. Second Matching. The optimal scaling and ro- 
tation was applied to the second matching. The 
probability of the matching fraction being greater 
than a threshold versus ut is plotted in Figure 3 
(a). The probability of the translation being 
within threshold of the true translation against 
ul is also plotted in Figure 3 (b). It is seen that 
the matching fraction decreases dramatically with 
respect to ut. Also the probability for correctly 
detecting the translation is very sensitive to ul , 
and decreases when it increases. 

5.2 Real Images 
A few images and models were tested. Figure 5.2 

shows two of our tested examples. When we performed 
the tests, we simply selected the results for rotation 
and scaling from the first matching, then rotated and 
scaled the model for the second matching. The mod- 
els and the images were segmented using the Canny 
edge operator and linked using the ORT package. The 
rotation angle and scaling factor of Figure 5.2 (a) are 
31° and 0.75 respectively with respect to the model in 
Figure 5.2 (c). The rotation angle and scaling factor 
of Figure 5.2 (e) are 1 2 O  and 0.76 respectively with re- 
spect to the model in Figure 5.2 (f) . The final match- 
ing results are shown in Figure 5.2 (i) and 6). The 
CPU time on a SPARCstation 5 in both cases is less 
than 7 seconds for the first matching and less than 50 
seconds for the second matching. 

6 Conclusions 
In this paper, a method to use line features for Haus- 

dorff distance matching was presented. The proposed 
method separates rotation, scaling and translation into 
three parts and associates them with the line's orien- 
tation, length and individual points, respectively. The 
original image was transformed into a new domain 
where the rotation and scaling in the original domain is 
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mapped into a translation. The Hausdorff transform 
was then used to estimate the translation and hence 
the parameters of rotation and scaling. Since there 
exist efficient algorithms for computing translations, 
the computational time has been reduced significantly 
from previous approaches that try to compute the ro- 
tation and translation at the same time. 

The performance of the method and its sensitivity 
to segmentation problems were characterhed by using 
a rigorous experimental protocol modeling the most 
common types of errors in segment extraction. The 
algorithm performs well, degrading smoothly as the 
Derturbations increase. The method was also tested /l.\ 

Ln real images with and without partial occlusion. 
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Figure 6: The original image and the rotated/scaled 
stapler model, their edge detected images, and the 
matching result. 
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