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Figure 8: Examples of a plastic bottle and a metallic
cylinder: (a) Images with illumination along S1. (b)
Images taken with illumination 15 degrees away from
S1. (c) Recovered depths for some contours

3.4 Experimental Results

We use a plastic bottle and a metallic cylinder as ex-
amples to show shape reconstruction using active illu-
mination (See Figure 8). The illumination light source
is approximated as a long vertical light source. Con-
secutive images were captured with the illumination
angle changed in increments of 5 degrees on a hori-
zontal plane. The angle �0 in Figure 6 is 10 degrees.
The coordinates, or 3D depth of the initial point P0 is
recovered with the shape from occluding contours and
highlights method described in the previous section in
Figure 1, where � is 80 degrees.
The ratios found from the reconstructed plastic

bottle are 1:1.73:3.74 compared with the real ratios
1:1.16:2:29. The ratios from the reconstructed metallic
cylinder are found as 1:0.86:0.81:1.14 compared with
the real ratios 1:0.88:0.86:1.08. As in the �rst method,

the results are noisy in the transitional regions due to
the use of a vertical light source. These errors can
be avoided by using a point illumination source and
applying the proposed 3D surface recovery method.

4 Discussion and Conclusion

In this paper, we explored two simple mathematical
solutions for 3D shape reconstruction from highlights
and occluding contours using active camera and il-
lumination control. When the results from the pro-
posed methods are compared, it is seen that the sec-
ond method using illumination control is noisier. The
explanation for this is two-fold: �rst, saturation of
highlights results in imprecise localization; second, the
initial point in the second method is computed using
results from the �rst method and thus errors from the
previous step propagate into the results.
Experimental results support the presented mathe-

matical derivations. A relation between the minimum
illumination angle change and the detectable surface
normal curvature, was also presented. This result can
be used to control the illumination angle under di�er-
ent surface structures.
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Figure 6: 3D shape from active illumination.

plane of S0 and S2. The new cross section becomes a
new 2D curve. The depths of the local points around
P0 along this 2D curve can be computed as described
in the previous section. Thus, the depths of the points
on the surface around P0 can be computed by changing
the angle � up to 180 degrees.

3.3 Minimum illumination change

The observable movement of the specular highlight on
the images is related to the surface curvature and the
illumination angle change. If the illumination angle
change is too small, we may not observe the posi-
tion change of the specular highlights on the image.
Also, the illumination angle change should be larger
for larger surface normal curvatures in order to obtain
the same amount of specular highlight shift as that in
the case of smaller surface normal curvatures.
In the following, we develop a mathematical relation

among the surface normal curvature, illumination an-
gle change, and the specular highlight shift. Consider
a 2D plane where the light source moves on as shown
in Figure 7. The images of the specular highlight will
also shift on that plane. In the 3D case, as discussed
in the previous section, we actually deal with slices of
2D planes. This is similar to the assumption of epipo-
lar plane when we move the camera around for 3D
reconstruction.
When the illumination angle is along S, the high-

light is at point P and it is observed on the image plane
at locationX . When the illumination angle is changed
by � to S1 angle, the highlight moves to point P1 and
it is observed at location X1 on the image plane. As
shown in the Figure 7, let P be the origin of the Carte-
sian coordinate system xz where z is along the normal
direction, the x � z plane is along the normal plane
and x�y is the tangent plane at P . The normal plane
meets the object on the normal curve with normal cur-
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Figure 7: Relation between surface curvature and il-
lumination.

vature Kt. By neglecting the third-order and higher
order terms, Koenderink[2] showed that the tangents
of the normal curve at P can be described as:

@z

@x
= Ktx (15)

Let � be the distance between X and X1, � =
jX �X1j. Then, we need to �nd out the relationship
between � , �, and Kt.
From Figure 7 it is seen that, in xz coordinates, the

image plane (actually it is a 1D line in this case) is in
the direction ~V forming an angle of �=2 plus � plus the
angle between ~V and ~S with respect to +x direction.
Thus, the total angle  is ��� for ~V = (� cos �; sin �).
As it was seen before, the angle between the normals at
P1 and P is equal to �=2. Therefore, the normal at P1

has an angle of �=2+�=2 with respect to +x direction.
The tangent line at P1 has slope �1= tan(�=2 + �=2),
or tan�=2. Equating this value with Equation (15),

the coordinates of P1 are ~P1 = ( tan(�=2)Kt

; tan
2(�=2)
2Kt

).

Finally, � , or the projection of ~P1 onto ~V is given
by

� = ~P1 � ~V =
tan(�=2)

Kt
(� sin � +

sin � tan(�=2)

2
) (16)

In the case of orthographic projection, this is the ob-
served movement of the highlight on the image. In the
case of perspective projection[1], the observed change
is modi�ed by a factor of f

u�f , where f is the focal
length, u is the objective distance for P and P1 with
the assumption that P and P1 are very close to each
other.
Equation (16) shows that, with the same illumina-

tion angle change, smaller surface normal curvature
will result in larger specular highlight shift; and that
with the same normal curvature, a larger illumination
angle change will result in a larger specular highlight
shift.
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P0 has surface normal direction on the XY plane. P0

is the highlight point when the illumination is located
at S0. Point P1 is a point very close to P0, and it
is the highlight point when the illumination moves to
the S1 direction. Therefore, if the normal angle at P0

is �0, and at P1 is �1, �1 = �0 + �=2:0.
If the coordinate system is such that point P0 =

[X0Y0]
t, we have from Equation (8):

�
�0
�00

�
=

�
cos �0 sin �0

� sin �0 cos �0

��
X0

Y0

�
(10)

Assuming point P1 = [X1Y1]
t, we have:

�
X1

Y1

�
=

�
cos �1 � sin �1
sin �1 cos �1

��
�1
�01

�
(11)

From the images taken for the two illumination di-
rections, we can measure the displacement x in the
camera coordinate system for the highlights corre-
sponding to P0 and P1. In the case of orthographic
projection, X1 = x. Therefore, X1 is a known con-
stant in Equation (11). Equation (11) is a �rst order
di�erential equation for �1. By solving it, we have,

�1 = C1 sin �1 +X1 cos �1 (12)

where C1 is a constant depending on the initial con-
dition. However, if � is very small, we can approxi-
mately take, �1j�1=�0 = �0 and

C1 = Y0 + (X0 �X1) cos �0= sin �0

At this point, �1 is solved completely. Using equa-
tions 8 and 12, we solve the Y coordinate at point P1

as Y1 = Y0 + (X0 �X1) cos �0= sin �0. The general so-
lution for the coordinates of any point Pn = (Xn; Yn)
can be solved in a similar way where the constant
term in Equation (12) is solved using the assumption:

�nj�n=�n�1 = �n�1 Thus, the �nal solution is obtained
as:

Pn =

�
Xn

Yn�1 + (Xn�1 �Xn) cos �n�1= sin �n�1

�

(13)
where Xn is measured from the images and �n =
�n�1 + �=2:0. Therefore, as long as the coordinates
and surface normal for the initial point P0 are known,
the coordinates of all the boundary points close to P0

can be recovered by repeatedly using Equation (13).
Next, we analyze the robustness of the proposed

method. For the point Pn, the error of its Xn coor-
dinate comes from errors in the measurement of the
highlight locations on the captured image. The er-
ror of its Yn coordinate, however, comes from Yn�1,
Xn, Xn�1, and �n�1. Thus, this error is the result of
accumulations of the errors of the previous recovered
points, due to the errors in the measurement of the
highlight locations and the illumination angles.
Suppose that at each new illumination direction Sn

we measure its illumination angle by adding the angle
of the previous illumination angle �n�1 and the illu-
mination angle change �. From Equation (13), the
error of measured illumination angle change � prop-
agates accumulatively to each of the new boundary
points Pn. This can also be seen by taking the partial
derivative of Yn with respect to �.

@Yn
@�

=
@Yn�1

@�
� (Xn�1 �Xn)

1

sin2 �n�1

@�n�1

@�
(14)

If we keep expanding this equation, we will add more
errors due to the error propagation from the previ-
ous points. This can be very severe for the boundary
points recovered later. However, if at each new illumi-
nation direction Sn, we measure its angle �n with re-
spect to the initial illumination direction S0 instead of
measuring it from the previous direction Sn�1, we can
greatly reduce the accumulative error. In this case,
the computed error of Yn will come from �n�1 only,
and �n�1 is measured once instead of accumulatively
added by �.

3.2 3D surfaces

For the 3D case, the local depth can be computed by
simply rotating a point light source around the origi-
nal illumination direction, and deviating the rotation
angle from the original angle by �. This is shown in
Figure 6, where S0 is the original illumination, S2 is
the new illumination direction, and � is the rotation
angle.
At the new illumination S2, we can �nd a new cross

section or normal plane of the 3D object through the
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Figure 3: Examples of a plastic bottle and a plastic
cup: (a) Images taken when the camera is at the lo-
cation A. (b) Images taken when the camera is at the
location B. (c) Recovered depths for some contours

mals are not along horizontal plane. Therefore, the
detected intensity peaks from the captured images do
not really correspond to the de�ned highlight locations
but a noisy peak. To be more precise, we can not really
�nd a pulse shape distribution of the intensity values
on the image when there is actually no specular high-
lights happening. For a complicated shape object, a
point illumination source is a better choice, since we
can move it on the slices of 3D space, and recover the
corresponding 2D curves of the object along each slice.

3 Using Active Illumination

In this section we will explore an alternative method
for obtaining local curvature at specular highlight ar-
eas on the surface by using active illumination control.

In this method, the camera is �xed at one loca-
tion when the reconstruction process for one aspect
of the object is performed. However, the illumination
is moved around the object in a controlled way. A
sequence of images is taken as the illumination direc-
tion is changed. The illumination is assumed to come
from far away such that its rays are along one direc-
tion, and the projection is assumed to be orthographic.
The maximum reection (specular highlight) happens
when the incidence angle is equal to the reection an-
gle. We �rst consider the case of a 2D object or 2D
curve/boundary, and then extend it to the general 3D
case.

3.1 2D curves

X

θ

θ

ρ

n

n

n

Y

Pn

Figure 4: Representation of a point using �n and �n.

A curve can be represented in a way, similar to the
Legendre transformation, as illustrated in Figure 4 [5].
Let Pn = (Xn; Yn) be a point on the curve, and �n be
the distance from the origin to the tangential line at
Pn. Let �n be the angle between the normal at Pn, n,
and the tangential line. Then, the function �n(�n) and
its derivative �0n(�n) with respect to �n are expressed
in terms of Xn and Yn by:

�
�n
�0n

�
=

�
cos �n sin �n

� sin �n cos �n

� �
Xn

Yn

�
(8)

The inverse transformation is obtained as:�
Xn

Yn

�
=

�
cos �n � sin �n
sin �n cos �n

� �
�n
�0n

�
(9)

We �rst de�ne an object centered coordinate system
as X � Y � Z and a camera centered (image plane)
coordinate system as x� y. Suppose we have an in�-
nite long light source along the Z axis that can rotate
along the +Z direction, and that the camera viewing
direction is along the �Y direction. The normal plane
or cross section over X�Y plane of this con�guration
is shown in Figure 5. We also assume that the angle
between illumination S0 and S1 is �, and that point



As a result, we can �nd the coordinates of the object
points on the surface.
Equation (3) gives a simple closed form solution for

the recovery of X and Y . The coordinates X and Y
are linearly related with the measured x1 and x2. X
and Y are also a function of � { the angle between
the illumination direction and the camera viewing di-
rection. Thus, the error of the angle � directly e�ects
the outcome of the computed result. Next, we derive
the relation between the error of the computed depth
and the error of the measured �.
Taking the partial derivative of Equation (3) with

respect to the error of �, we have:

@X

@�
=

(x1 + x2 cos�) sin �

sin2 �
(4)

@Y

@�
= �

(x1 + x2 cos�) cos �

sin2 �
(5)

From Equations (4) and (5), we obtain a simple sine
and cosine relationship for the absolute errors of X
and Y , respectively. An interesting case is when � is
0; in this case there is no direct e�ect between the error
of X and the error of � since @X

@� is zero. However, the
outcome e�ect of the error of Y from � is maximized.
A similar case is when � is �=2, and the recovered Y
value is not a�ected.
Using Equations (3), (4), and (5), we obtain the

expression for the relative depth values of X and Y :

@X
@�

X
=

(x1x2 + cos�) sin �

(x1x2 sin(�� �)� sin �) sin�
(6)

@Y
@�

Y
=

(x1x2 + cos�) cos �

(x1x2 cos(� � �) + cos �) sin�
(7)

These two expressions give the relative errors for the
coordinates of X and Y when the camera viewing an-
gle has an error of one degree. Figure 2 shows plots
of these two errors with respect to the viewing angle
� under di�erent x1

x2
ratios, with the angle of � chosen

as 45 degrees.
From Figure 2, the following observations can be

made on the relative errors of X and Y : (1) The rela-
tive error of X changes di�erently for di�erent values
of the viewing angle �. When this angle is less than
approximately 50 degrees, the errors are large, and dis-
ordered. However, the error becomes very small when
� is between 50 and 80 degrees. (2) The relative error
of Y changes in a di�erent fashion with respect to �.
For di�erent ratios of x1x2 , it decreases very slowly with
respect to �. Also the values of x1

x2
do not have a big

impact on this relationship. (3) The relative errors for
both X and Y are close to zero when � is between 50
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Figure 2: The relative errors of X and Y w.r.t. �.

and 80 degrees. Therefore, it is always a better choice
to control the angle between the viewing direction and
illumination direction within this range. This can be
done by actively adjusting the illumination direction
to a new direction when � is o� this range.

2.3 Experimental results

Two examples of this approach can be seen in Figure 3
for a plastic bottle and a plastic water cup. In these
experiments, we use a vertical long light source and
the camera is moved in increments of 5 degrees on a
horizontal plane to capture sequences of images. The
angle between the illumination and the camera view-
ing angle at location A is 70 degrees. The occluding
contours were detected using a correlational method
based on the Hausdor� distance [8].
Figures 3 (a) and (b)show the images when the cam-

era is located at the locations A and B, respectively,
as described in Figure 1. We processed 8 images with
4 consecutive images each at location A and B's neigh-
borhood.
Since this approach is valid under orthographic pro-

jection, it is not possible to compare the real 3D depth
values with the recovered ones. However, we can com-
pare the correctness of the scaled dimensions. To do
that, we can compute the ratios for the three cylinders
forming the plastic bottle obtained using the recon-
struction process with the ratios measured from the
object. Using the least square method, we found out
the ratios from the reconstructed data are 1:1.80:3.81.
The ratios from the real plastic bottle are found as
1:1.75:3.65.
From the reconstructed images, it is seen that the

cylindrical parts of the objects are recovered well.
However, at the curved transitional parts, the recon-
structed results are noisy. This is because we use a
long vertical illumination light source whose illumina-
tion directions are well designed along the horizontal
plane, but at the curved locations, the surface nor-
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proach has two problems. First, it is computational
expensive, since it involves several integration and dif-
ferentiation computations. Second, in order to mathe-
matically express the solution uniquely, it has to solve
a boundary condition, or to calculate the constant
term for the image trajectory function. Oren solves
this problem by tracking at least two virtual features
which is also computational expensive. Zheng, on the
other hand, �xes the camera and illumination and sim-
ply rotates the object. Even though Zheng's mathe-
matical tool is simpler, it requires the use of two or
more illumination sources to uniquely determine the
solution.
Next, we present an approach that solve these prob-

lems by allowing the observer or camera to actively
move around the object and using the occluding con-
tour as a boundary condition or extra constraint to
recover the 3D surface shape globally.

2.1 Highlights & Occluding Contours

Occluding contours provide surface normal informa-
tion at the visible rim, while specular highlights oc-
cur when the illumination incidence angle equals the
reectance angle. Although there exists a strong re-
lationship between occluding contours and highlights,
they have not been used together for 3D reconstruc-
tion until now. Next, we explore this relationship and
use it to develop a new 3D shape reconstruction algo-
rithm.
We �rst explore how to use active sensor and illu-

mination control to detect highlights based on known
occluding contours. The main idea is to predict when
an occluding contour in one image of a sequence of im-
ages will become a highlight in another image of the
sequence.
We illustrate this idea by using Figure 1 for the

2D case where the 2D curve has a X � Y coordinate

system and the sliced image or normal plane image
has a x coordinate system. In the sequel, we assume
orthographic projection.
Suppose at location A, the camera viewing direction

forms an angle of � with the +Y direction, and the
illumination direction forms an angle of � with the
viewing direction. The direction of the sliced image, in
the object centered coordinate system, is along x̂A =
(cos �; sin �).
If at camera location A, a point P (X;Y ) is detected

as a point on the visible rim, the surface normal at
P (X;Y ) is known. The normal direction at P (X;Y )
forms an angle of �=2 � � with the illumination di-
rection. In other words, the incidence angle for the
illumination at point P (X;Y ) is �=2 � �. Therefore,
the specular component is reected forming an an-
gle of �=2� � with the normal direction at P (X;Y ).
It can be seen that, if the camera is moved to lo-
cation B by moving around the object on the nor-
mal plane de�ned by the surface normal and the il-
lumination direction to location B by an amount of
�+�=2��+�=2�� = ���, the projection (image)
of the point P (X;Y ) will become a highlight point.
At camera location B, the direction of the sliced im-
age, in the object centered coordinate system, is along
x̂B = (cos(� + � � �); sin(� + � � �)).
This shows that by tracking the occluding contours

and moving the camera around the object, we can
predict where the highlights will occur. Furthermore,
the idea described above can be reversed, i.e. we can
predict when a highlight in one image will become an
occluding contour in another one.

2.2 Computing depth using both

The above relationship between occluding contours
and highlights can be used to compute depth for the
object surface points.
Consider two images of an object, one from loca-

tion A and the other from location B. Let xA =
(cos �; sin �) and xB = (cos(�� �+ �); sin(�� �+ �))
be the directions of the sliced images at locations A
and B, respectively. Let x1 and x2 be the image coor-
dinates of an object point P with object coordinates
(X;Y ), respectively. Then,

x1 = P � xA = X cos � + Y sin � (1)

x2 = P � xB = X cos(� + � � �) + Y sin(� + � � �)

If � 6= �, we can solve for X and Y ,

X =
1

sin�
(sin(�� �)x1 � sin �x2) (2)

Y =
1

sin�
(� cos(�� �)x1 + cos �x2) (3)
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Abstract

Two approaches for 3D curved object reconstruction
using active sensor and illumination control are pro-
posed and compared to each other. In both cases,
the highlight information is fully utilized rather than
discarded, and knowledge of the object surface is not
required. The �rst approach requires camera con-
trol only and recovers shape (depth) from highlights
and occluding contours. The second approach requires
both camera and illumination control and recovers 3D
depth from highlights only. KEY WORDS: Shape
reconstruction, specular reection, highlights, active
vision.

1 Introduction

Computer-aided designed (CAD) models are used in
very diverse domains such as design and manufactur-
ing, industrial inspection, autonomous navigation, vi-
sion systems, architecture, geographical information
systems, and visual reality, just to mention a few. A
method for automating the acquisition process of mod-
els is clearly desirable, especially for objects with com-
plex surface geometry for which manual construction
can be time-consuming.
Several studies have been reported [4, 7, 3] for

automating model acquisition of complicated objects
(e.g., with dents and holes), and commercial products
for building models from real objects have appeared
[6]. There are many factors that make the reconstruc-
tion task di�cult. In particular, specular reections
which are present on most objects made of plastic and
metal, can be misidenti�ed as markings and occluding

�This work was supported in part by NSF grant IRI9309100
and in part by Penn State University and HRB Systems through
the Center for Intelligent Information Processing.

contours and cause problems while searching for corre-
spondences between pair of images. Thus, tradition-
ally specular reections have been avoided by either
treating the object surface, using polarized light or by
some image pre-processing. However, specular reec-
tions are usually the strongest features in an image,
making them easy to detect, and they can provide rich
qualitative (surface normal) and quantitative (depth
and curvature) information about the local and global
shape of the object.
In this paper, we propose and compare two ap-

proaches for 3D curved object reconstruction using ac-

tive sensor and illumination control. In both cases, the
highlight information is fully utilized rather than dis-
carded. The proposed methods do not require to know
the object surface properties and exploit relations be-
tween specular reection and the camera view angle
to reconstruct curved object surfaces at highlight lo-
cations. The �rst approach requires camera control
only and recovers shape (depth) from highlights and
occluding contours, where the occluding contours are
identi�ed by the method presented in [8]. The sec-
ond approach requires both camera and illumination
control and recovers 3D depth from highlights only.
This method tracks the movement of specular high-
lights, and recovers the 3D depth from the amount of
highlight shift.

2 Using Active Sensor

Quantitative 2D and 3D curve recovery from specu-
lar highlight has been studied by Oren [5] and Zheng
[9, 10]. Oren uses support functions of curves to de-
rive a close-form relation between the image trajectory
of a virtual feature and the geometry of the specular
surface it travels on. In this approach, the observer
or camera moves actively around the object. This ap-


