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Abstract 
In this paper, a correlational approach for distinguish- 
ing occluding contours from object markings for 3D 
object modeling is presented. The proposed method 
is valid under weak perspective projection, does not 
require to search for correspondences between frames, 
can handle scaling between consecutive images. thus 
can estimate the full Euclidean surface structure, and 
does not require camera calibration or camera motion 
measurement. Extensive experimental results show 
that the method is robust to the occlusion of feature 
points and image noise unlike previous affine-based ap- 
proaches. Qualitative and quantitative results for the 
relation between the required minimum viewing angle 
change for the detection and the surface curvature are 
also presented. 

KEY WORDS: Occluding contour, object model- 
ing, HausdorfT distance. 

1 Introduction 
Several approaches have been developed for 3D ob- 
ject modeling using silhouettes or occluding contours 
[l, 3 .  4, 11, 151. Two important issues with previous 
approaches are the availability of accurate camera mo- 
tion parameters and the robustness of the occluding 
contour detection. 

Zisserman, Blake and Cipolla, and Giblin [2, 5 ,  151 
used the concept of occluding contour and marking 
stationarity to distinguish and prior known surface 
marking points to distinguish the deformed occlud- 
ing contours from other surface markings. However, 
a problem with this approach is that if the viewpoint 
is changed, the prior known marking pattern might 
be lost, strongly affecting the results. Kutulakos [lo] 
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extended their work by enforcing active viewpoint con- 
trol, and selecting nowcoplanar points with their tan- 
gents along the viewDoint motion plane as an affine 
basis to identify the occluding contours. While this 
approach avoids using prior knowledge of markings, it 
has the following disadvantages: it works well only un- 
der orthographic projection; it requires tracking of all 
the feature points; and it is sensitive to the occlusion of 
the affine basis feature points due to its computational 
approach. 

In this paper? we present a correlationa.1 approach 
using the stationarity properties of occluding contours 
and markings that eliminates most of the above dis- 
advantages. The approach does riot require knowledge 
of the camera motion parameters, and does not need 
surface markings to be known a priori either. We first 
actively control the camera motion plane, and select 
tangent points along the camera motion plane as in 
Kutulakos's approach. Following that, however, in- 
stead of using the tangent points as an affine basis 
to determine stationary and non-stationary points, a 
correlational method based on the Hausdorff distance 
1131 is used to determine the stationarity of contour 
points. This is done by finding the best transformation 
aligning ~virtual markings from different frames. These 
virtiial markings are made of artificial lines segments 
connecting points along the camera motion, and thus 
are stationnry. Each real iniage is matched against 
the virtual marking image of the previous iniage in the 
sequence, using a line featbre-based multidimensional 
HausdorfE distance pattern recognition algorithm [12]. 
The result of this process is a translation and scal- 
ing transformation between the virtual marking and 
points on the real image. Since markings are station- 
ary, they will have the same translation a.nd scaling 
property that the stationary points have. However, 
points on t,he occluding contour are not sktionary and 
will have a different transformation. Therefore. by de- 
tecting the translational difference between consecu- 
tive irnages (while the scaling and translation trans- 
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formations are applied to one of them), occluding con- 
tours can be distinguished from markings. 

Our new approach has the following advantages: 
there is no need to  search for and track contour cor- 
respondences between frames in contrast with all pre- 
vious approaches; unlike the affinebased methods, the 
detection algorithm is robust to the occlusion of tan- 
gent points and appearance of new tangent points in 
following frames; it not only works for orthographic 
projection but also works with weak perspective; un- 
like Kutulakos’s method; and finally, the detection al- 
gorithm is able to  construct the full Euclidean surface 
structure by tracking the scaling from the consecutive 
images. 

2 Active view point control 
We actively control the viewpoint to achieve the best 
detection performance. Weak perspective projection 
is assumed in our approach. The camera motion is 
controlled such that there are as many points with 
tangents along the epipolar plane as possible. These 
points are special stationary points with respect to  the 
epipolar plane, and will be used later for the detection. 

The epipolar plane or camera motion plane corre- 
lates a set of special stationary points - the set of points 
with tangents along the same plane as the view motion 
plane. For example, suppose P is a point on a visible 
rim or a marking curve of an object for a given view- 
point as shown in Figure 1. If the viewpoint is moved 
on P’s tangent plane, P will remain on the visible rim 
or marking curve for as long as it does not become oc- 
cluded by points that are closer to the camera. In this 
case, P is a stationary point with respect to the view- 
point motion. However, if the camera does not move 
on P’s tangent plane, P will not remain on the visible 
rim if P was on a visible rim, while it will remain on 
the marking curve if it was on a marking curve. In the 
first case P is a non-stationary point, but in the second 
case P is a stationary point. 

Even though surface marking points are stationary 
with respect to  any camera motion plane, they do not 
provide any prior knowledge for their detection. On 
the other hand, the special stationary points described 
above are easy to detect, and can be used to distinguish 
occluding contours from markings. 

3 Occluding contours detection 
The shape and position of the visible rim depends on 
the shape of the surface and the viewpoint. This is 
the fundamental difference between visible curves and 
surface markings which is responsible for their different 

Figure 1: Illustration of stationsrity with respect to 
camera motion plane 

stationarity properties when the viewpoint is changed. 
We use the definition of stationarity for a suiface curve 
stated by Kutulakos in [lo]: 
Definition 3.1 A surface curve is stationary if its po- 
sition on the surface does not change when the vieui- 
point changes. It a s  non-stationary I f  its position is 
viewpoint-dependent. 

Following this definition. we can see that occluding 
contours are non-stationary while surface markings are 
stationary. Therefore, by matching stationary points 
between consecutive image frames. we can discriminate 
the non-stationary points of an occluding contour from 
those on a marking. Worthy of mention is that, there 
maybe a very few stationary points on occluding con- 
tours, but this does not affect the occluding contour 
classification, because most of non-stationary points 
on the occluding contour will not match. 

3.1 Virtual Marking Construction 
First, we detect all the points with tangents along 
the motion plane. These points are the special sta- 
tionary points which are easy to pick, by iooking a t  
their gradient orientation. Then, we connect them 
with each other to construct a line pattern. We call 
this line pattern a virtual marking image (VMI). If n 
points are selected, we can generate up to in(n - 1) 
lines for the VMI. In order to improve the system’s 
robustness, very short lines and lines enclosing trian- 
gles with small area are discarded. VMIs from two 
consecutive images are matched using the line feature- 
based Hausdod distance method summarized below 
to find a translation, rotation, and scaling transforma- 
tion between the frames. This transformation should 
put in agreement stationary points, such as markings, 
between the frames. However, non-stationary points 
on the occluding contours will not agree after being 
transformed. 

3.2 Using the Hausdorff Distance 
The Hausdorff distance is a measurement of the sim- 
ilarity of point sets and it can be used for pattern 
matching and tracking. 
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Given two point sets -4 and B, the partial bidirec- 
tional Hausdorff distance between A and B is defined 
as PI 

H L K ( A ,  B )  = muz(h'(A,B),  h"(B,,4)). (1) 

where 

and 1 1 . 1 1  denotes the Euclidean distance. -4 similar defi- 
nition can be given for h';(B, A) .  This partial distance 
measures the difference between portions of the two 
sets, making it more robust. 

If a transformation t ( . )  is applied to a model point 
set, we are interested in the HausdorFf distance as a 
function of the transformation of the set B, or d(t)  = 
H L K ( A ,  t (B ) ) .  Therefore, to recognize a model-like 
image, we can apply different transformations to  B; 
then, if d(t)  is less than a certain threshold, a match 
between the model and image can be hypothesized. 

If A is a set of images points, B is a set of 
model points, the matching process of finding d(t)  = 
HLK(A, t (B) )  is called forward matching. Given a 
threshold for the Hausdorff distance, the fraction of 
model points f ( t )  with H a u s d o s  distance below this 
threshold is called the forward matching fraction. On 
the other hand, if A is transformed instead of B, it 
is called the reverse matching process. Accordingly, 
given a reverse H a u s d o s  distance threshold there is a 
reverse matching fraction g(t). 

We have successfully developed a line feature based 
recognition (tracking) system [13,12] to  deal with rota- 
tion, scaling, and translation transformations between 
A and B. In our approach, the prototype and the im- 
age can have different sizes and orientations. This is a 
common case when the camera moves around the ob- 
ject at varying distance or when the camera is rotated. 
The approach uses line segments extracted from the 
prototype and the image. Every line is represented in a 
four dimensional space by its middle point coordinates 
xm and ym, the logarithm of its length logl, and its ori- 
entation angle 8. Then, the optimal four dimensional 
translation t = (VZ, Vy, Vlogl.  V6) corresponding to 
the translation, scaling, and rotation, respectively, is 
found by minimizing the Hausdorff distance between 
the prototype and the image. The details of the algo- 
rithms required to deal with the extremely large search 
space in an efficient manner are given in [12]. The 
method was tested systematically with synthetic data 
and real images. It, was shown that it is a-robust and 
efficient algorithm, and that it can be applied to higher 
dimensional problems as well. 

3.3 Determining Stationarity 
From the previous section, it is seen that by ap- 
plying the multidimensional pattern recognition algo- 
rithm 1121 between the two VhIIs, it is possible to 
find their translation, rotation, and scaling transfor- 
mations. These transformations are first applied to the 
model image (the consecutive image); the transformed 
image is then templated on top of the image from the 
previous camera location (the first image). Let T be the 
closest distance a point from one image can find for its 
matching point on the transformed consecutive image 
along the epipolar plane; r is also called the displace- 
ment of that point. Let Dth a predefined displacement 
threshold. Since all the markings should match well 
with each other, while the occluding contours should 
not, we use the following criteria to determine the sta- 
tionarity of a point: 

Criteria 3.1 A point is defined as an stationary point, 
if r 5 Dth otherwise, it is a nonstationa y point, where 
Dth is a distance threshold. 

-4 contour is detected as an occluding contour if the 
ratio of the number of nonstationary points to station- 
ary points is close to 1, and is detected as a marking 
contour if this ratio is close to 0. 

4 Minimum camera movement 
From the previous section, we know that while an 
image is overlapped with its consecutive transformed 
image, the displacement r between the corresponding 
points defines whether they belong to a marking or an 
occluding contour. In the criteria 3.1, the displace- 
ment r for the occluding contour is constrained by 
how much the camera view angle is changed and by 
the surface normal curvature. If the angle is too small, 
we may not observe enough displacement for the oc- 
cluding contour, and misclassify it as marking. Also, 
the camera viewing angle for a small normal curvature 
curve needs not to change as much as that for a bigger 
normal curvature curve. 

In the sequel, we develop a mathematical relation be- 
tween the surface normal curvature and the required 
minimum camera view angle change for different dk- 
tance thresholds for occluding contour classification. 
We assume that the camera moves on one epipolar 
plane. The result presented here applies to perspec- 
tive projection model as well as weak perspective pro- 
jection. 

Figure 2 shows and object and two camera locations 
on one epipolar plane. At  the first camera location, 
P lies on the occluding contour, and P' is the image 
of P.  The second camera viewing direction w1 has an 
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Figure 2: Illustration of camera view changing and the 
displacement of the occluding contours 

angle of d with the original viewing direction on the 
epipolar plane. At this new location, PI is on the oc- 
cluding contour and its image is point Pi. The point 
P ,  however, is no longer on the occluding contour. As 
shown in the Figure, let P be the origin of the Carte- 
sian coordinate system xyz where z is along the normal 
direction and x is along the opposite direction to the 
first camera viewing direction. Therefore, the x - z 
plane is along the normal plane or epipolar plane and 
x - y is on the tangent plane to the object at point 
P. The normal plane meets the object on the normal 
curve with normal curvature Kt .  The radial curvatures 
of the occluding contours at P and PI are denoted as 
K,  and K:, respectively. The surface near P can be 
described as: 

1 
4x7 y) = ;;(ax2 + abxy + cy2) + O(3)  

L 

By neglecting the third and higher order terms, Koen- 
derink [9] showed that the normal curve can be d e  
scribed as (y = 0): 

(3) 
1 1 z = -ax2 = -KtxZ 
2 2 

Then, the tangents of this curve are defined by: 

(4) 

We now focus on obtaining the distance between P 
and PI in the direction perpendicular to the view line 
VI.  We denote this distance as Ah,. In fact, the image 
Ahi of Ah, is what can be computed with the proposed 
correlational method - i.e. the displacement T is Ahi. 

Since the second line of sight wl is on the 2 - z 
plane and has an angle of 4 with respect to the x axis, 
its slope is tan4 .  Since v1 is tangent to the normal 

n 

P O b j a  point P’ Image point D Apershlre Diameter 
P Fowl point L Lem 

Figure 3: Geometric optics for the normal curve on the 
epipolar plane 

curve at Pi, the coordinates of PI on the x - i plane 
can be found by equating E,quation 4 with t a n 4  and 
using Equation 3. As a result, P’s coordinates are 
(T, tan p &. tan2 4). 

The line equation for u1 is then: 

tan2 4 
2Kt 

z - x t a n $ +  - = 0 ( 5 )  

Since P has coordinates (0,O) on the 5 - t plane, the 
perpendicular distance between P and the line of sight 
2rl is obtained as: 

tan’ d - cos 4 tan2 4 2K. 

In the case of orthographic projection, Ah, is equal 
to Ahi or r. We now compute Ahi in the case of 
perspective projection. 

The image formation on the epipolar plane is illus- 
trated by Figure 3. Suppose that the distance between 
P and the lens is U, the focal length is f, and the dis- 
tance between the and the lens is U .  The height of P 
is h,, and the height of its image is hi. From the lens 
equation and triangulation[6], we obtain: 

f hi = h,- 
U - f  

(7) 

The same formula applies to Pi with its ul, h:, and 
h:. For very small differences between the distances 
between the the lens and the points P and PI, the 
defocusing effect can be ignored. 

By using Equation 7 ,  the image of the height differ- 
ence Ah, for these two points in the direction perpen- 
dicular to the optical axis is: 
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Figure 4: Plot of the required minimum camera view- 
ing angle change vs. normal curvature 

Substituting Equation 6 into the above equation, we 
obtain the final expression for hi: 

Ah, - f cos4tan2d 
- 2(u - f) Kt (9) 

In fact, in the case of weak perspective projection? 
this distance is what we can compute with the Haus- 
dorfF distance matching approach, the result is the dis- 
placement 7 .  By setting T equal to Ah,, from the above 
equation, we have: 

1 
f -cos4tan‘4 

K t  = 2(u - f) T 

If we set r equal to the predefined distance thresh- 
old Dth, we can find the minimum angle $ to distin- 
guish occluding contours. We set an effective threshold 
K e f f  as 2 ( . t l - - f ) ~ )  then obtain the relation between 
the minimum view angle change, the normal curvature, 
and the effective threshold: 

The result is plotted in Figure 4. From the plot, it is 
seen that the normal curve with smaller curvature re- 
quires smaller view angle change for the occluding con- 
tour detection. Also, the bigger the effective threshold 
is or the smaller the distance threshold is, the larger 
view angle change is required. This is a very helpful 
observation, as illustrated in the experiments with real 
images, since it can be used to plan for the next view- 
ing direction. 

5 Experimental results 
The detection algorithm was implemented with 
C/C++. Simulations and real image tests were per- 
formed to  characterize the algorithm properties. 

5.1 Simulation results 
The coordinates of the tangent points are the very first 
input to the algorithm. This input affects the scaling 
and translation computation for the consecutive im- 
ages. As a result it will affect the occluding contour 
and marking detection when overlapping is performed. 
Furthermore, noise in the image could vary the co- 
ordinates of the tangent points. Finally, some tan- 
gent points can be occluded and new tangent points 
can appear when the camera is moved to a new lo- 
cation. Therefore. we should explore the statistics of 
correctly computing the scaling and translation ver- 
sus noise model under different percentages of occluded 
tangent points. 

We simulate this process by using 512 by 512 im- 
ages. Twenty points are uniformly selected with their 
coordinates ranging between 0 and 512. These points 
are assumed to be the detected tangent points from the 
image taken from the camera’s first viewing direction. 
They are then scaled and translated into a new set of 
coordinates which correspond to the detected tangent 
points from a new viewing direction. The coordinates 
of this new set are perturbed using a Gaussian distri- 
bution with zero mean and standard deviation of 0. To 
simulate occlusion, we randomly remove some points 
from the transformed set of points. The same number 
of new points are also added to this set to simulate the 
possible appearance of new tangent points. Therefore, 
the total number of tangent points from two consecu- 
tive images is assumed to be the same. 

For each 0 and ratio of occluded points, the system is 
tested 20 times. The obtained translation and scaling 
transformations are then compared with the ground 
truth to obtain the following probabilities: 

The probability of correctly obtaining the scaling 
vs. U .  

The probability of correctly obtaining the trans- 
lation vs. cr. 

The probability of correctly obtaining the scaling 
vs. the ratio of occluded tangent points. 

The probability of correctly obtaining the trans- 
lation vs. the ratio of occluded tangent points. 

Where, for correctly computing the scaling, we mean 
the difference between the obtained scaling and the 
ground truth is as small as 0.1, and for correctly com- 
puting the translation, we mean the square root of the 
sum of the squared coordinate differences between the 
obtained values and the ground truth is as small as 2 .  

Figures 5 (a) and (b) show that the probabilities 
of correctly detecting scaling and translation are not 
very sensitive to the change of 0. Before the ratio of 
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Figure 5: The simulation results for the probabilities 

the occluded tangent points reaches 40% to 50%, the 
probabilities of correctly detecting scaling and transla- 
tion is quite robust and higher than 0.8 (see Figures 5 
(c) and (d)). However, with the further increase of this 
ratio, these probabilities decrease dramatically. 

5.2 Real image tes ts  

In this section we present an example with real images. 
These images are taken 5 degrees apart on a horizon- 
tal plane. Virtual markings are formed by connecting 
points with horizontal tangents with lines that are at 
least 30 pixels long and such that form triangles en- 
closing at least 350 pixels. 

In this example, we focus on obtainir;: the probabil- 
ity of a point belonging to a marking or occluding con- 
tour with respect to  different distance thresholds. The 
histogram of the number of points on a curve with dif- 
ferent possible displacements found through templat- 
ing is a good measurement of this probability. This test 
can verify the correctness of our detection algorithm. 

Figure 6 shows the 3rd and fourth frames of a foot- 
ball. Points with horizontal tangents were selected 
from each image to construct their VMIs. The VMIs 
are shown in (c) and (d) which are overlapped on the 
corresponding edge detected images. The line feature- 
based Hausdorff distance matching algorithm was then 
applied to the VMIs. The obtained results show that, 
the first image of the football is 0.98 smaller than the 
second image. The translation for the football were 
found to be (13, l ) .  The transformed second frame is 
overlaid on top of the first frame in Figure 6(e). It is 

, 

Figure 6: Football example. (a) and (b) are two 
frames, (c) and (d) are the VSIIs and edge detected im- 
ages, (e) is the matching result, ( f )  is the final detected 
contour, and (g) shows the final optimized meshed 
foot ball. 

seen that markings matched very well. On the other 
hand, there is a significant displacement between the 
occluding contours. By choosing Dth as 2, we obtain 
the final reconstructed occluding contour image of the 
football as shown in Figure 6(f). The noise on the re- 
constructed contours can be removed first by perform- 
ing the reverse matching process. or in this case, by 
matching the third frame Lvitii the second frame, and 
then performing a logical AND between the resultant 
reconstructed irtlagt. and Figure G(f). 

The histogriirrl for thv football is studied as shown 
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Figure 7 :  Histograms for three contour curves on the 
football 

in Figure 7. The histograms for the left rim, right rim, 
and the “PennState” lion logo are plotted in terms of 
found matching distance from the consecutive images. 
It is seen that, there exists a good threshold (eg. 4) 
to separate the left rim from the logo. On the other 
hand, the right rim and the logo do not separate from 
each other very well. A threshold of 2 will separate 
most of the points of the right rim from the points of 
the logo. One more important observation, from the 
analysis in the previous section and Figure 4. is that 
the left rim has smaller normal curvatures than the 
right rim because it does not give as much displacement 
or matching distance as the left rim does for the same 
viewing angle. As a result, 5 degrees of camera viewing 
angle change is a good choice for distinguishing the left 
rim from the logo, but not for distinguishing the right 
rim from the logo. 

After obtaining a sequence of 2D contour data, we 
first converted them back into 3D space using Zheng’s 
method [14], then used Hoppe’s mesh optimization 
method [7] to  obtain the final 3D representation of the 
object shown shown in Figure 6(g). 

6 Conclusion 
In this paper, a new method for detecting occluding 
contours from markings for 3D object modeling is prc- 
posed. Instead of using a computational method or 
an &ne transformation to determine stationary and 
non-stationary points, we use a correlational method 
based on the Hausdorff distance. This method does 
not require prior known markings, nor to search and 
track feature point correspondences between frames, 
nor to accurately calibrate the camera, nor to know 
the camera motion. It works well under weak per- 
spective projection and it is robust to the occlusion of 
the tangent points between consecutive images. We 
also presented a theoretical expression for the mini- 
mum required viewing angle change for certain surface 

normal curvature which provides a qualitative relation 
between the camera motion and the surface structure. 
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