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Abstract

In this paper we propose a new framework to compare
and classify temporal sequences. The proposed approach
captures the underlying dynamics of the data while avoiding
expensive estimation procedures, making it suitable to pro-
cess large numbers of sequences. The main idea is to first
embed the sequences into a Riemannian manifold by using
positive definite regularized Gram matrices of their Han-
kelets. The advantages of the this approach are: 1) it allows
for using non-Euclidean similarity functions on the Positive
Definite matrix manifold, which capture better the under-
lying geometry than directly comparing the sequences or
their Hankel matrices; and 2) Gram matrices inherit desir-
able properties from the underlying Hankel matrices: their
rank measure the complexity of the underlying dynamics,
and the order and coefficients of the associated regressive
models are invariant to affine transformations and vary-
ing initial conditions. The benefits of this approach are
illustrated with extensive experiments in 3D action recog-
nition using 3D joints sequences. In spite of its simplicity,
the performance of this approach is competitive or better
than using state-of-art approaches for this problem. Fur-
ther, these results hold across a variety of metrics, support-
ing the idea that the improvement stems from the embedding
itself, rather than from using one of these metrics.

1. Introduction

Comparison and classification of temporal sequences is
a key problem in action recognition (Figure 1), event de-
tection and abnormal activity detection. Approaches to this
problem may be divided into two categories: model-based
and data-driven. Model-based methods assume that each
sequence is generated by an implicit dynamic model or Hid-
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Figure 1: 3D action recognition is an example of the class
of problems requiring efficient, robust comparison and clas-
sification of temporal sequences.

den Markov Model (HMM) with some added measurement
noise. Query sequences are classified based on whether they
fit this model or not. The main disadvantages of these ap-
proaches are that the model parameters need to be estimated
(or learned) from training data and that the learning and in-
ference are usually time consuming, especially for high or-
der models.

On the other hand, data-driven methods, rather than as-
suming an implicit model, postulate that data close to each
other, using a suitable metric, should be in the same class.
Then, query data is classified with its nearest neighbor class
label. While data-driven methods enjoy efficiency and do
not require parameter estimation, their success critically
hinges on choosing a metric that reflects well the data struc-
ture, a task that is far from trivial.

It is well known that the Euclidean distance is unsuitable
for comparing temporal sequences: sequences may have
large Euclidean distances within class but small distances
between classes. Several methods attempt to circumvent
this issue by projecting the sequences to Euclidean space.
Examples include Dynamic Time Warping (DTW) [24],
specialized kernels [39], Fourier hierarchical pyramid [39],

1



Construct !
Gram Matricesd/dt…

trajectories from 
class 1

trajectories from 
class 2

trajectories from 
class k

Compute !
geometric mean

Distance function 
δ(X,Y)……

Construct !
Gram Matricesd/dt… Compute!

geometric mean
Distance function 

δ(X,Y)……

… ……

Construct !
Gram Matricesd/dt… Compute!

geometric mean
Distance function 

δ(X,Y)……

query trajectory Construct !
Gram Matrices

d/dt
Gtest

argmin

d1
GM!1

GM!2

GM!k

d2

dk

predicted label

…

Preprocessing Training Testing

…

…

Gtrain_1

Gtrain_2

Gtrain_k

Figure 2: Diagram of the proposed method

and covariance features [17] etc. While these approaches
align or transform the data before using an Euclidean met-
ric, none of them takes into account the implicit dynamics
of the sequences, which may lead to poor accuracy in some
scenarios.

[20] showed that dynamic information can be encapsu-
lated in Hankelets (Hankel matrices associated with short
portions of the data). In principle, comparing Hankelets re-
quires computing subspace angles [5], which is non-trivial
in the case of noisy data, since it entails rank estimation.
Alternatively, [21] proposed a surrogate that does not en-
tail estimating rank. However, since this surrogate is not
a metric, it is hard to assess the properties of the induced
geometry.

From the discussion above it follows that it is desirable
to develop a distance-like function that combines the best
features of the methods above, that is, it should a) reflect
the similarity of the dynamics underlying the sequences; b)
be amenable to efficient computations, robust to noise; and
c) either be a metric or share most of its properties, so that
the associated geometry can be easily analyzed.

Our main result shows that the objectives above can be
achieved by embedding the sequences into the Positive Def-
inite (PD) manifold via suitably regularized Gram matri-
ces. We show that while these matrices contain the same
dynamic information as their Hankel counterparts, the em-
bedding allows for blackucing the problem to computing
distances between matrices on the PD manifold, which is
a well studied problem that can be solved easily. The ben-
efits of the proposed approach are illustrated with 3D ac-
tion recognition. In this context, sequences with the same
dynamic model are very close, while those corresponding
to different dynamics are far apart. The experiments show
that the proposed approach provides substantial robustness
against noise and improves performance over the state-of-

art 3D action recognition, both in terms of accuracy and
computational efficiency. Most notably, these results hold
regardless of the specific metric used, which supports the
idea that the performance of the method is due to the em-
bedding itself, rather than the properties of the metric used.

2. Related work

Recent advances in computing distances on the PD man-
ifold include [30] [4] [2] [23]. These methods work well
when applied to covariance features in tracking, face recog-
nition and texture classification[8]. However, while there is
a standard definition of covariance feature for images, no
similar definition is available for dynamic systems.

[17] built a temporal hierarchy of covariance descrip-
tors on 3D joints to classify human actions. [16] ex-
tended this feature to infinite dimensional covariances in a
Hilbert space, and used metrics in the Riemannian mani-
fold. [13] extended VLAD feature to Riemannian mani-
folds. These approaches share with the proposed method
the fact that temporal sequences are embedded in the PD
manifold, rather than handled directly. However, they do
not exploit the dynamic information (e.g. model order and
invariants) implicit in the data.

Finally, as mentioned earlier, [20, 21] showed that dy-
namic information can be encapsulated in Hankel matrices
and proposed comparing sequences using the Hankelet sub-
spaces angle. Our method shares the idea of exploiting dy-
namic information through the properties of the subspaces
of suitable matrices (Gram rather than Hankel, in our case).
However, rather than comparing these subspaces directly,
it uses a manifold metric to compare matrices, leading to
better performance in the presence of noise.



3. Preliminaries
In this section, we recall the relationship between au-

toregressive (AR) models and Gram matrices, as well as
several distance-like functions on Riemannian manifolds,
which will be used to compare Gram matrices and thus the
embedded temporal sequences.

3.1. Notation
R set of real numbers
Sn set of symmetric matrices in Rn×n
Sn+(Sn++) set of positive-semidefinite (-definite)

matrices in Rn×n
x(X) a vector (matrix) in R
X(�) � 0 X is positive-(semi)definite
N (X) null space of X

3.2. Hankel and Gram matrices Representations

Over short horizons, the output tk generated by a dy-
namic system from some initial conditions can be approxi-
mated by the output of an AR model of the form [6]:

tk =

n∑
i=1

aitk−i (1)

In addition, to each sequence tk one can associate a block
Hankel matrix of the form

Hr,s
t =


t1 t2 t3 · · · ts
t2 t3 t4 · · · ts+1

...
...

...
. . . · · ·

tr tr+1 tr+2 · · · tr+s−1

 (2)

where r and s determine the shape of the Hankel matrix.
For example, if the observations are a set of points in 3D
and there are n tracked points in each frame, the block for
frame i is given by

ti = [xi1, y
i
1, z

i
1, x

i
2, y

i
2, z

i
2, · · · , xin, yin, zin]>. (3)

As pointed out in [21], Hankel matrices carry useful invari-
ant properties. Specifically, if r and s are selected such that
ρ = rank(Hr,s

t ) < min{r, s}, then ρ measures the com-
plexity of the underlying dynamics in the sense that there
exists an AR model of order at most ρ that can generate
the observed data. Further, the subspace spanned by the
columns of Ht completely characterizes these dynamics
and is invariant to both initial condition and affine view-
point changes. Thus, in principle Hankel matrices could be
compablack by simply comparing the angles between the
subspaces spanned by the respective columns. However,
this comparison is difficult in the presence of noise. This
is due to the fact that, in the case of noisy measurements,
H tends to be full rank, and hence the angle between sub-
spaces becomes zero. Thus, in order to apply these ideas,

one needs to first estimate the rank ρ of the underlying clean
matrix, a difficult task akin to model order estimation, and
take into consideration only ρ principal components when
computing the angle. To circumvent this difficulty, in this
paper we propose to work with Gram matrices defined as:

Ĝ =
HH>

‖HH>‖F
(4)

where we follow [21] by using a Frobenius normalization.
It can be easily shown that Gram matrices inherit the rank
and invariance properties of the associated Hankel matrices.
However, in contrast to the later, Gramm matrices are con-
fined to the Positive Semi Definite (PSD) manifold, a fact
that is key to the techniques here.

3.3. Distance-like functions in the PD Manifold

In this section, we review some commonly used
distance-like functions on the PD Riemannian manifold,
which are listed, together with their associated mean formu-
las, in Table 1. The most widely used among these functions
is the Affine Invariant Riemannien Metric (AIRM) [30] [4],
which is defined as:

δR(X,Y) = ‖ log(X−1/2YX−1/2)‖F (5)

It can be shown that this is indeed a metric that defines
geodesics on the manifold. However, its computational cost
is relatively high. Despite its computational inefficiency, it
is the most robust metric.

The Log-Euclidean Riemannian Metric (LERM) [2] is
defined as:

δle(X,Y) = ‖ log(X)− log(Y)‖F (6)

Note that in this metric X and Y are decoupled, so that each
term can be precomputed. While the LERM is computation-
ally more efficient than the AIRM, in many applications it
performs worse.

Another two popular distance measures on the PD man-
ifold originate from Bregman divergences. The Jensen-
Bregman Log-det Divergence (JBLD) [8], which is also
known as Stein Divergence, is defined as

δ2
ld(X,Y) = log

∣∣∣∣X + Y

2

∣∣∣∣− 1

2
log |XY| (7)

Although JBLD itself is not a metric, Sra [34] proved that
its square root δld is. Computing δ2

ld is very efficient. How-
ever, computing its mean is relatively slow since it does not
admit a closed form solution. The KL-Divergence metric
(KLDM) [23], which is also known as Jeffrey Divergence,
is defined as

δ2
jkl(X,Y) =

1

2
Tr(X−1Y + Y−1X− 2I) (8)



Table 1: Popular distance measures on Riemannian manifold and their associated means

Distance Definition Associated geometric mean

AIRM δR(X,Y) = ‖ log(X−1/2YX−1/2)‖F iteration: X(k+1) = X
1
2

(k) exp
(∑n

i=1 log(X
− 1

2

(k) XiX
− 1

2

(k) )
)
X

1
2

(k)

LERM δle(X,Y) = ‖ log(X)− log(Y)‖F X∗le = exp
(

1
n

∑n
i=1 log(Xi)

)
JBLD δ2

ld(X,Y) = log
∣∣X+Y

2

∣∣− 1
2 log |XY| iteration: X(k+1) =

(∑n
i=1

X(k)+Xi

2

)
KLDM δ2

jkl(X,Y) = 1
2 Tr(X−1Y + Y−1X− 2I) X∗jkl = P−

1
2 (P

1
2QP

1
2 )

1
2P−

1
2

where P =
∑n
i=1 X

−1
i and Q =

∑n
i=1 Xi

Contrary to the functions above, the KLDM is not a metric,
since it does not satisfy the triangular property. It is less ef-
ficient than the JBLD but its mean has a closed form, which
can be efficiently computed.

Finally, given a metric δ• and a set of PD matrices
{Xi|i = 1, · · · , n,Xi ∈ Rd×d,Xi � 0}, the associated
mean of this set is defined as

X∗• = arg min
X̄�0

n∑
i=1

δ2
•(X̄,Xi) (9)

While LERM and KLDM have closed form mean, AIRM
and JBLD do not. However, they can be found iteratively.

4. Comparing Temporal Sequences

Based on the discussion above, we propose comparing
temporal sequences by using a distance-like function on the
PD manifold to compare their associated Gram matrices.
This idea is motivated by the following result.

Consider nmeasurements zk = tk+ηk of tk, corrupted
by ηk, where k = 1, 2, · · · , n. The corresponding Gram
matrix: HzH

>
z = HtH

>
t + HtH

>
η + HηH

>
t + HηH

>
η is

generically full rank due to the noise. However, if the noise
η is zero mean and uncorrelated with t, we have HzH

>
z ≈

HtH
>
t +HηH

>
η = HtH

>
t +nrε

2I, where nr is the number
of rows of Hη and ε2 is the variance of the noise η.

Theorem 1. Given X,Y ∈ S+
n , define the regularized ma-

trices Xσ = X + σI, Yσ = Y + σI, where σ > 0. Then

lim
σ→0

δ•(Xσ,Yσ) 6=∞ ⇐⇒ N (X) = N (Y) (10)

where δ•(., .) denotes any of the functions in section 3.3.

Proof. To prove sufficiency, note that since N (X) =
N (Y) there exists some unitary matrix U such that

UXU> + σI =

[
MX + σIr 0

0 σIn−r

]

UYU> + σI =

[
MY + σIr 0

0 σIn−r

]

where r
.
= rank(X). Note that the AIRM, JBLD and

KLDM are affine invariant [15, 16], while simple com-
putations show that, if U is unitary, then δle(X,Y) =
δle(UXU>,UYU>) Thus:

δ•(Xσ,Yσ) =

δ•(

[
MX + σIr 0

0 σIn−r

]
,

[
MY + σIr 0

0 σIn−r

]
) =

δ•(MX + σIr,MY + σIr)

(11)

where the last line follows from computing δ• explicitly in
each case. The desiblack result follows now by taking limits
as σ → 0.

To prove necessity, assume that N (X) 6= N (Y). Then,
there exists a vector u such that Xu = 0 and u′Yu = y >
0. Define a unitary matrix U =

[
M u

]
where M is an

arbitrary matrix such that M>M = I and M>u = 0. By
construction

U>(X + σI)U =

[
MX 0
0 σ

]

U>(Y + σI)U =

[
MY 0
0 σ + y

] (12)

It can be easily seen that for diagonal matrices,

δ2
•

([
D1 0
0 D2

]
,

[
D3 0
0 D4

])
= δ2
•(D1,D3)+δ2

•(D2,D4)

Combining this observation with (12) and the fact that
δ•(., .) are invariant to unitary affine transformations yields

δ∗•(Xσ,Yσ) = δ2
•(MX ,MY ) + δ2

•(σ, y + σ)
≥ δ2

•(σ, y + σ)
(13)

The proof follows from the fact that since y > 0, δ2
•(σ, y +

σ)→∞ as σ → 0.

Corollary 1. Consider the n× n Gram matrices G(1) and
G(2) from two sequences {y(1)

t }2n−1
t=1 and {y(2)

t }2n−1
t=1 , each

generated by an (n-1)th order AR model defined by parame-
ter vectors r(1) = [a

(1)
1 ..a

(1)
n ] and r(2) = [a

(2)
1 ..a

(2)
n ]. Then

the two dynamics are the same (e.g. r(1) = r(2)) if and only
if limσ→0 δ•(G

(1)
σ ,G

(2)
σ ) <∞



Proof. Follows from Theorem 1 by noting that N (G(i)) =

span(
[
(r(i))> −1

]>
).

Remark 1. Corollary 1 justifies using the functions δ•(., .)
to compare PSD (rather than PD) Gram matrices and to
use the corresponding mean:

X∗ = arg min
X

N∑
i=1

δ2
•(X,Xi)

to define the “center” of a cluster of matrices from the same
dynamics. However, from a practical standpoint, taking the
limit as σ → 0, can lead to numerical problems. Thus,
in the sequel, we will use finite, but non-zero values of σ.
Nevertheless, as long as this regularization value is smaller
than the smallest non-zero singular value of G(i), a rea-
soning similar to the one in the Theorem above shows that
δ•(., .) will yield very large values for matrices belonging
to different dynamics.

The reasoning above allows for recasting the problem of
comparing temporal sequences into the problem of compar-
ing Gram matrices on the PD Riemannian manifold. The
full procedure is illustrated in Figure 2.

5. 3D Action Recognition Application
Johansson [18] showed that a temporal sequence of the

skeleton joints is good enough to capture an amazing di-
versity of human actions. Inspiblack by these results, the
increasing availability of equipment such as the Kinect to
capture 3D data, and the capability of estimating body parts
from depth maps [33], researchers have proposed working
with 3D skeleton joints data to recognize human actions.

Next, we present experiments to evaluate the effective-
ness and efficiency of the proposed approach when com-
paring sequences to recognize human actions from (noisy)
temporal sequences of their 3D joints. As described in de-
tail below, we used Gram matrix embeddings with the JBLD
(G-J), LERM (G-L), AIRM (G-A), and KLDM (G-K) met-
rics on three standard datasets: MSR-Action3D, MHAD
and UTKinect, and compablack the performance against the
3D action recognition state-of-art methods.

For all datasets which will be introduced below, we per-
formed basic pre-processing on joint locations as in [36],
i.e., projecting the joints from the world coordinate system
to a person centric coordinate system which puts its origin at
the hip joint, scaling and rotating skeletons to make each of
them scale and view invariant. We did not do sequence in-
terpolation and Dynamic Time Warping (DTW) as [36] did.
There are two reasons for this: one is that these two pro-
cedures are computationally expensive; the other is that our
method inherently deals with sequences of different length.
That is why running the code of [36] took many hours while

the code of the proposed method ran for only several min-
utes.

Since hip joints were normalized as the origins, their co-
ordinates are always zero and were discarded. Instead of us-
ing the absolute joint positions directly, we used the veloci-
ties. This is because the bias of the temporal sequences has
a negative effect on the distance measurements. For each
frame, we concatenated the K − 1 joints into a 3(K − 1)-
dimensional column vector. Then, a Hankel matrix was
built for each sequence according to Equation 2.

There are two parameters: regularization number σ and
Hankel block row size r. In principle σ should be as small
as possible. However, too small σ may cause numeric prob-
lem and lead to lower accuracy. From our experience, a
range from 10−4 to 10−2 is good enough for all metrics
consideblack in this paper. We have observed better per-
formance with larger block row size r. However, it is con-
strained by higher computation cost and the length of the
shortest sequence. For example, the shortest sequence in
UTKinect dataset has just 4 frames, so the largest r we can
have is 4.

During training, based on a selected metric, we com-
puted the geometric mean of all the Gram matrices for each
class in the training set. During testing, a query sequence
was first converted to a Gram matrix. Then, distances be-
tween the query Gram matrix and the trained class means
were computed using the same metric. Finally, the query
sequence is labeled with the class label of its closest mean.

5.1. MSR Action3D dataset Experiments

The MSR Action3D dataset [22] contains skeleton joints
3D coordinates, which are used to classify actions. It has
20 actions. Each action was performed by 10 subjects. For
each subject, 20 joint locations were recorded. The main
challenges of this data set include noisiness of the trajec-
tories and similarity across actions. The original dataset
has a total of 567 sequences. However, following [39], 10
of these sequences were discarded due to having too much
noise. There are three different experimental protocols as-
sociated with this dataset.

The first protocol [22] divides the data into three subsets:
AS1, AS2 and AS3. Each subset has eight actions which
are similar to each other in some sense. The classification
is performed on the three subsets separately, and the aver-
aged accuracy is the final accuracy on the whole dataset.
As in [22], we divided the 10 subjects into half training set
and half testing set and run our classification algorithm 10
times with different splittings. Table 2 shows experiment re-
sults of our methods with different flavors. All distance-like
functions performed well closely. To some extent, larger r
brought higher accuracy at the cost of higher computation.
When r = 9, the accuracy of G-J is higher than the state-
of-the-art method by 2.13%. The run time of our methods



Table 2: Recognition accuracy (%) on MSR-Action3D dataset with σ = 0.01. r stands for Hankel matrix block row number.
AS1, AS2 and AS3 stands for Action Set 1,2 and 3, respectly; Avg stands for average of the three sets results; Prep., Train
and Test columns show the pre-processing, training and testing time for the whole dataset, respectively.

Method AS1 (%) AS2 (%) AS3 (%) Avg (%) Prep. Train Test Total Time
Subspace Angle [5] 56.86 57.59 75.63 72.21 5.0s 13.2h 3063.7s 14.1h
Covariance [17] 88.04 89.29 86.96 90.53 120.7s 114.9s 13.2s 248.8s
RF [42] - - - 90.90 - - - -
HOD [14] 92.39 90.18 91.43 91.26 213.0s 8.0s 4.4s 225.4s
Lie group [36] 95.29 83.87 98.22 92.46 - - - > 6h
DHMM-SL [32] 90.29 95.15 93.29 92.91 - - - -
RF+depth [42] 94.88 87.00 100 94.30 - - - -
HBRNN-L [11] 93.33 94.64 95.50 94.49 - - - -
JAS+HOG2 [28] - - - 94.84 - - - -
Hankelet [21] (r = 1) 80.73 64.25 89.92 78.30 1.4s 9.0s 0.6s 11.1s
Hankelet [21] (r = 3) 83.74 72.14 94.38 83.42 1.5s 63.9s 4.3s 69.8s
Hankelet [21] (r = 5) 82.45 79.81 92.50 84.92 1.6s 214.4s 14.5s 230.6s
Hankelet [21] (r = 9) 82.43 80.94 92.24 85.20 4.2s 716.5s 48.5s 769.3s
Hankelet [21] (r = 12) 79.14 80.39 90.19 83.24 6.2s 1333.2s 90.3s 1429.7s
G-A (r = 1) 94.54 77.68 96.17 89.47 1.4s 76.5s 7.3s 85.3s
G-A (r = 3) 97.89 88.81 97.60 94.77 1.6s 615.4s 50.3s 667.4s
G-A (r = 5) 98.75 92.44 97.78 96.32 2.2s 1813.7s 130.7s 1946.7s
G-A (r = 9) 98.74 93.94 97.95 96.88 5.7s 1.9h 460.8s 2.0h
G-A (r = 12) 98.44 94.56 97.86 96.96 8.0s 3.3h 735.8s 3.5h
G-J (r = 1) 94.45 77.95 96.79 89.73 1.4s 13.1s 2.4s 16.5s
G-J (r = 3) 97.79 90.06 97.60 95.15 1.4s 105.1s 11.4s 117.9s
G-J (r = 5) 98.17 92.43 97.87 96.16 1.9s 269.7s 31.1s 302.8s
G-J (r = 9) 98.66 94.11 98.13 96.97 4.8s 1009.8s 117.5s 1132.1s
G-J (r = 12) 98.46 94.20 98.13 96.93 8.3s 1965.9s 247.5s 2221.9s
G-L (r = 1) 94.53 75.99 95.99 88.84 1.4s 1.3s 19.4s 22.2s
G-L (r = 3) 97.90 88.53 97.60 94.67 1.5s 7.7s 135.4s 144.6s
G-L (r = 5) 98.46 92.00 97.60 96.02 1.7s 22.5s 390.6s 414.9s
G-L (r = 9) 98.36 93.42 97.77 96.52 5.1s 93.7s 1443.3s 1542.2s
G-L (r = 12) 97.87 93.94 97.59 96.47 8.2s 183.1s 2676.2s 2867.8s
G-K (r = 1) 93.86 72.64 96.08 87.53 1.4s 0.7s 4.1s 6.2s
G-K (r = 3) 97.61 87.76 97.69 94.35 1.5s 4.8s 26.1s 32.5s
G-K (r = 5) 97.59 91.50 97.78 95.62 1.7s 13.6s 89.8s 105.3s
G-K (r = 9) 96.92 93.69 97.33 95.98 5.7s 49.4s 365.4s 420.6s
G-K (r = 12) 95.96 94.66 96.90 95.80 8.9s 89.3s 741.0s 839.4s

Figure 3: Recognition confusion matrices of MSR Action3D dataset. (Left: AS1; Ctr.: AS2; Right: AS3)



Table 3: Recognition accuracy on MSR-Action3D dataset
following protocol of [36], r = 12, σ = 0.01. Prep.,
Train and Test columns show the pre-processing, training
and testing time for the whole dataset, respectively.

Method Acc.
(%)

Prep. Train Test Total
Time

Occupancy[38] 86.50 - - - -
Actionlets[39] 88.20 - - - -
HON4D[29] 88.89 - - - -
H-HMM[31] 89.01 - - - -
DHMM-SL[32] 89.23 0.8s 10.5h 8.6s 10.5h
Lie[36] 89.48 - - - >6h
Pose1[37] 90.22 - - - -
Pose2[12] 91.50 - - - -
Pose3[41] 91.07 - - - -
Traj.Shape[10] 92.10 - - - -
G-K 93.68 7.3s 69s 1452s 1529s
G-L 94.38 7.6s 154s 1.6h 1.7h
G-J 94.71 7.3s 1513s 506s 2026s
G-A 94.74 7.2s 2.7h 1523s 3.1h

Table 4: Recognition accuracy on MSR-Action3D dataset
following protocol of [29], r = 9, σ = 0.01; Prep., Train
and Test columns show the pre-processing, training and
testing time for the whole dataset, respectively.

Method Acc. (%) Prep. Train Test Total
time

HON4D[29] 82.15±4.18 - - - -
elastic[1] 85.16±3.13 - - - -
mot.Traj.[10] 87.28±2.99 - - - -
G-K 88.80±2.75 4.9s 962s 5.2h 5.4h
G-L 90.07±2.51 5.9s 2777s 30.7h 31.4h
G-J 90.16±2.89 5.8s 13.3h 2.7h 15.9h
G-A 90.35±2.66 5.8s 23.8h 4.9h 28.7h

is also shown. We observed that G-K is fastest in total time
and in training, and G-J is the fastest in testing.

In the second protocol [36, 39], subjects are randomly di-
vided into halves for 10 times. Each time 5 subjects are used
for training and the rest subjects for testing. The experiment
results using this protocol are shown in Table 3. The con-
fusion matrix is shown in Figure 4. The proposed method
using all four metrics performed better than the state-of-the-
art methods and the best improvement is 2.64%. The last
protocol [29] also uses half of the subjects for training and
the rest for testing. Instead of picking randomly, the au-
thors experimented on all possible 252 splits and reported
the average accuracy and the standard deviation. The re-
sults following this protocol are shown in Table 4. Again,
the proposed method performed the best.

Figure 4: Recognition confusion matrix of MSR-Action3D
dataset following protocol of [36]

5.2. MHAD dataset Experiments

The Berkley MHAD dataset contains 11 actions in 659
sequences performed by 12 subjects. Each skeleton has 35
joints and the sequences are 480 frames per second. Fol-
lowing the protocol of [26], we used the first seven sub-
jects for training and the last 5 for testing. Table 5 com-
pablack recognition accuracy and running time for the pro-
posed method against the state-of-the-art methods. The pa-
rameters were set as r = 5, σ = 0.0001 for all methods.
With G-K, the performance is 100% accuracy in only 52
seconds. The results show that the proposed method is both
effective and efficient.

Table 5: Recognition accuracy on MHAD dataset, r =
5, σ = 0.0001; Prep., Train and Test columns show the pre-
processing, training and testing time for the whole dataset.

Method Acc.
(%)

Pre Train Test Total
time

SMIJ [27] 95.37 - - - -
RBF Net [35] 97.58 - - - -
Dynemes [19] 98.18 - - - -
Bio-LDS [7] 100 - - - -
HBRNN-L [11] 100 - - - -
G-L 97.45 5.1s 10.2s 169.1s 185.5s
G-J 97.45 5.1s 134.1s 13.1s 153.8s
G-A 98.18 5.1s 1044.9s 49.6s 1099.8s
G-K 100 5.1s 3.9s 41.3s 51.8s



Table 6: Classwise recognition accuracy (%) and running time (in seconds) for the UTKinect dataset. Performance is com-
pablack against the Hankelets subspace angles [21], Hankelet-based HMM [31], 3D joints [40], and Space-time pose [9]
methods. Prep., Train and Test columns show the pre-processing, training and testing time for the whole dataset, respec-
tively.

Walk S.Dwn S.Up P.Up Carry Throw Push Pull Wave Clap Avg Prep. Train Test Total
Time

[21] 60 40 75 80 75 70 80 85 70 85 71.9 0.4s 280s 0.7s 281s
[31] 63.2 100 100 100 83.3 61.1 90 100 85 85 86.8 - - - -
[40] 96.5 91.5 93.5 97.5 97.5 59.0 81.5 92.5 100 100 90.9 - - - -
[9] 90 100 100 100 68.4 95 90 100 100 80 91.5 - - - -
G-J 100 85 100 100 100 100 100 100 100 100 98.5 0.5s 192s 1.7s 194s
G-L 100 85 100 100 100 100 100 100 100 100 98.5 0.5s 14.7s 17.1s 32s
G-A 100 100 100 100 100 100 100 100 100 100 100 0.5s 1365s 5.9s 1371s
G-K 100 100 100 100 100 100 100 100 100 100 100 0.5s 8.0s 4.4s 13s

5.3. UTKinect dataset Experiments

The UTKinect-Action dataset [40] is an action classifi-
cation dataset based on 3D skeleton joints positions. It con-
tains 10 actions: walk, sit down, stand up, pick up, carry,
throw, push, pull, wave hands and clap hands. Each action
was performed by 10 subjects, for two instances. In total, it
has 199 sequences (one instance of a subject is missing).

To evaluate our results we followed the leave-one-out-
cross-validation (LOOCV) protocol which was proposed by
the original paper which provided the dataset [40]. Table 6
shows the accuracy performance and the time taken using
the methods from [21, 31, 40, 9] and the proposed approach.

We can see that the proposed approach achieves the best
performance. In particular, using KLDM achieved 100%
accuracy in only 13 seconds. Note that [42] and [36] also re-
ported high accuracy with this dataset. However, they used
a different protocol, so we did not include them in Table 6.

5.4. HDM05 dataset Experiments

The HDM05 dataset [25] is a motion capture dataset
which contains 3D locations of 31 skeleton joints of hu-
man subjects. We applied our methods on this dataset using

Table 7: Experiment on HDM05 dataset using the protocol
in [14]. In the proposed methods we used the parameters
r = 5, σ = 0.01.

Methods Acc (%) Prep. Train Test Total
time

SH -SVM [16] 73.3± 11.4 - - - -
R-VLAD [13] 79.1 ± 7.5 - - - -
G-A 87.0 ± 4.7 5.6s 29.7s 1.1s 36.4s
G-J 87.3 ± 4.3 5.6s 4.7s 0.3s 10.7s
G-L 88.0 ± 6.3 5.6s 0.9s 5.5s 12.0s
G-K 86.3 ± 5.6 5.6s 0.3s 0.6s 6.5s

the protocol in [16], which included 14 different actions and
used 4 joints corresponding to arms and legs. In the classi-
fication setup, 4 out of the 5 subjects were used for train-
ing and the remaining one for testing. Again, all proposed
methods outperform existing ones.

6. Conclusions
Temporal sequences are ubiquitous in computer vision

and are a rich source of information that can be used for a
wide range of applications ranging from tracking to action
recognition to event detection. However, effectively tapping
this information requires having suitable inference tools to
compare, cluster and classify temporal sequences. Inspi-
black by recent results in activity recognition and advances
in computing distance-like function on the Positive Defi-
nite manifold, we proposed a new framework to perform
temporal inferencing. The main idea of the proposed ap-
proach is to first represent the data using regularized Gram
matrices derived from their Hankel matrices and then using
some metric to compare/classify them on the PD manifold.
We illustrated the benefits of this framework by classify-
ing real 3D joint data for human action recognition. Our
experiments showed that this simple approach gives com-
petitive or better than state-of-art results for the problem
of human action recognition using 3D joints data. More-
over, consistent numerical experience shows that these re-
sults are largely independent of the actual metric used, indi-
cating that these advantages stem from embedding the data
in the PD manifold and exploiting its structure.
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