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Abstract— This paper considers the problem of switched
Wiener system identification from a Kernel based manifold
embedding perspective. Our goal is to identify both the Kernel
mapping and the dynamics governing the evolution of the data
on the manifold from noisy output measurements and with
minimal assumptions about the nonlinearity and the affine
portion of the systems. While in principle this is a very
challenging problem, the main result of the paper shows that
a computationally efficient solution can be obtained using a
polynomial optimization approach that allows for exploiting
the underlying sparse structure of the problem and provides
optimality certificates. As an alternative, we provide a low
complexity algorithm for the case where the affine part of the
system switches only between 2 sub models.

I. INTRODUCTION

During the past few years a large research effort has been
devoted to the problem of identifying switched affine systems
from experimental data (see for instance [18], [8], [1], [2],
[61, [7], [13], [15], [16], [17], [21] and references therein for
a summary of the difficulties involved in this problem and
different approaches to overcome them).

Switched affine systems arise in a wide spectrum of
applications, ranging from manufacturing processes, biology
and communication systems to computer vision. In addition,
since piece-wise affine models are known to be universal
approximators [3], they provide a tractable “poor man’s”
non-linear identification framework. Note however, in many
cases obtaining low error piece-wise affine approximations
of non-linear systems requires a large number of sub-models.
Thus, while conceptually appealing, since the computational
complexity of most algorithms scales exponentially with
the number of models, from a practical stand-point, this
idea is limited to relatively small-sized problems. On the
other hand, identification of full blown, switched non-linear
systems is an intractable problem. As a compromise between
these two extremes one can consider certain classes of non-
linear systems, with the expectation that they will lead to
tractable problems while still retaining features not easily
captublack by piece-wise affine models. In this paper we
will consider a specific class of non-linear switched sys-
tems, Wiener systems, composed of the cascade of a piece-
wise affine switched system and a memoryless non-linearity.
These systems are interesting in their own, not only in
control theory, but also in related fields such as machine-
learning. For example, in activity recognition applications,
the information about the activity being performed is usually
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encapsulated in the piece-wise affine dynamics (each sub-
model corresponding to a sub-activity), while the nonlinear-
ity accounts for nuisance factors, such as view-points. A
similar situation arises in computer vision when tracking
targets across multiple cameras with different viewpoints.
In addition, when approximating non-linear processes, using
switched Wiener models (rather than linear ones), allows
for leveraging the properties of the underlying nonlinear
systems while leading to problems that still retain some
of the computationally attractive properties of the piecewise
affine case.

Identification of Wiener systems has been a very active
research topic, but very few of these results apply to switched
systems. Indeed, to the best of our knowledge, this case
has been explicitly considered in [12], [23], [28], with [23]
and [28] considering only switching non-linearities, while
[12] proposed a general kernel based method for identifying
switched non-linear systems. While the latter has been shown
to be efficient in many scenarios, it requires knowledge of
a set of suitable kernel functions and does not exploit the
specific Wiener structure. As an alternative, in this paper
we propose a polynomial optimization based method for
identifying switched Wiener systems from experimental data
and some very general information about the structure of the
non-linearity. Motivated by the work in [26], [27] for identi-
fication of time-invariant Wiener systems, we will search for
a manifold embedding of the observed data that preserves
the local geometry and such that the embedded data evolves
according to piece-wise affine dynamics. Note that allowing
for switching (rather than time invariant) dynamics on the
manifold leads to considerably more complex, generically
NP hard problems. However, as shown in the paper, the
problem can be recast as a (generically non-convex) polyno-
mial optimization problem that can be relaxed to a sequence
of computationally tractable semi-definite programs. Finally,
when compared against [12], while both methods are kernel
based, the main differences are the facts that, rather than
postulating a specific kernel, our method identifies it from
the experimental data, and that it explicitly exploits the piece-
wise linear nature of the manifold dynamics.

II. PRELIMINARIES

A. Notation
R set of real numbers
N set of non-negative integer numbers

I identity matrix



Xpt4q short notation for [x;,---,X,44], where x;
is the sequence x at time ¢

£ estimated model parameter at time ¢

t; estimated model parameter of system i

K kernel matrix of {xp,---,x,}, K& R"",
Kij=x/x;

vec(tril(K))  vectorized lower triangular portion of K

v (X) Veronese map of x at degree-n, a vector

containing all degree-n monomials of x.
B. Background on polynomial optimization

Next, we briefly summarize some key results in poly-
nomial optimization that will be used to obtain tractable
relaxations of the switched Wiener identification problem.
The interested reader is refered to [11] for details. Consider
a polynomial optimization of the form:

pé = m1n1rrcnzep Zpav (1)
where v* = y{"v5?2...v% and the semi-algebraic set C C
R" is defined by the polynomial inequalities g(v) =
X5 gk,ﬁvﬁ >0, k=1,---,d. While this problem is non-
convex, [10] showed that is equivalent to the following
(infinite-dimensional) convex one:

pe= mlmmlze / p(v minil}nizeZpama ()

o

where Z(C ) is the space of probability measures on C and

g, = /C Ve (dv) 3)

is the moment of v* with respect to the distribution p. Note
that the objective function in (2) is affine in m = {mq,Vor}
and, as shown in [10], the condition for the existence of a
measure [ supported in C such that (3) holds can be written
as (infinite dimensional) semi-definite constraints M(m) > 0
and L(gym) = 0, k=1,...,d, where M and L (the moment
and localizing matrices, respectively) are affine in m. A
finite dimensional sequence of approximations to problem (2)
can be obtained by considering truncated versions of these
matrices are given by [10]:

MN( )(’]) +a,)7v1,]—1 Y
LN l_deéree gk)-‘(gkm i .] ng Bmﬁ+(x()+a J)s (4)
Vl, ] = 1, ces 7SNi(deg_;reze(g,'k)]

where Sy = (e.g. the number of moments in R” up

N-+n
n
to order N) and the moments have been arranged according
to grevlex ordering of the corresponding monomials so that

0=al) <.. . <al,

It follows that problem (1) can be reduced to a sequence
of Linear Matrix Inequalities optimization problems of the
form

P;:/ = Yo Pama
s.t. MN(m) =0, ®))

d
Ly _pdearctsy)  (8im) = 0,9

minimize
m

Memoryless
Nonlinearity [——

() y

Switched
AR model

Fig. 1.

Switched Wiener system model

Further, as N increases, py, T p¢- from below monotonically.
Finally, if for some finite N, My > 0, My4; = 0, and
rank(My) = rank(My1), then py; = p¢.

Exploiting the Sparse Structure. The problems considered
in this paper exhibit a special sparse structure that can be
exploited to reduce the computational complexity entailed in
solving (1).

Definition 1: Consider problem (1) and let [, C {1,...,n},
for k=1,...,l, be the set of indices of variables satisfying
Ut I = {1,...,n}, such that each g;(v) contains variables
only from some J;. Assume that the objective function p(v)
can be partitioned as p(v) = p1(v) +...+ p;(v) where each
pr contains only variables from [;. Problem (1) satisfies the
running intersection property if there exists a reordering I/

of I; such that for every K =1,...,1—1:
k/
Ly N UI]- C I, for some s <k’ (6)

Jj=1
As shown in [9], when this property holds, it is possible
to construct a convergent hierarchy of semidefinite programs
of smaller size:

*

py = minimize Y\ Yo(j) Pa()Ma())
st Mym®) = 0¥, (7)
L sy (gem®) = 0,0,
-t

™ monomial in

where p; () is the coefficient of the o(;)
the polynomial pj, My(m®)) denotes the moment matrix

and L/ o (gem®) is the localizing matrix associated

with the constralnt gk(v) > 0. Thus, for a given N, this
approach requires considering moments and localizing ma-
trices containing O(k?") variables, where k is the maximum
cardinality of v{¥), rather than O(n?"). Since in the problems
considered in this paper k < n this leads to substantial
complexity reduction.

degree
N-|

IIT. PROBLEM FORMULATION

Consider the model shown in Figure 1 consisting of a
system described by a switched AutoRegressive (AR) model
followed by an unknown memoryless nonlinearity. We will
only assume that this nonlinearity is locally (but not globally)
invertible and that bounds on its local gain and that of its
inverse are available. In this context, our goal is to identify
the parameters of each AR submodel from the observed data
y. Specifically:

Problem 1: Given:



1.- A sequence of measurements {y;} ;, possibly cor-
rupted by additive noise with known bound €.

2.- A neighborhood parameter k, which defines a neigh-
borhood matrix F € R™" with entries F;; € {0,1},
where F;; =1 when y; is within the k nearest neighbors
of y;.

3.- Upper and lower bounds on the local gain of the
nonlinearity, that is constants c¢; and ¢ such that

1
ahi [[x; = Xjl2

1
—xjll2 > llyi—yjll2>—
e

3
for all (i, j) such that F;; =1 or [FTF]ij =1

4.- Bounds p on the number of affine subsystems and g
on their order.

Find the internal signal sequence {x,}, and coefficient vector
#; € Rt ic {1,---,p} such that for each data segment

X(1:14q) there exists at least one vector £(") € {f1,---,%p} such
that X, F") = 0 holds.

IV. MAIN RESULTS

In this section we present the main results of the paper: a
computationally tractable algorithm for solving Problem 1,
with optimality certificates. This algorithm will be obtained
by firstly recasting Problem 1 into a polynomial optimization
form and then using the results from section II-B to obtain a
sequence of convex relaxations. Finally, the desired compu-
tationally efficient algorithm will be obtained by exploiting
the underlying sparse structure of the problem and noting
that the resulting relaxations are exact provided that certain
submatrix, involving only a relatively small subset of the
total number of variables, is rank 1. For simplicity, we will
consider first the noiseless case and defer the treatment of
noisy measurements until Section IV-D.

A. A polynomial optimization reformulation

Note that, by introducing binary indicator variables s; €
{0,1}, the condition that there exists at least one ¥, €
{t1,---,fp} such that X4, = 0 holds can be expressed
as feasibility of the constraint set

Zlesft)f‘,', P S(I):l

X(r:t+q)f<t) =0,1 = i=1%i 9)

2 _ o\
Sit = Sify Vi

Clearly, with this observation Problem 1 is equivalent
to establishing non-emptiness of the semi-algebraic set

({Xl}[ 1a{rl i= 1,{1'1}?;{],{5‘,'7[ lpzﬂl;qzl) deﬁned by

£ 8 =1, (10a)

(1)2r2(1)2"’2f'p(1)20 (10b)

Slyi—yill3 > [Ixi—xjl5 > cillyi—yjl5 for all(lo )
(i, j) such that F;; =1 or [F'FJ;; =

Xpit+qht = 0,F = Zf ]Si,tl'i, Elpzlsi,t =1, Vtzl (10d)

Sig = 870, V0 V] (10e)

where (10a) and (10b) were added to avoid the trivial solution
and to eliminate the ambiguity caused by the symmetry of
the solution (#;(j) denotes the j-th entry of £;).

A potential difficulty with the formulation above is that it
explicitly uses the (unknown) manifold data x. While this ap-
proach will work well for relatively small data sets, it quickly
becomes intractable, due to the potentially large number of
variables involved. To avoid this difficulty, rather than using
(10) we will use the kernel based reformulation presented
below. Since this formulation uses the inner products X! x;,
it can comfortably handle situations where the dimension of
the embedded data is not small. To this effect, consider a
matrix K with entries K;; = xl-Tx j and note that:

i — ;15 = x/"xi % x; — 2%/ x; = Kj; + K; — 2K;; (1)
and that
Xpipqfr =0 = xl Xpppqtr = 0,V _, (12)
= Kipigbr =0,V _,
fort=1,--- ,n—gq. These observations lead to the following

problem in the elements of K rather than x:

£ 8 =1,v" (13a)
(1) >82(1) > > ,(1) >0 (13b)
Kii +K;; —2K;; > ¢f|lyi — |3, and
K;i+K;; —2K;; < c3|lyi—y,|j} forall  (13c)
(i, /) such that F;; =1 or [F'F;; =1
K>0 K;=K;;,VL 1\1’% ) (13d)
Ky/ s gfr =0, _ Vi (13e)
F =20 i, X s =1, V] (13f)
Sip = 7, V0 V] (13g)

where the constraint (13d) has been added to guarantee
that K is indeed a kernel matrix.

In principle, the problem above could be solved using
the moments-based techniques mentioned in Section II-
B. However, this approach quickly gets intractable due
to the complexity entailed in enforcing the positive semi-
definiteness of K, which requires the determinants of all
its leading principal minors to be nonnegative, leading to
polynomials constraints of high degree, which in turn require
considering high order relaxations, since the order of the
relaxation must be at least as large as 0.5 x (the highest degree
of monomials in the problem). To circumvent this difficulty,
next we develop computationally tractable algorithms by
exploiting the sparse structure of the problem.

B. A sparse reformulation

In this section we show that problem (13) above exhibits
the running intersection property and thus, as indicated in
Section II-B can be solved by considering a reduced set of
constraints. To establish this fact, denote all the variables
in (10) by v = {vec(tril(K)),R,R,S}, with R = {f;,i =

phLR={F,t=1,....n—q},andS={s;,t=1,...,n—
q} st ={sis,i=1,...,p}. Next, partition v into the n —g+1
sets as follows

V0 = frec(uil(K)) R}

v() = {vec(tril(K)), R, ¥,8, },V/_ (14

tl’



and partition the set Cx in (13) into

) :{(13a) — (13d)}
K si4qt =0,V
S _smv, |
X5y =1
It is easy to check that for each r = 0,1,...,n — g, the

constraints in set C*) contain variables only in v(*) and that

vin (U,’C v ) = {vec(tril(K)),R} = v{*) (16)
holds for each j=1,...,n—q. Thus, the running intersection
property holds. From the results in [9] and Section II-B, it
follows that problem (10) can be solved via finding a feasible
solution m") to the following reduced-sized relaxation:

My (m) = 0,V an
Ly_1(gx,m®") = 0,v"7,

where g ; denotes the constraints in the set C® (15) and m®
represents the moments sequence associated with variables in
v up to order 2N. Comparing to using the moments matrix
associated with all the variable v, (17) reduces the size of
the positive semidefinite matrices dramatically, specially for
problems involving long data records (large n).

C. A Computationally Tractable Relaxation

An additional reduction in computational complexity can
be achieved by exploiting the fact that, for a rank-1 moment
matrix, there always exists an associated probability measure
composing of a single atom, precisely at the location given by
the first order moments of the distribution. This fact allows
for considering only the first order relaxation, subject to an
additional rank constraint on the moment matrix.

Theorem 1: The nonconvex problem (13) is equivalent to
finding a feasible solution to the following set

M;(m")) = 0,v,7,
Lo(ge,m") i 0,v/ 24,
Rank{M; (m( )} =1,v,{
Proof: Suppose that {m()*}""¢ is a feasible solution
to (18). (18)=-(13) follows from the fact that the elements
corresponding to the first order moments of the variable of
v in m®* are a feasible solution to (13). Suppose now
that v* is a feasible solution to (13). Partitioning v* into
{v0*}"=4 as in (14), the sequence m")* consisting of all
the monomlals of v)* up to order 2 is a feasible solution to
(18), therefore, (13)=- (18) holds. |
The result above, while leading to substantial computa-
tional complexity reduction, still requires enforcing a rank-
1 constraint on n— g+ 1 relatively large matrices. As we
show next, surprisingly, rather than enforcing this condition,
it suffices to enforce sparsity of the solution to the binary
variables s;;, together with a rank-1 constraint on a single
matrix involving a reduced set of variables.

(18)

Lemma 1: For a 3 x 3 symmetric matrix M denoted by

M,
M =
{ My,

my
mi2

;319

1 m
M | _ mi m111
My,

my miy | mxn

if M = 0 and rank{M;; } = 1, then m 2 = m;my holds.
Proof:  Since rank{M,;} = 1, then m;; = m}. Since
M = 0, det(M) > 0. On the other hand, det(M) = —(my —
m1m2)2 < 0. Thus, det(M) =0, and m» = mymy. |
Theorem 2: Problem (18) is equivalent to finding a feasi-
ble solution to

M;(m®)) = 0,v"_
Lo(gr,m®") = 0,v/_7,

_ 20
Rank{M;(m©®)} = 1,v"7, 20)
m(s”) € {0,1},v_ ¥
Proof: Omitted due to space constraints [ ]

The nonconvex sparsity and rank-1 constraint in (20) can
be handled by resorting to an iterative algorithm [4], [20],
leading to Algorithm 1.

Algorithm 1 Moments-Based Convex Certificates for (10)
1: Initialize: j=0,0< 8 < LW =L w) =1,v7_ v'¢

r=1>

2: repeat
3:  Solve

S () 0) AT N

minimize trace{WYV/Mi(m'V)} + 4 ¥ Y w; ' m(sis)
m t=1i=1
st. Mj(m®)=0,v"J,
Lo(gx,m") = 0,v/ ¢
(2D

4:  Update

WD = [M; (m(©)) + 6, (M, (m©)D))p) !

wiy " = m(si) ) 48]

j=j+1

5: until 6,(M;(m®)()) < 1 and Sg) ~1 or 0.

In Algorithm 1, 0>(e) denotes the second largest singular
value of the matrix e. If the optimization above converges
to a rank-1 matrix M(m(®)) and variables s;, € {0,1}, we
automatically get K, £y, and sy.,_,. The indicator variables
Si:n—g give the discrete labels of each data point, that is,
which subsystem generated it. £;, gives the model parameter
of the ith subsystem, where i = 1,---, p. Finally, if needed,
the embedded data x can be recovered either by performing
a spectral factorization on K as in SDE [25] or a Cholesky
decomposition. In the former case, let [U,S, V] = svd(K) and
let R be the thresholded S which keeps only the 1ar$e singular
values. Then, we get the embedded data: x = R2V. In the
latter case, let LTL = K, then we get x by eliminating the
all-zero rows of L.

D. The Noisy Case

Next, we briefly indicate how to modify the proposed
algorithm to handle noisy measurements. Assume that the



measured data y is corrupted by additive /. bounded noise
e, with ||e|l. < €; In this case we have:

lyi+ei—yi—ejll3 =Ilyi—y,ll5+]le;—ejll3
+2(yi—y;) (ei—e))
<|lyi —y,ll5 +4de* +4ellyi -y,
lyi+ei—yj—ell3 > Ilyi—y;l3—4elyi -yl

where d is the dimension of the output data. Proceeding as in
Section I'V-A leads to solving the feasibility problem similar
to (13) except for replacing the constraint (13c) by

Kii+Kjj —2K;; > cf[[(lyi — ;] — 4€]lyi —yjll1)) and
Kii +K;; —2Ki; < &5 (||yi — ;i[5 +4de? +4elyi - yjl1)
for all (i, j) such that F;; =1 or [F'F];; =1
(23)
Clearly, the problem above can be solved using the same
algorithm outlined in Section IV-C.

V. A Low COMPLEXITY METHOD FOR THE
2-SUBSYSTEMS CASE

In this section we derive a low complexity algorithm
for the case where the model only switches between two
candidate systems.

A. The Noiseless Case

In this section we derive a low complexity algorithm
for the case where the model only switches between two
candidate systems. Note that when p = 2, searching for a
feasible solution to (13) is equivalent to looking for a feasible
solution to the constraint set Cx »(K,1,#2,X) given by

£ 75 0,f’2 7& 0 (24a)
Constraint (13c¢) (24b)
Constraint (13d) (24¢)
Kij =x/ x;,V{_ | Vi_, (24d)
(Xt:t+qf'l )T (Xt:t+qf2) =0, v:l:_lq (24¢)

Rewriting the last condition in terms of the Veronese map
yields:

(Xt:t+qf'1 )T(Xr:t+qf'2) = VZ(Xt:t+q)f' = [ o 7Kij7 " }f' =0 (25)

(g+2)(g+1)

where i,j =t,---,t+q and f € R™ 2
consisting of the outer product of £; and ;.
Define the matrix

is the vector

Vo= [VZ(Xl:lJrq)T VZ(anq:n)T]T (26)

From (25) we note that the entries of V, are a subset of the
elements of K and that V,# = 0, which implies that V; is
rank deficient. Thus, in principle, in this case Problem 1 can
be solved by seeking rank deficient V, to (24). However,
this approach can lead to high rank kernel matrices, which
in turn implies high dimensionality of the embedded data x.
To avoid this situation, we will add a regularization term that
penalizes the rank of K, leading to the following optimization
problem:

va(X0:014)"

minilgnize rank(V;) 4+ Arank(K)

. (27)
s.t. Constraints (13c) and (13d).

B. The Noisy Case

As before, the noisy case can be handled by simply
modifying the constraint (13c) to include the noise effects,
leading to the optimization problem:

rank(V7) + Arank(K)
s.t. Constraints (23) and (13d).

minimize
K

(28)

We can use reweighted rank minimization algorithm in [5]
and [20] to solve the above problems (27) and (28) iteratively.
As mentioned in Section IV-C, we can either perform spectral
factorization on K or Cholesky decomposition, to get the
embedded data x. Since we do not have indicator variables in
the model, we have to get the subsystem labels from either
K or x. This can be accomplished by applying the same
post-processing method proposed in [24] in the context of
GPCA: Form the embedded data matrix V, from K, take
derivatives with respect to x and perform a normalized cuts
on the derivative vectors.

Remark 1: The approach outlined above can be applied to
the case of more than two candidate systems by considering a
sliding window. If in each sliding window there are no more
than two systems, then the problem can be solved locally for
the two subsystems active in each window.

VI. ILLUSTRATIVE EXAMPLE

In this example, we generate 20 data points from a
switched Wiener system consisting of two order-2 sub-
systems cascaded with a sigmoid function. The regressors
of the two systems are r; = [—1,—1.1329,—1] and r; =
[-1,—0.1250,—1]. The first two data points are initialized
randomly. Then we use r to generate data points 3 to 4, then
r; to generate 5 to 11, then ry, 12 to 17, then r,, 18 to 20.
The data are normalized to range between -1 and 1. Then,
each element of the data points is passed through a sigmoid
function f(f) = # If we define the sigmoid function
only in the domain of [—1,1], it is Lipschitz continuous
with Lipschitz constant 0.25. Similarly, the inverse sigmoid
function is also Lipschitz continuous with Lipschitz constant
5.09. Therefore, c; =4 and ¢, = 5.09. Then, we add uniform
noise with bound 0.01 to the output signal. This data serve
as the observations given to identify the switched system.

The identification result using the moment method is
shown in Figure 2. The subsystem identity is obtained
from the indicator variables. The recovered models are 1} =
[1,0.1168,1] and £, = [1,—1.1316, 1]. If we flip the sign, they
are very close to the ground truth regressors. The error of the
parameters are ||(—f;) —ry|[2 =0.0012 and ||(—F2) —r2|» =
0.0081. The identification result using the low complex-
ity method described in Section V is shown in Figure 3.
The recovered models are £; = [—1,—0.0564,—0.9922] and
2 =[—1,1.0997,—1.0098]. The error of the parameters are
Hf'1 —I H2 =0.0345 and ||f‘2 — 1‘2”2 = 0.0690.

VII. CONCLUSIONS

This paper considers the problem of switched Wiener
system identification from a Kernel based manifold embed-
ding perspective. The goal here is to jointly identify the
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Fig. 2. Identification using the moment based method with noisy data
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Fig. 3. Identification using the method from section V with noisy data

Kernel mapping and the dynamics governing the evolution
of the data on the manifold. While in principle this is a
very challenging non-convex optimization problem, the main
result of this paper shows that a computationally efficient
solution can be obtained by recasting the problem into
a polynomial optimization form that can be solved using
moment-based techniques. Notably, this approach allows for
exploiting the underlying sparse structure of the problem and
guarantees that an optimal solution has been found if a matrix
involving only a subset of the variables has rank one. As
an alternative, we provide a low complexity algorithm for
the case where the affine part of the system switches only
between 2 sub models.
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