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Abstract— This paper considers the problem of determining
whether two pairs of (noisy) time sequences (u,y) are behaviors
of the same (unknown) underlying system. That is, whether
these pairs are admissible input/output trajectories for some
suitable initial condition. This problem is relevant to many
practical scenarios arising not only in the context of control
and systems identification, e.g. model (in)validation and fault
detection, but also in other fields, including computer vision
and image processing. Our main result shows that this prob-
lem can be reduced to minimizing the Jensen-Bregman log-
det divergence between two suitable constructed Grammian
matrices, a problem that can be efficiently solved using recently
introduced methods. This result is illustrated with two non–
trivial examples: activity recognition from video sequences and
fault detection in a bearing rig.

I. INTRODUCTION AND MOTIVATION

A large number of practical scenarios require determin-
ing whether two given (noisy) pairs of time series can
be considered to be input/output trajectories of the same
system, for some unknown initial conditions. For instance,
this problem is a pre-requisite to data-driven identification
of piece-wise affine models, where usually the first step is
to determine regions where the experimental data can be
explained by a single model. In addition, this problem also
arises in the context of fault detection, since typically faults
cause a change in the underlying dynamics and thus a single
system cannot explain the observed data record. A similar
reasoning can be used in video-analytics to detect anomalies
from video sequences. Finally, by postulating that activities
are manifestations of the same underlying dynamics, this
approach can also be used for activity classification (see for
instance [2] and references therein).

Formally, the problem above can be stated as a behavioral
model (in)validation problem and solved using tools devel-
oped in this context. For instance, it is possible to use a two-
step approach based on (i) first finding the most powerful
unfalsified model [3] that explains one of the sequences
and (ii) establishing whether this model admits the second
sequence as a behavior. While this approach works well with
clean data, it may fail in the presence of measurement noise.
Noisy sequences and model uncertainty can be handled by
pursuing the rank-minimization approach proposed in [8].
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Since rank minimization is known to be NP-hard, a convex
relaxation, based on using the nuclear norm as a surrogate
for rank, is used instead. Thus, there is no guarantee that this
approach will, in all cases, correctly label the behaviors.

To avoid these difficulties, in this paper we propose an
(in)validation approach based on computing the Jensen-
Bregman log det divergence between Gram matrices built
from the experimental data. As in [8], the paper is based
on earlier results from subspace identification theory [4],
relating the input/ouput Hankel matrices of an LTI system.
However, rather than using these results to directly compare
ranks, as in [8], in this paper we show that two behaviors
originate from the same system if and only if the distance (in
the Jensen-Bregman log det sense) between suitable regular-
ized Gram matrices is finite, and relate the distance between
trajectories to the distance between initial conditions. This
leads to an (in)validation algorithm based upon searching
for a positive semi-definite matrix (related to the noise) that
minimizes the distance between the “denoised” trajectories.
An advantage of this approach is that this minimization
problem is convex in cases where the distance between
initial conditions is not too large (in a sense precisely
defined in the body of the paper). Further, even in cases
where this condition fails, efficient solution methods exist
based on “convex plus concave” decompositions [9]. The
paper finishes by illustrating these results with an academic
example and two realistic problems: activity recognition and
anomaly detection.

II. PRELIMINARIES

For ease of reference, we summarize next the notation
used in the paper and recall some results required to recast
the invalidation problem into a convex optimization form.

A. Notation

R set of real numbers
x,M a vector in Rn (matrix in Rn×m)
MT transpose of matrix M.
σM maximum singular value of M.
σM,i ith singular value of M.
|M| determinant of M.
M⊥ (right) annihilator of M: MM⊥ =

0 and (M⊥)TM⊥ = I



M � N the matrix M − N is positive
semidefinite.

Sn set of symmetric matrices in Rn×n
Sn+(Sn++) cone of positive-semidefinite

(-definite) matrices in Sn
dim(X) dimension of the subspace X
E(X) expected value of a stochastic matrix

X.
Jld(X,Y) Jensen-Bregman Log Det Diver-

gence:

Jld(X,Y) = log

∣∣∣∣X + Y

2

∣∣∣∣−1

2
log |XY|, X,Y ∈ Sn++

Hm,n
y (Tn

y) Hankel (Toeplitz) matrix associated
with a vector sequence y(.):

Hm,n
y

.
=


y(0) y(1) · · · y(m)
y(1) y(2) · · · y(m+ 1)

...
...
. . .

...
y(n) y(n+ 1) · · · y(m+ n− 1)



Tn
y

.
=


y(0) 0 · · · 0
y(1) y(0) · · · 0

...
...
. . .

...
y(n− 1) y(n− 2) · · · y(0)


ΓA,C Observability matrix associated with

the pair (A,C).

ΓTA,C
.
=
[
CT (CA)T . . . (CAi)T . . .

]T
For simplicity, the dimensions of H and T may be omitted,
when clear from the context. Further, by a slight abuse of
notation, given a strictly proper plant G with state space
representation:

x(k) = Ax(k) + Bu(k),
z(k) = Cx(k),
y(k) = z(k) + v(k)

(1)

we will denote by HG and TG the Hankel and Toeplitz ma-
trices associated with its impulse response sequence z(k) =
CAkB, k = 0, 1, . . ..

B. Problem Statement

In this paper we consider the problem of determining
whether two given (noisy) input/ouput pairs (u1,y1) and
(u2,y2) are behaviors of the same (unknown) LTI system.
That is, whether z1

.
= y1−v1 and z2

.
= y2−v2 are solutions

of a set of equations of the form (1) for some triple (A,B,C)
and suitable initial conditions and noise sequences v1,v2.
Formally, this leads to the following problem:

Problem 1: Given two input/output pairs (u1(k),y1(k)),
k = t1, . . . , tT1 and (u2(k),y2(k)), k = t2, . . . , tT2 ,
and a bound η on the covariance of the measurement

noise, determine whether there exists a triple (A,B,C),
initial conditions x0,1, x0,2 and admissible noise sequences
{v1(k)}, {v2(k)}, ‖E(vivTi )‖2 ≤ η such that (1) holds with
zi(k)

.
= yi(k)− vi(k)

In the sequel, in order to obtain deterministic (in)validation
certificates, proceeding as in [6] we will use deterministic
descriptions of the measurement noise v. Thus, we will
replace the constraint E(vvT ) ≤ η with

‖Gv‖2 ≤ ε
.
=

1

n
η (2)

where Gv
.
= Hn

v(H
n
v)
T .

C. Background Results

In this section we review some results that will allow for
recasting Problem 1 into a convex minimization form.

Lemma 1: [4] Assume that the pairs (A,B) and (A,C)
are controllable and observable, respectively, with A ∈
Rn×n. Then:

Hy = ΓA,CX + TGHu + Hv (3)

where X
.
=
[
x(0) x(1) . . . x(t)

]
. Further, if

spanrow(X) ∩ spanrow(Hu) = {0} (4)

then
rank(HyHu

⊥) = rank(X)
In the sequel, in order to handle noisy sequences, we will
replace condition (4) with the slightly stronger one:

spanrow(X) ⊥ spanrow(Hu) (5)

(or, equivalently, X ·U = 0 where U is an orthonormal basis
of the row space of Hu

1).
Lemma 2: [1] For a fixed Y ∈ Sn++, Jld(X,Y) is convex

in the region {X ∈ Sn++ : X � (1 +
√
2)Y}.

III. MAIN RESULTS

In this section we show that Problem 1 can be recast into
a Jld minimization form. To establish this result we will
first analyze the behavior of the Jensen-Bregman divergence
between suitably regularized positive semi-definite matrices
and then combine these results with Lemmas 1 and 2 to
obtain computationally tractable (in)validation certificates.
Due to space constraints most proofs have been omitted.
They can be obtained by contacting the authors to request
an extended version of the paper.

A. Jensen-Bregman divergence between Grammians

The first step towards obtaining the (in)validation certifi-
cates proposed in this paper is to show that the Jld distance
between two suitable matrices X,Y ∈ Sn+ is finite if and
only if these matrices share the same null-space.

Lemma 3: Let X,Y ∈ Sn+ and define X̂(σ)
.
= X + σI

and Ŷ(σ)
.
= Y+σI. Assume, without loss of generality, that

rank(X) = rX ≥ rank(Y) = rY. Then limσ→0 Jld(
1
2 (X̂+

Ŷ), X̂) <∞ ⇐⇒ spancol(X
⊥) ⊆ spancol(Y⊥).

1In a stochastic framework this condition simply imposes that the state
at a time k is uncorrelated with future values of the input.



Next, we exploit the result above to establish that two
given input/output pairs originate from systems sharing the
same (A,C) if the Jld distance between the corresponding
(regularized) Grammians is finite. Further, in this case, this
distance is a measure of the distance between the orthogonal
projection of the state-space trajectories on the null space of
H⊥u , that is, roughly speaking, the portion of the trajectories
that is due to the effect of initial conditions.

Theorem 1: Given two input/output pairs (ui, zi), i =
1, 2, define the matrices

Gzi
.
= (HziHu

⊥
i )(HziHu

⊥
i )

T (6)

Assume that rank(Gz1) = rank(Gz2) = n and condition
(4) holds. Then,

(i) There exists a pair (A,C) and initial conditions x1,o

and x2,o such that (1) is satisfied iff

lim
σ→0

Jld

(
1

2
(Gz1 + Gz2) + σI,Gz1 + σI

)
<∞

(7)
(ii) If (7) holds, then

limσ→0 Jld
(
1
2 (Gz1 + Gz2) + σI,Gz1 + σI

)
=

Jld(
1
2 (X1Hu

⊥
1 (Hu

⊥
1 )

TXT
1 )+

1
2 (X2Hu

⊥
2 (Hu

⊥
2 )

TXT
2 ),

X1Hu
⊥
1 (Hu

⊥
1 )

TXT
1 )

(8)
where X1,X2 denote the corresponding state trajecto-
ries2.

B. Handling noisy sequences

In this section we consider the effects of measurement
noise and show that, as long as this noise is uncorrelated
with the state trajectories, the results of the previous section
can be used to recast Problem 1 into an optimization over
matrices in Sn+.

Theorem 2: Given two input/output pairs (ui,yi), i =
1, 2, define the matrices

Gyi

.
= (Hyi

H⊥ui
)(Hyi

H⊥ui
)T (9)

If the inputs ui excite all modes of the system, then there
exists a pair (A,C) such that (1) is satisfied if and only if
there exist two matrices Gv1

,Gv2
� 0, ‖Gvi

‖2 ≤ ε, such
that

rank(Gy1
−Gv1

) ≤ n (10)

and

lim
σ→0

Jld
(
1
2 (Gy1

+ Gy2
−Gv1

−Gv2
) + σI,

Gy1 −Gv1 + σI) <∞
(11)

The condition above is only necessary for feasibility of
Problem 1, since it does not rule out the possibility of
trajectories having been generated by two systems having the
same (A,C) pairs but different B. Ruling out this possibility
requires strengthening the hypothesis of the lemma above
to require using the same input for both experiments and

2Note that this distance is independent of the coordinate system chosen,
since Jld(., .) is invariant under similarity transformations.

imposing that the input and measurement noise be weakly
uncorrelated (in a sense to be precisely defined below).

Lemma 4: Consider two output sequences (y1,y2), corre-
sponding to the same input u but different initial conditions
x0,1, x0,2. Assume that the input u and noise v are uncor-
related, in the sense that HvV = 0 where VT is a basis
for the row space of Hu. Finally, assume that the input u
is persistently exciting and that condition (5) holds. Then,
Problem 1 is feasible if and only if

(i) F1 = F2, where Fi
.
= HyiVVTHT

yi , i = 1, 2; and
(ii) there exist two matrices Gv1

,Gv2
� 0, ‖Gvi

‖2 ≤ ε,
such that (10) and (11) hold.

IV. BEHAVIOR (IN)VALIDATION AS A Jld MINIMIZATION
PROBLEM

In principle, the results of the previous section allow for
finding infeasibility certificates for Problem 1 by solving a
sequence of optimization problems and computing:

limσ→0 min
Gv1,Gv2

Jld(
1
2 (Gy1 + Gy2 −Gv1

−Gv2
) + σI,

Gy1 −Gv1 + σI)
subject to:
Gvi � 0, ‖Gvi‖2 ≤ ε
rank(Gy1 −Gv1) < n+ 1

(12)
From Theorem 2 it follows that Problem 1 is feasible if
and only if the optimal value in (12) is finite. However,
the problem above is computationally challenging due to the
fact that both the objective function and the last constraint
are non-convex3. To circumvent this difficulty, in the sequel
we introduce a relaxation that avoids the rank minimization
constraint and it is convex provided that the noise levels are
not too large. This relaxation hinges on the following result:

Theorem 3: Given two noisy input/output sequences
(u1,y1) and (u2,y2), assume, without loss of generality,
that Gy1 and Gy2 have full rank4, and that there exists
matrices Gvi

� 0, ‖Gvi
‖2 ≤ ε such that (10) and (11)

hold. Let Ĝy1

.
= Gy1 − σminuminuTmin where σmin and

umin denote the minimum singular value of Gy1 and its
corresponding singular vector, respectively. Then,

1.- Problem 1 is solvable only if σmin ≤ ε
2.- limσ→0 J

∗
ld(σ) <∞ where

J∗ld(σ)
.
= minΦ Jld(

1
2 (Ĝy1

+ Gy2 −Φ) + σI,

Ĝy1 + σI)
subject to:
Φ � 0 and ‖Φ‖2 ≤ 3ε

(13)
Proof: The first condition is necessary for feasibility of

the rank and norm constraints in (12). To prove the second
statement, note that if (12) is finite, then there exist some

3Since Gvi are confined to compact sets, the limσ→0 Jld(., .) can be
handled by simply solving a sequence of problems with decreasing σ,
since the Bolzano-Weierstrass theorem guarantees that the corresponding
sequence of solutions have an accumulation point.

4This can be always accomplished by choosing the form factor for Hyi.



matrices G∗v1 and G∗v2, with ‖G∗vi‖ ≤ ε such that

1

2
(Gy1 −G∗v1

+ Gy2 −G∗v2
) + σI = U

[
M 0
0 σ

]
UT

Next, write

Gy1 −G∗v1
+ Gy2 −G∗v2

=

Ĝy1
+ Gy2 − (G∗v2

+ G∗v1
− σminuminuTmin) =

Ĝy1
+ Gy2 −Φ

(14)

where we have defined

Φ
.
= (G∗v2

+ G∗v1
− σminuminuTmin).

By construction, G∗v1 − σminuminuTmin � 0, since Ψ
.
=

σminuminuTmin is the smallest matrix that makes Gy1 rank
deficient. Let Φ∗

.
= (G∗v2

+ G∗v1
− σminuminuTmin). The

proof follows now from the facts that ‖Φ∗‖2 ≤ ‖G∗v2
‖2 +

‖G∗v1
‖2+σmin ≤ 3ε and that, by construction, Ĝy1+Gy2−

Φ and Ĝy1
share the same null space.

Remark 1: The advantage of reformulating Problem 1 in
terms of the optimization above, instead of (12) stems from
the fact that, from Lemma 2, it follows that the problem is
convex in the region

Gy2 − Ĝy1
−Φ

2
�
√
2(Ĝy1

+ σI)

that is, in cases where the trajectories correspond to initial
conditions that are not too far apart. Moreover, even outside
this region, the problem can be efficiently handled via
“convex plus concave” optimization tools [9].

Based on Theorem 3, we propose the following (concep-
tual) algorithm for behavioral model (in)validation:

Algorithm 1 Jld based behavioral model (in)validation
1: Data: input sequences u1,u2, (noisy) measurements

y1,y2. A priori information: noise bound ε
2: Gy1 ← Hy1H⊥u1

(Hy1H⊥u1
)T

3: Gy2 ← Hy2H⊥u2
(Hy2H⊥u2

)T

4: Compute σmin(Gyi
), i = 1, 2.

5: if maxσmin(Gyi
) > ε then

6: The given sequences are not behaviors of the same
system

7: else
8: Ĝy1 ← Gy1 − σminuminuTmin
9: Compute

Jo = lim
σ→0

minΦ Jld(
Ĝy1+Gy2−Φ

2 + σI, Ĝy1 + σI)

subject to Φ � 0, ‖Φ‖2 ≤ 3ε

10: if Jo =∞ then
11: The given sequences are not behaviors of the

same system
12: end if
13: end if

Note that the above algorithm is conceptual, in the sense
that it requires computing the limit as σ → 0 and establishing

that this limit is finite. However, computing Jld for very
small values of σ may lead to numerical instabilities. Thus,
from a practical standpoint, we will replace the limit above
by simply setting σ to a small value σo (typically an order
of magnitude smaller than the smallest singular value of
Hyi

) and using Jld(σo) as an invalidation certificate. In
this setting, the hypothesis that the two trajectories have
been generated by the same system is considered to be
(in)validated when Jld(σo) > JT , some suitably chosen
threshold. As illustrated in the next section with several
examples, this heuristics performs well both in academic
examples and non-trivial real ones.

V. EXAMPLES

In this section we illustrate the effectiveness of the pro-
posed method with one academic and two practical examples.

A. Example 1

In this example we consider data generated by the impulse
response of the systems given below, with random initial
conditions.
H1(z) =

z3

(z2−1.3964z+1)(z−0.6557)
H2(z) =

z4

(z2+1.3473z+1)(z2−1.9107z+1)

H3(z) =
z4

(z2−1.6360z+1)(z2−1.9107z+1)
The signals y1 and y2 were generated by System 1, y3, y4
from System 2, and y5, y6 from System 3. In each case we
constructed a Hankel matrix from each signal with m = 10
rows. Thus, the Grammian matrices Gy ∈ R10×10. Then, we
computed, as proposed in the last section, the distances listed
in Table I below. These results show that distances between
outputs from the same dynamic system are small while
the distances between the outputs from different dynamic
systems are large.

TABLE I
PAIRWISE DISTANCES BETWEEN SIGNALS FROM DIFFERENT SYSTEMS

Dist y1 y2 y3 y4 y5 y6
y1 0.0000 0.0104 4.0562 4.2826 2.5451 2.6421
y2 0.0075 0.0000 3.8640 4.0797 2.6439 2.6989
y3 3.1601 3.1619 0.0000 0.0001 1.0905 0.2157
y4 2.9471 2.9525 0.0287 0.0000 1.1796 0.1940
y5 0.7719 0.7669 1.7655 2.0125 0.0000 0.0381
y6 1.1833 1.1829 1.8342 2.0649 0.0323 0.0000

B. Example 2

In this example, we used real data from a computer
vision application. The Berkeley Multimodal Human Action
Database (MHAD) [5] is a recent, well recorded, database
for human action research. It includes 11 actions performed
by 12 subjects. Each subject repeated each action five times.
The ground-truth data were acquired with an optical motion
capture system, Impulse, which captured 3D positions of
LED markers on the subjects. With post-processing, 3D 35-
joint skeleton trajectories are assigned to each subject.
In our example, we experiment on two subjects with three
actions: jumping in place, punching and waving two hands.
We concatenated the x, y, z coordinates of 35 joints in each



frame into a vector. Thus, the skeleton trajectories of an
action formed a 105-dimensional vector sequence. We built
a Hankel matrix for each sequence with m = 4 (block) rows.
Then, we constructed Grammian matrices and computed
the distances between the denoised, regularized matrices
obtained using the procedure outlined in Section IV. Since
the number of frames for each recorded action was different,
the lengths of the vector sequences were different. On the
other hand, the dimension of the Grammian matrix HHT

remains 420 × 420 for all the sequences. The experimental
results are summarized in Table II, where it can be seen that
distances between matrices originating in sequences from the
same action are small while those corresponding to different
actions are large.

TABLE II
PAIRWISE DISTANCES BETWEEN ACTIONS IN MHAD. J: JUMPING IN

PLACE; P: PUNCHING; W: WAVING TWO HANDS;

Dist J1 J2 P1 P2 W1 W2
J1 0.0000 0.0126 0.2463 0.2355 0.2056 0.2107
J2 0.0122 0.0000 0.2486 0.2375 0.1911 0.1974
P1 0.2286 0.2313 0.0000 0.0364 0.1989 0.2016
P2 0.2232 0.2264 0.0413 0.0000 0.2013 0.2016
W1 0.1938 0.1764 0.2433 0.2374 0.0000 0.0077
W2 0.1951 0.1803 0.2428 0.2366 0.0070 0.0000

C. Fault Detection

For the third example, we used the second set of the
IMS Bearing Data [7] to show that our metric is able to
detect mechanical failures. The experimental setup consists
of four bearings installed on a shaft which keeps a constant
2000 RPM rotation with a 6000 lbs radial load. Sensors are
placed to record a 1-second vibration signal snapshot every
10 minutes and the system was run until at least one bearing
failed.

The data, following common practice, was pre-processed
as follows. The original signal was first down-sampled from
20kHz to 1kHz and then the components above 500Hz
were filtered out. The resulting pre-processed signal has 984
snapshots, each of which has 4 channels (bearings) and
where each of the channels has 1024 data points. Then,
we selected Snapshot 1 as an anchor and compared all the
other snapshots against it. Only signals of the same channel
(bearing) between different snapshots were compared. If
there was no failure, the dynamics of each channel should not
change and the distance between the anchor and the snapshot
should be close to zero. On the other hand, if the distance
was large, there was a dynamic change and a failure probably
happened. The results of our experiment are shown in Figure
1.

In this dataset, the ground truth is that an outer race
failure occurred in Bearing 1 at the end of the test. From
the experimental results we can see that indeed Bearing 1
started changing dynamics around Snapshot 700. We also
observe that the dynamics of all bearings started to change
around Snapshot 900 following the same pattern. A possible
explanation for this behavior is that the failure of bearing 1

probably also changed the underlying dynamics of the entire
rig.
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Fig. 1. Distance between each snapshot and the anchor snapshot for each
bearing.

VI. CONCLUSIONS

Many problems of practical interest require establishing
whether two given input/output trajectories, potentially af-
fected by noise correspond to behaviors of the same (un-
known) LTI system. The main result of this paper shows
that this problem can be reduced to a Jensen-Bregman di-
vergence minimization form which can be efficiently solved
by using recently proposed algorithms. The effectiveness of
this approach was illustrated with both, an academic example
and two non–trivial problems: activity recognition in video
sequences and data–driven fault detection.
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