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Abstract

This paper addresses the problem of detecting and isolating faults in noisy MIMO uncertain-systems, subject to structured dynamic uncertainty.
Its main result shows that this problem can be efficiently solved using a combination of sampling and LMI optimization tools. These results
are illustrated with two examples and benchmarked against existing methods.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Fault detection and isolation (FDI) has been the subject of
intense recent research, leading to a variety of methods (see
for instance Frank & Ding, 1997; Gertler, 1998 and references
therein). Amongst these methods, model-based approaches are
specially appealing, since do not require additional hardware.
However, a drawback of these approaches is their (potential)
fragility: a mismatch between the actual plant and the model
used in the FDI algorithm can result in false alarms. Robust
FDI methods have been well studied (see for instance Collins
& Song, 2000; Emaimi-Naeimi, Akhter, & Rock, 1998; Frank
& Ding, 1997; Henry & Zolghadri, 2005; Jiang, Wang, & Soh,
2002; Saberi, Stoorvogel, Sannuti, & Niemann, 2000; Stoustrup
& Niemann, 2003; Zhong, Ding, Lam, & Wang, 2003 and ref-
erences therein). A potential disadvantage of these methods is
the difficulty in isolating the exact location of the fault and in
detecting simultaneous faults. Motivated by Shim and Sznaier
(2003), in this paper we propose to address these issues by
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recasting the problem into a robust model (in)validation form.
A similar approach was pursued in Henry, Zolghadri, Monsion,
and Ygorra (2002), where, for frequency domain data, the prob-
lem of fault detection was recast as a � analysis one and re-
duced to an LMI optimization using the well known � upper
bound. However, when in addition to detecting a fault it is
desired to isolate its location, the resulting problem becomes
NP-hard (Shim & Sznaier, 2003; Toker & Chen, 1996). In or-
der to obtain tractable solutions, we propose (i) an efficient
deterministic convex relaxation for the case multiplicative or
additive uncertainty, and (ii) a risk-adjusted one, motivated by
Ding, Zhang, and Frank (2003), for general uncertainty struc-
tures and fault dynamics. Both relaxations have the ability to
estimate the location and strength of the fault(s). In addition,
the computational complexity of the stochastic one grows only
polynomially with the dimension of the plant.

2. Preliminaries

H∞ denotes the subspace of transfer matrices analytic in
|�|�1 equipped with the norm: ‖G‖∞

.= ess sup|�|<1� (G(�)),
where � (.) denotes maximum singular value. BH∞ and
BHn∞ denote the unit ball in H∞ and the set of (n − 1)th
order FIR transfer matrices that can be completed to belong
to BH∞, i.e. BHn∞

.= {H(�) = H0 + · · · + Hn−1�
n−1 :

H(�) + �nG(�) ∈ BH∞, for some G(�)}, respectively. �2
denotes the space of real sequences equipped with the norm
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‖x‖2
2

.= ∑∞
i=0 x2

i < ∞. As usual, M�0 indicates a positive
semi-definite matrix. Finally, to any finite sequence {xk}n−1

k=0,
we will associate the Toeplitz matrix:

Tn
x =

⎡
⎢⎢⎣

x0 0 . . . 0
x1 x0 . . . 0
...

...
. . .

...

xn−1 xn−2 . . . x0

⎤
⎥⎥⎦ .

The following algorithm generates Ns uniformly distributed
samples hi = {Hi

0, Hi
1, . . . , Hi

n} from the set BHn∞.

Algorithm 1 (Sznaier, Lagoa, and Mazzaro, 2005). Let k = 0.
Generate N1 uniform samples from the set {H0 : �(H0)�1}.

1. Let k := k + 1. For every sample (Hi
0, Hi

1, . . . , Hi
k−1),

consider the partition⎡
⎢⎢⎢⎣

Hi
k · · · Hi

1 Hi
0

Hi
k−1 · · · Hi

0 0
...

. . .
...

Hi
0 0 · · · 0

⎤
⎥⎥⎥⎦=

[
Hi

k B
C A

]
(1)

and let Y and Z be a solution of the linear equations

B = Y(I − ATA)1/2; C = (I − AAT)1/2Z.

2. Let J(H0, . . . , Hk−1)
.= |(I − YYT)1/2|m|(I − ZTZ)1/2|s .

Generate �N1J(Hi
0, . . . , Hi

k−1)� samples uniformly over
the set {W : �(W)�1} and for each of those samples Wi ,
compute

Hi
k = −YATZ + (I − YYT)1/2Wi (I − ZTZ)1/2.

3. If k�n go to step 1. Otherwise, stop.

Lemma 1 (Carathéodory–Fejér FoiasandFrazho,1900). Given
two sequences u = {uo, . . . , un−1} and y = {y0, . . . , yn−1},
there exists � ∈ H∞, ‖�‖∞ �� such that �u = y if and only
if (Tn

y)
TTn

y − �2(Tn
u)

TTn
u �0.

3. Robust FDI

3.1. Problem formulation

In this paper we consider the problem of FDI for systems
represented by the following parameterized fault model:

y =
[
G0(�, �o) +

r∑
i=1

fiGi(�, �i )

]
u + d,

�i ∈ �i ⊆ BH∞, ‖d‖2 ��. (2)

Here the transfer matrices G0(�, �o) and Gi(�, �i ), i =
1, . . . , r represent the plant under normal (e.g. non-failure)
conditions and dynamic fault models, respectively, �i repre-
sent (structured) dynamic model uncertainty and d represents
�2 bounded measurement noise. The scalars fi ∈ [0, 1] are
fault indicators, with fi = 0 corresponding to the case of no
failure. In this context, the FDI problem can be stated as

G

W Δ

+ +
+ +

u ys

q d

y

Fig. 1. Setup for robust FDI with multiplicative uncertainty.
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Fig. 2. Jointly convex FDI setup.

Problem 1. Given the nominal model Go(�, �o), failure dy-
namics Gi(�, �i ), a bound � on the measurement noise, uncer-
tainty sets �i , and n input/output experimental measurements
determine: (i) whether a fault has occurred, and (ii) in that
case isolate it and determine its strength.

Note that there may exist more than one triple {�i , d, f} that
explains the data. To avoid ambiguities, we will select the so-
lution that minimizes ‖f‖2. This choice minimizes the number
of false alarms, since it tries to explain the experimental data
as being produced by the nominal dynamics, possibly affected
by uncertainty and noise. With this choice, Problem 1 can be
recast in the following optimization form:

Problem 2. Given the a priori information Gi(�, �i ), � and
measurements u and y find min�i ,d‖f‖2, subject to (2). If f = 0
then no fault is present. Otherwise, the fault location/strength
is identified by the elements of f .

Unfortunately, as stated Problem 2 leads to a generically
NP-hard bilinear matrix inequality (BMI) optimization in d, f
(Shim & Sznaier, 2003). To avoid this difficulty, in the sequel
we propose two convex relaxations.

3.2. A deterministic convex relaxation for multiplicative
uncertainty

Consider the case shown in Fig. 1, where the nominal and
failure dynamics are subject to multiplicative, unstructured un-
certainty. While the problem is still not jointly convex in all
the variables involved, a convex relaxation can be obtained by
considering the alternative setup shown in Fig. 2, where d is
also affected by the unknown dynamics �:

y = (I + �W)

[(
G0 +

r∑
i=1

fiGi

)
u + d̃

]
. (3)

Note that the only difference in the two setups is in the
measurement noise level. Specifically, assume that there exists
a triple (f, d̃, �) satisfying Eq. (3) with ‖d̃‖2 � �̃

.= �/(1 +
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‖W‖∞‖�‖∞), and let d .= (1+�W)d̃. Then the triple (f, d, �)

satisfies

y = (I + �W)

(
G0 +

r∑
i=1

fiGi

)
u + d (4)

and ‖d‖2 ��. Thus, one can attempt to find a solution to the
original problem by searching for a solution to the FDI prob-
lem shown in Fig. 2, with noise level �̃. As shown next, this
leads to a convex problem. In addition, if ‖W�‖>1 then this
approximation is not too conservative.

Theorem 1. There exist a feasible tripe (f, d̃, �) that satisfies
Eq. (3) if and only if there exists at least an admissible vector
f , 0�fi �1 and a finite sequence q = {q0, q1, . . . , qn} such
that the following LMIs hold:⎡
⎣X(q) (Tn

q)T

Tn
q

[
I
�2 − (Tn

W )TTn
W

]−1

⎤
⎦ �0,

[
�̃2I YT(q, f)

Y(q, f) I

]
�0 (5)

with

X(q)
.= (Tn

W Tn
y)

TTn
W Tn

y − (Tn
W Tn

y)
TTn

W Tn
q − (Tn

W Tn
q)TTn

W Tn
y ,

Y(q, f) .=
[

Tn
y − Tn

q −
(

Tn
Go

+
∑

i

fiTn
Gi

)
Tn

u

]
,

where, by a slight notational abuse, Tn
W , denotes the Toeplitz

matrix associated with the impulse response of W.

Proof. From Eq. (3) we have that (see Fig. 2):

Tn
z = Tn

W (Tn
y − Tn

q), Tn

d̃
= Tn

y − Tn
q − Tn

GTn
u, (6)

From Lemma 1, there exists � ∈ � such that q=�z if and only
if (Tn

z )
TTn

z ��−2(Tn
q)TTn

q . Combining this inequality with (6)
and using Schur complements, gives the first LMI in (5). The
second LMI just restates ‖d̃‖2 � �̃2. �

Remark 1. From the results above it follows that finding min-
imum ‖f‖ such that (3) holds reduces to a convex LMI mini-
mization problem.

3.3. A general risk adjusted relaxation

In this section we propose a risk-adjusted relaxation of Prob-
lem 2 that has polynomial, rather than exponential, computa-
tional complexity growth with the problem data (Tempo, Bai,
& Dabbene, 1996). In addition, this approach can handle ar-
bitrary uncertainty structures. The main idea of the method
is to uniformly sample the set of admissible uncertainties �i ,
in an attempt to find at least one element �̃o ∈ �o and r
pairs {�̃i , f̃i} ∈ �i × [0, 1], i = 1, . . . , r so that the model
Go(�, �̃o) +∑

fiGi(�, �̃i ) together with an admissible noise
d̃, ‖d̃‖2 �� can explain the experimental data y. As we show
next, this removes the interpolation constraint that renders the
problem non-convex in (f, d, �i ).

Lemma 2. For fixed �i , i = 0, . . . , r , Problem 2 is equivalent
to the following LMI optimization problem:

min � (7)

s.t.

[
� fT

f I

]
�0,

[
�2 XT

X I

]
�0,

X = Y −
[
TG0,�o

+
∑

fiTGi,�i

]
U, (8)

where TGi,�i
denotes the Toeplitz matrix associated with the

impulse response of Gi(�, �i ), U= [uT
o , . . . , uT

n−1]T and Y=
[yT

o , . . . , yT
n−1]T.

Proof. Follows from (2) by applying a Schur complement ar-
gument to the inequalities ��fTf , and �2 �

∑n−1
i=0 dT

i di =XTX.
�

The main difficulty with the approach outlined above is that
the sets �i are infinite dimensional. However, since �i are
causal operators only their first n Markov parameters affect the
output y. Thus, rather than having to sample BH∞, we only
need to (i) sample the set BHn∞, e.g. using Algorithm 1, and
(ii) combine the samples.1 This observation leads to the fol-
lowing robust FDI algorithm:

Algorithm 2. Given Gi(�, �i ) and n output measurements
{y}n−1

i=0 , choose N1 and generate Ns samples {�j
i (�)}Ns

j=1 from
the set BHr

i using Algorithm 1.

0. Set fmin = ∞.
1. For each �j

i , solve the following convex problem in f :

min ‖f‖
s.t.

[
�2I XT

X I

]
�0 where

X = Y −
[
TG

0,�
j
o

+
∑

fiTG
i,�

j
i

]
U. (9)

2. If ‖f‖ < ‖fmin‖ set fmin = f .
3. Set j = j + 1. If j �Ns go back to step 1.

Remark 2. Let (	, 
) be two constants in (0, 1), and, for a
fixed �i , denote by f (�i )min the minimum norm solution to
the LMIs (9). Theorem 3.1 in Tempo et al. (1996) shows that
if N1 in Algorithm 1 is chosen to satisfy

N1 � ln(1/
)

ln(1/(1 − 	))
, (10)

then Prob{Prob[‖f(�i )min‖2 < ‖fN1
min‖2]�
}�(1 − �), where

fN1
min denotes the solution found by Algorithm 2. Roughly speak-

ing, with confidence 1 − 
, the algorithm will find, with prob-
ability 1 − 	, the solution to Problem 2.

Thus, by introducing an (arbitrarily small) risk of a false
alarm, we can substantially alleviate the computational com-

1 In the case of structured uncertainty, the same construction can be
used block-wise.
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plexity entailed in robustly detecting faults in plants subject
to structured uncertainty and measurement noise. In addition,
it can be argued that a purely deterministic approach to FDI
could be potentially overly optimistic, since the system will be
deemed to be operating under no-fault conditions even if there
exist a single combination of uncertainty and noise such that
the corresponding ‖f‖2=0. On the other hand, in such cases the
approach proposed here will indicate, (with probability close
to 1) the existence of a fault.

4. Illustrative examples

Example 1. Consider the following system subject to multi-
plicative uncertainty:

y = (I + �)

(
G0 +

3∑
i=1

fiGi

)
u + d , (11)

where

G0 = s4 − 4.75s3 − 2.48s2 − 1.19s − 0.56

s4 + 1.92s3 + 1.61s2 + 0.83s + 0.16
,

G1 = 5.07s4 + 3.91s2 + 0.94

s4 + 2.55s3 + 3.76s2 + 4.16s + 3.18
,

G2 = 31.75s3 + 1.8s

s4 + 2.55s3 + 3.76s2 + 4.16s + 3.18
,

G3 = 75.75s2 + 65

s4 + 2.55s3 + 3.76s2 + 4.16s + 3.18

and assume that the available a priori information is
‖�‖∞ �0.3 and ‖d‖2 �0.94.2 Here, to facilitate comparisons
with existing approaches, we have formulated the problem
in the continuous time domain and we will assume paramet-
ric uncertainty (e.g. constant �). Thus, in order to apply our
techniques, a discrete-time model of the system above was ob-
tained by using samplers and zero order holds with a sampling
time of 0.1 s.

The second and third columns in Table 1 show the results of
applying the proposed relaxations to several faults. The exper-
imental data consisted of n = 20 samples of the step response,
corrupted by noise d, with ‖d‖2=0.84, of the model (11) corre-
sponding to �=0.28. For the risk-adjusted relaxation the value
N1 = 250 was used in Algorithm 1, which guarantees, with
confidence 0.99, a probability of 0.98 of finding the minimum
‖f‖2 that explains the experimental data, resulting on a com-
putation time of 42 s using Matlab’s LMI toolbox on a 1.7 GHz
Xeon processor. For comparison, the deterministic relaxation
required 4 s. Both methods successfully identified and isolated
faults in all cases, with the risk-adjusted relaxation slightly out-
performing the deterministic one, due to the moderately large
uncertainty level.

Next, we compare the proposed approaches against the prob-
abilistic residual based method proposed in Ding et al. (2003).
To this effect, consider the state space realizations Gi =(Ai, Bi ,

2 This noise level corresponds to 10% of the energy of the step response
of the plant.

Ci, Di), i = 0, . . . , 3, and note that for the case of constant �,
the model (11) can be written as

ẋ = (A + �A + �AF )x + (B + �B + �BF )u,

y = (C + �C + �CF )x + (D + �D + �DF )u + d, (12)

where

A =
[
Ao 0

0 0

]
, B = [BT

o 0 ]T, C = [Co 0 ] , D = Do,

�A = 0, �B = 0, �C = � · C, �D = � · D, |�|�0.1,

�AF =

⎡
⎢⎢⎢⎣

0 0 0 0

0 A1
...

. . .

0 A3

⎤
⎥⎥⎥⎦ , �BF = [0 BT

1 . . . BT
3 ]T,

�CF = (1 + �)[0 f1C1 . . . f3C3 ],
�DF = (1 + �)

∑
fiDi . (13)

In its simplest form, the approach proposed by Ding et al.
(2003) uses an observer to generate a residual r:

˙̂x = (A − LC)x̂ + (B − LD)u,

r = y − Cx̂ − Du. (14)

A fault is deemed to have occurred whenever ‖r‖2 > Jth, where
the threshold Jth is selected so that the probability of false
alarms, that is P(‖r|2 > Jth| no fault is present) ��, where � is
given. Using a gain L = 0 (corresponding to both the optimal
H2 and H∞ filters) and setting the false alarm rate (FAR) to
2%, yields Jth = 17.45. As shown in Table 1, while for larger
values of ‖f‖ all methods have comparable performance, both
invalidation based approaches outperform the residual based
one in the case of smaller ‖f‖. Note also that the former ap-
proaches were able to accurately estimate the fault components,
albeit at the cost of increased on-line computational time.

Example 2. Consider the problem of FDI in the yaw damper
system of a jet transport. The transfer function from the rudder
and aileron deflections to the yaw rate and bank angle can be
represented by a model of the form (11) with (see Shim &
Sznaier, 2003) ‖�‖∞ �0.3, ‖d‖2 �2.6, and Gi = Ni/Di, i =
0, . . . , 3,

Ni(z) =
(

Ni
11 Ni

12

Ni
21 Ni

22

)
,

where Go denotes the nominal plant, and where

Do(z) = z4 − 3.81z3 + 5.45z2 − 3.46z + 0.83,

Di(z) = z8 − 7.7z7 + 26.2z6 − 50.8z5 + 61.4z4

− 47.6z3 + 23.1z2 − 6.4z + 0.78, i = 1, 2, 3,

No
11 = −0.44z3 + 1.3z2 − 1.3z + 0.42,

No
12 = 0.11z3 − 0.34z2 + 0.33z − 0.11,
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Table 1
Example 1. Fault estimates corresponding to the case ‖�‖∞ �0.3 and 10% noise level

Real fault Risk adjusted Deterministic Observer-based
(N1 = 250, prob = 98%) (FAR = 2%)

0.0 0.0 0.0 10−5*[0.10 0.11 0.11] 10−5*[0.11 0.12 0.12] No Fault
1.0 0.0 0.0 0.95 0.00 0.00 0.92 0.00 0.00 Fault
0.0 1.0 0.0 0.04 0.95 0.00 0.05 0.94 0.00 Fault
0.0 0.0 1.0 0.00 0.00 0.97 0.00 0.00 0.96 Fault
0.45 0.21 0.56 0.36 0.21 0.54 0.33 0.21 0.53 Fault
0.24 0.10 0.05 0.16 0.10 0.04 0.13 0.10 0.03 No Fault
0.20 0.10 0.05 0.12 0.10 0.04 0.10 0.09 0.03 No Fault
0.10 0.05 0.1 0.03 0.04 0.08 0.02 0.04 0.07 No Fault

Table 2
Risk adjusted versus deterministic relaxation for Example 2

Real fault Risk adjusted estimate (N1 = 250) Deterministic relaxation

0.0 0.0 0.0 10−6*[0.7814 0.8356 0.8715] 10−3*[0.4572 0.4592 0.4514]
1.0 0.0 0.0 0.7313 0.0194 0.0222 0.6336 0.0797 0.0194
0.0 1.0 0.0 0.0400 0.5868 0.0261 0.0755 0.5118 0.0406
0.0 0.0 1.0 0.0215 0.0000 0.6567 0.0447 0.0000 0.5647
0.85 0.78 0.001 0.6694 0.4318 0.0500 0.6113 0.4183 0.0402
0.45 0.21 0.56 0.3248 0.1749 0.3424 0.2966 0.0876 0.3058

No
21 = 10−3 ∗ (5z3 − 7z2 − 4.3z + 5.3),

No
22 = 10−2 ∗ (5.3z3 − 4.6z2 − 5.1z + 4.5),

N1
11 = − 0.28z7 − 1.42z6 + 2.64z5 − 1.73z4

− 0.93z3 + 2.16z2 − 1.26z + 0.26,

N1
12 = − 0.07z7 + 0.37z6 − 0.68z5 + 0.45z4 + 0.24z3

− 0.56z2 + 0.32z − 0.07,

N1
21 = 10−5 ∗ (7.1z7 + 46.6z6 − 181.8z5 + 138.2z4

+ 106.6z3 − 169.6z2 + 46.9z + 6.1),

N1
22 = − 10−4 ∗ (0.2z7 + 1.4z6 − 5.8z5 + 4.4z4 + 3.4z3

− 5.4z2 + 1.5z + 0.2),

N2
11 = 10−2 ∗ (z7 − 1.2z6 − 7.8z5 + 22.9z4 − 23.5z3

+ 8.9z2 + 0.6z − 0.9),

N2
12 = − 10−3 ∗ (1.9z7 − 2.4z6 − 14.9z5 + 43.7z4

− 44.8z3 + 16.9z2 + 1.2z − 1.7),

N2
21 = − 10−3 ∗ (2.3z7 − 2.9z6 − 18z5 + 53z4 − 54z3

+ 21z2 + 1.5z + 2),

N2
22 = 10−4 ∗ (6z7 − 7z6 − 47z5 + 137z4 − 141z3

+ 53z2 + 4z − 5),

N3
11 = 10−6 ∗ (2.4z7 + 53z6 − 27z5 − 206z4 + 215z3

+ 13z2 − 49z − 2),

N3
12 = − 10−6 ∗ (z7 + 24z6 − 12z5 − 93z4 + 97z3

+ 6z2 − 22z − 0.9),

N3
21 = 10−5 ∗ (1.5z7 + 32z6 − 16z5 − 126z4 + 132z3

+ 8.2z2 − 30z − 1.2),

N3
22 = − 10−5 ∗ (0.36z7 + 7.8z6 − 4.0z5 − 30z4 + 32z3

+ 2.0z2 − 7.2z − 0.3).

The experimental data consist of 20 samples of the response
of (I + �̃)Gf

3 to a 0.69 Hz square wave with amplitude ±1,
where �̃ is given by4

�̃ = 0.018

D�

[
�11 �12
�21 �22

]
,

D� = z4 + 1.87z3 + 1.27z2 + 0.37z + 0.04,

�11 = 1.9z4 + 2.5z3 − 0.24z2 − 1.04z − 0.25,

�12 = 0.5z4 + 0.8z3 + 0.25z2 − 0.09z − 0.03,

�21 = 2.9z4 + 3.0z3 − 1.66z2 − 2.3z − 0.51,

�22 = 3z4 + 3.5z3 − 1.12z2 − 2.1z − 0.47. (15)

3 Here Gf denotes the transfer function of the failure mode under
consideration.

4 This corresponds to a randomly generated uncertainty with ‖�̃‖∞
�0.297.
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As shown in Table 2, both relaxations were able to provide
good estimates of the fault indicators. Similar results were ob-
tained with lower uncertainty and noise levels. In this case,
as expected, the performance of both methods becomes closer
with decreasing uncertainty and noise levels.

5. Conclusion

This paper considered the problem of robust fault detection
and isolation (FDI) for systems described by a parameterized
fault model, subject to arbitrary dynamic uncertainty. In gen-
eral this setup leads to non-convex, NP hard problems. To re-
move this limitation, we propose two convex relaxations: one
deterministic and one stochastic. The deterministic relaxation
reduces the problem to a conventional LMI optimization, but is
limited to the case of unstructured multiplicative (or additive)
uncertainty. On the other hand, the risk-adjusted relaxation can,
in return for an (arbitrarily small) probability of a false alarm,
handle completely general uncertainty structures. Further, this
approach also entails a substantial reduction of the computa-
tional complexity of the problem. Since the number of sam-
ples needed for reliable fault estimation is relatively small, it
is feasible to generate and store these samples off-line, lead-
ing to further reduction of the computational complexity of the
problem that needs to be solved on-line. Both relaxations have
comparable performance for relatively low uncertainty levels,
with the stochastic relaxation outperforming the convex one as
the uncertainty level increases.
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