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Abstract—In this paper we propose a Hankel operator
based approach to the problems of texture modelling and
inpainting. The main idea is to model textured images as the
output of an unknown, periodic, linear shift invariant operator
in response to a suitable input. The main result of the paper
shows that this operator can be found by factoring a Hankel
matrix constructed from the image data. As we illustrate in
the paper, the resulting operator can then be applied to a given
partial image to reconstruct missing portions, find textons, or
synthesize textures from the same family.

I. INTRODUCTION

This paper considers the problems of texture modelling
and synthesis. Surveys of the field and extensive references
can be found for instance in [11], [26], [20], [24], [30].

Earlier work on texture modelling was based on the
use k" order statistics [15], [12]. Most recent statistical
approaches use either Markov random fields [6], [18], [5],
[29], [10] or multiscale multiple linear kernels at different
scales and orientations followed by a non-linear procedure
(4], [22], [2], [14], [21], [23], [31].

Texture synthesis algorithms can be classified as proce-
dural, based on the statistical approaches described above,
or image-based, based on stitching pixels or patches from
a sample image (see for instance [8], [9], [27], [13], [1],
[25], [28], [17]).

The approach that we pursue in this paper is related to
previous statistical approaches in the sense that we will also
model images exhibiting a given texture as realizations of a
second order stationary stochastic process. Motivated by the
work in [7] on dynamic texture! we will model the intensity
values Z(k,:) of the k™ row of the image as the output, at
step k, of a discrete linear shift-invariant, not necessarily
causal, system driven by white noise. In this context, texture
modelling can be recast into the problem of identifying a
system model with the appropriate properties from the given
images. In the first portion of this paper we develop an SVD
based algorithm, that allows for extracting texture models
from images in an efficient way. In the second portion of
the paper we show that these models allow for reducing the
problems of finding textons and texture inpainting to a rank
minimization problem.

This work was supported in part by AFOSR grant FA9550-05-1-0437
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'Dynamic textures are image sequences of moving scenes with texture
such as flowing water, drifting smoke, etc.

II. NOTATION

X column vector.
xf Hermitian conjugate of x.
I, p x p Identity Matrix
A(k,:) kth (block) row of matrix A
oi(A) singular values of A.
a(A) maximum singular value of A.
&) expected value.
H"™ set of all block circulant Hankel matrix
of the form:
hy hy ... h,
hy hy ... h
H" =
hn hl hnfl

where h € RP*™
In the sequel, we will represent a linear system G by its

convolution kernel {g;}. Causal systems (i.e g; =0, ¢ < 0)

will also be represented by a state—space realization:
Xpt1 =Ax; + Buyg 0
yr =Cxp, + Duy.

where x, u, and y represent the states, inputs and outputs,
respectively. The two representations are related by:
g,=D, gi=CA"'B,i>1

In the sequel, we will associate to any finite sequence
x = {xy}, the following circulant Hankel matrix:

X1 X ... Xn
n Xo X3 ... X1
H) =
Xn X1 Xn-1

Finally, given a system G, we will denote by Hy the
circulant Hankel matrix associated with {g;}.

III. TEXTURE MODELLING.

Our starting point is to model the intensity values Z(k, :)
of the k™ row of the n x m textuted image as the output,
at step k, of a linear system G driven by white noise u:

(k)= Y axjZ(j,:) + br_ju; ©))
j=1
iFk



where a;,b; are the unknown parameters to be extracted
from the image. A difficulty here is that the unknown
operator in not necessarily causal since Z(k,:) in eq. (2)
depends on the values of the pixels in all rows, not just
those on the rows Z(j,:), j < k. This issue will be
addressed by considering the given m X m image as one
period of an infinite 2D signal with period (n,m). Thus,
at any given location (4,j) in the image, the intensity
values Z(r, s) at other pixels are available also at position
(r — gn,s — qgm), and the integer ¢ can always be chosen
so that » — gn < i, — gm < j. From this observation, it
follows that the unknown system G can always be chosen
to be causal, subject to the additional periodicity constraint,
and thus it admits a state—space realization of the form:

Xk41 =Ax; +Bug, A" =1

3)
yr =Cx.

where for each k, x; and wuj represent the state and
(unknown) stochastic input, and where the output vector
yr € R™ contains all the intensity values Z(k,[), 1 <
I < m of the pixels in the k*" row of the image. Here the
condition A™ =T is just a restatement of the periodicity
constraint. Finally, note that since this condition implies
that A* = A**7 it follows that the effect of an input u
applied at k, is identical to the effect of the same input
applied at £ — n. Thus, without loss of generality it can
be assumed that the input » in eq. (3) is non—zero only
in the interval [—(n — 1), 0]. In this context, the modelling
problem becomes that of extracting the matrices A, B, C
of the model (3) from (possibly noisy) images where y; =
Z(k,:)T + v, and where only a spectral characterization of
the measurement noise v is available.

IV. EXTRACTING TEXTURE MODELS FROM IMAGES.

In this section we present an algorithm for extracting
the model parameters from noisy images. This algorithm
is based on the SVD of a circulant Hankel matrix con-
structed from the image data. The first step is to consider
a deterministic equivalent of (3), where the stochastic input
u and measurement noise v are replaced by deterministic
equivalents satisfying:

H'H,= I

G(H,) < e @

where H,, and H,, denote the Hankel matrices associated
with the sequences u and v respectively.

Remark 1: 1t can be shown that, for an ergodic process
z, the (i,7) element of HIH, is an estimate of the
autocorrelation function R, (i—j) . Thus, the first condition
in (4) is equivalent to imposing that v is a white sequence,
while the second forces v to have a power spectral density
bounded by €.

With these assumptions, the k" row of the image, Ry,
is given by the output at the index k of the system (3) to

the input w;, i € [—(n — 1), 0], corrupted by measurement
noise vy, that is:

0
Rf = Z 8k—iU; + Vi

i=—(n—1)
where g; = CA~ 1B, or, in matrix form:

Thus, given an image, the corresponding model can be
found by (i) first factoring the associated Hankel matrix
Hpg into the form above, subject to the constraints (4)
and the periodicity constraint g; = g;+n,, or equivalently,
A" =T; and (ii) extracting the matrices A, B, C from Hg.
In general, this problem is not trivial, since approximations
of Hankel matrices do not necessarily preserve the Hankel
structure. However, in the case under consideration here, the
block circulant structure of the matrices can be exploited to
obtain a simple factorization algorithm based on a SVD
decomposition as follows:
Algorithm 1:

1.- Given an n X m image, let RZT denote its it row,
and form the nm x n block circulant matrix:

R: R ... R,
~|R2 Rz ... Ry
Hr = | . S . (6)
Rn Rl Rnfl
Select any matrix H,, € H such that HfHu =1, and
define:
Y = H;H? N
2.- Perform a singular value decomposition:
S o] [VT
Y=|U U ,
[ U] [0 0} [Vﬂ ®)
S =diag(oy,...,00), 05 >0, 1> ]
3.- Let
r=min{n,i: o; < €} )
and form the rank r matrix
H, =U,S, V! (10)

where S, = diag(o1,...,0,) and U,, V,. denote the
submatrices formed by the first 7 columns of U and
rows of VT, respectively.

4.- Form the following state space realization:

A, = S, °UTP,U,S?, B, =S:vV an
c, = uWs?
where
0 I, 0 0
0 0 I,
P, = . (12)
I, 0 0 0



and where Ugl) and Vﬁl) denote the first n x r block
of U, and r x m block of V7, respectively.
Theorem 1: The model (A,,B,,C,) generated by the
algorithm above satisfy the following properties:
(i Ar=1
(i1) There exists some admissible measurement noise v
with 5(Hy) < € such that the output of the system:
X =A,x; + B, ug,
k+1 r&k rUk (1 3)
e =Crx
in response to an initial condition x_(,,_1) = 0 and
input:

H, (k1
Ul—k:{ (0 )

satisfies R} = y, 4+ vi, k = 1,...,n. That is, the
output of the system recreates the image within the
measurement noise bounds.
Proof: Given in the Appendix |
Remark 2: Note that any choice of H,, yields a model
that recreates the texture. Thus, in the absence of additional
information, one can always choose H,, = I.

k=1,n

otherwise (14)

V. APPLICATION 1: FINDING TEXTONS

Consider the problem of finding “textons” in an image,
that is, subimage that, when tiled, reproduces the original
image. Assuming that at least one full period is available
in the sample image, in the context discussed above, the
problem becomes that of jointly identifying a model and its
corresponding period. As we show next, this problem can
be solved by finding regions of the image corresponding to
local minima of the rank of the associated Hankel matrices.

Finding Textons as a Minimal Rank Problem: Given
an n X m image Z(x,y), let Hz denote the associated
Hankel matrix. Finally, denote by (A, B, C) the state—space
matrices of the corresponding model, and assume that the
image 7 contains at least one complete texton, that is, there
exists some r < min{m,n}, such that R, = CA"'B,
with A € R"™*", A" =T and A¥ £Iforany 1 <k <r
(that is 7 is the size of the smallest texton). Consider first
an ideal image, uncorrupted by noise. In this case, from
section IV it follows that the following matrix:

Ri R» Ry
R:, R; ... R,
Hy, = - (15)
RN’I“ Rl RNrfl

where IV denotes the number of complete textons contained
in the sample image, has rank r, since it can be written as
the product of two rank r matrices:

Hy,=0C
C=[B AB BANT] (16)
O = [CT ATCT (ANT)TcT]T

On the other hand, for any 1 < k£ < r — 1, the matrix

Ri R, ... R,
R Ry ... Ry

H, =1 . o . a7
Rnk Rl Rnkfl

where ny = (N — 1)r + k, satisfies rank(H(y_1),1) > 7,
since otherwise this implies A(N—D7+tk — T which to-
gether with A™ = I implies A* = I, against the hypothesis
that » was the size of the smallest texton. Thus, in the
case of ideal images, textons can be found by considering
a sequence of Hankel matrices of the form (6), starting
with & = n, with decreasing values of k, and searching
for relative minima of rank(Hy).

Consider now the more realistic case of ideal texture,
corrupted by additive noise v. In this case, the Hankel
matrices of the actual (Yy) and ideal (Hj) images are
related by

Yk = Hk + Hv

and thus the problem becomes

d(Hy)=0(Yr—Hy) <e

H; € H, rank(Hy) = r (18)

mkin{r} subject to: {

precisely the type of problem solved by Algorithm 1 (see
Corollary 1 in the Appendix).

original image texton

expanded image

Fig. 1. Finding textons as a rank minimization problem. Top: Rank
Minimization. Bottom: Existing approach (Correlation Maximization)

This approach is illustrated in Figure 1 where it was used
to (i) find a texton, (ii) extract the corresponding model,
and (iii) expand the original image. For comparison, an
algorithm based on finding the peak of the autocorrelation
function [16], fails to identify the correct periodicity, as
shown in the bottom half of Figure 1. Additional examples
of identifying textons by searching for minimal rank Hankel
matrices are shown in Figure 2.

VI. APPLICATION 2: TEXTURE INPAINTING

Consider now the problem of restoring a textured image
where some pixels are missing. Formally, given an image



original image  texton

expanded image

Fig. 2. Additional examples of finding textons through rank minimization.

Z(z,y) and a set of indexes of missing pixels S =
{(i1,41),- .., (is,js)}, the goal is to determine the intensity
values Z (3, j); (¢,7) € S that best fit, in some sense, the rest
of the image. As we show next, this problem can be recast
into a rank minimization problem.

Restoration as a Rank Minimization Problem: As be-
fore, given an n x m image Z(z,y), let H and (A, B, C)
denote the associated Hankel matrix and state—space model,
respectively. Assume that the image Z contains at least one
complete period, that is A € R"™™", with A" = I and
r < min{m,n}.

Consider now the situation where a portion of the image
is missing. As we show next, this missing portion can
be recovered by minimizing the rank of H, provided that
enough information is left in the image to recover at least
one period. (Note that this information does not have to
be necessarily contiguous). Start by considering an ideal,
noiseless image, containing an integer number of periods
(this assumption will be removed later). Assume now that
R, the first row of the image, is missing or corrupted. The
corresponding Hankel matrix is given by:

X RT R1 R2

Rg X Rg R1
HX) =g, R .. x .. R, (19)

R, R..; ... R, ... x|

where x denotes the missing pixels. Let (r,,%,) denote

the solution to the rank minimization problem r, =

minrank{H(x)}. Since by assumption the image contains
X

at least one full period, and the minimal realization of this
period requires 7 states, it follows that H(x) contains at
least one rank r submatrix M, = [R;,]. Hence r, > r
and the minimum can be achieved for instance when x, is
set to the correct value. Thus, for any minimizing solution
X, there exist 7 columns H(:,¢) and scalars «; such that
H(:;,1) = Y7_, &yH(:, 7). By contradiction, assume now
that X # R;. Since all indexes ¢ appear in H(:, 1), this
implies, (by selecting an appropriate subset of rows of H),

that R; = Z::_ll B;R;, for some (; not all zero, which
contradicts the hypothesis that rank(M,.) = r.

In the case of real images, corrupted by noise, let Y (x)
and H, denote the corresponding image and the underlying
low rank Hankel operator. From the reasoning above, it
follows that the missing pixels x can be found by solving
the following problem:

a(Y-H)<e

H e H, rank(H) =r (20)

min{r} subject to: {
X
Direct application of Corollary 1 in the Appendix leads to
the following equivalent (non—convex) optimization prob-
lem:

min{r} subject to:o;(x) < ¢€,i>r
X

where 0;(.) denote the singular values of Y, in decreasing
order.

Finally, the case where the image does not contain an
integer number of periods can be solved by combining the
idea above with the technique proposed for finding textons:
A sequence of rank minimization problems can be solved,
for submatrices of increasing dimensions. The texton and
missing pixels can be jointly determined by finding the
region, along with the corresponding minimizer x,(7") that
minimizes rank[H(x,7")]. Note also that the proofs above
generalize to other regions as long as the hypothesis that H
contains a rank r submatrix holds.

Fig. 3.

Corrupted and Restored Images

Reducing the Computational Complexity: A potential
difficulty with the approach outlined above stems from
the fact that rank minimization problems are known to be
generically NP-hard [3]. However, as we briefly show in
the sequel, in this case the specific structure of the problem
can be exploited to obtain computationally tractable convex
relaxations. Begin by noting that if the Hankel matrix (19)



has rank r, so does the Toeplitz matrix:

R1 X e Rn—l
R2 R1 e X

T(x) = @1
X Rn—l e R1

(this can be easily shown by noting that H'H = T7T).
Moreover, it is not hard to show that the singular values
of T are given by the magnitude of the Fourier Transform
of its first column, evaluated at the frequencies w; = 2mi

ot
1=0,1,...,n — 1, that is:

o(i) = [FH(WZ-)F(M)]%, F(w;) = Z Rkej(k—l)wl

k=1n

Since T is an affine function of the missing pixels x, it
follows that o(4) is a convex function of x. One can then
attempt to solve Problem (20) by solving the following
optimization problem:
. N2
min zl: log(a(i)* +¢€) (22)

The idea behind this function is to drive as many singular
values as possible below the noise threshold €. Consistent
numerical experience shows that this relaxation achieves a
value of the rank within 1 to 2% of the actual minimum.

The use of this relaxation is illustrated in Figure 3, where
it was used to remove unwanted text and to restore missing
pixel values.

VII. CONCLUSIONS

This paper approaches the problems of texture analysis
and synthesis from an operator theoretic viewpoint, where
images exhibiting a given texture are viewed as the output,
corrupted by noise, of an unknown operator with periodic
impulse response to a suitable input.

Motivated by existing subspace identification methods
and their relationship with well known results in realiza-
tion theory, we address the problem of extracting models
from textured images, by working directly with a circu-
lant Hankel matrix Hz constructed from the image pixels
Z(i,7). The main result of the paper shows that a state—
space realization model of a given texture can be obtained
directly from a SVD-decomposition of Hz. This result
was established by noting that rank—constraint approxima-
tions obtained by truncating the SVD decomposition of a
circulant Hankel matrix automatically inherit the Hankel
structure, and that the periodicity constraint induces a
circulant structure on the Hankel operator modelling the
texture.

The proposed modelling approach was illustrated with
two applications: (i) finding textons and (ii) texture inpaint-
ing, that is, to seamlessly complete a textured image with
missing pixels. As we show in the paper, both problems
are related to the rank of Hz. The first problem entails
finding regions of the image associated with relative minima
of the rank of the corresponding Hankel matrix, while the

second leads to a rank—minimization problem. While these
problems are known to be generically NP-hard, in this case
the properties of circulant Hankel matrices can be exploited
to obtain tight convex relaxations.

It is also worth mentioning that the algorithms proposed
here can be modified to incorporate time evolution of the
state representation, potentially providing for efficient ways
of modelling and recognizing dynamic texture.

REFERENCES

[11 M. Ashikhmin, “Synthesizing natural textures,” in Symposium on
Interactive 3D Graphics, 2001, pp. 217-226. [Online]. Available:
citeseer.ist.psu.edu/530201.html

[2] J. D. Bonet and P. Viola, A non-parametric multi-scale statistical
model for natural images. MIT Press, 1997, ch. 9.

[3] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory. Philadelphia: SIAM
Studies in Applied Mathematics, 1994.

[4] D. Cano and T. H. Minh, “Texture synthesis using hierarchical linear
transforms,” Signal Processing, vol. 15, pp. 131-148, 1988.

[5] R. Chellappa and R. Kashyap, “Texture synthesis using 2d noncausal
autoregressive models,” IEEE Trans. on Acoustics, Speech and Signal
Processing, vol. assp-33, no. 1, pp. 194-199, February 1985.

[6] G. R. Cross and A. K. Jain, “Markov random field texture models,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 5,
pp. 713-718, 1983.

[71 G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,”
Int. J. Computer Vision, vol. 51, no. 2, pp. 91-109, 2003.

[8] A. Efros and T. Leung, “Texture synthesis by non-parametric sam-
pling,” in ICCV, 1999.

[9]1 A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. ACM Press, 2001,
pp. 341-346.

[10] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions
and the bayesian restoration of images,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.

[11] L. V. Gool, P. Dewaele, and A. Oosterlinck, “Survey: texture analysis
anno,” cvgip, vol. 29, pp. 336-357, 1985.

[12] R. M. Haralick, “Statistics and structural approach to texture,” Proc.
IEEE, vol. 67, pp. 786-804, 1979.

[13] P. Harrison, “A non-hierarchical procedure for re-synthesis of com-
plex textures,” in WSGC, 2001, pp. 190-197.

[14] D. Heeger and J. Bergen, “Pyramid-based texture analysis/synthesis,”
in ACM SIGGRAPH, 1995.

[15] B. Julesz, “Visual pattern discrimination,” IRE Trans. of Information
Theory, vol. IT, no. 8, pp. 84-92, 1962.

[16] H. C. Lin, L. L. Wang, and S. N. Yang, “Extracting periodicity
of a regular texture based on autocorrelation functions,” Pattern
Recognition Letters, vol. 18, p. 433443, 1997.

[17] Y. Liu, R. Collins, and Y. Tsin, “A computational model for periodic
pattern perception based on frieze and wallpaper groups,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 3, pp. 354 — 371, March 2004.

[18] J. Mao and A. K. Jain, “Texture classification and segmentation
using multiresolution simultaneous autoregressive models,” Pattern
Recognition, vol. 25, pp. 173-188, 1992.

[19] L. Mirsky, “Symmetric gauge functions and unitarily invariant
norms,” Quartely J. of Mathematics, vol. 11, pp. 50-59, 1960.

[20] T. Ojala, M. Pietikainen, and D. Hardwood, “A comparative study of
texture measures with classification based on feature distributions,”
Pattern Recognition, vol. 29, no. 1, pp. 51-59, 1996.

[21] K. Popat and R. W. Picard, “Cluster-based probability model and its
application to image and texture processing,” IEEE Trans. on Image
Processing, vol. 6, no. 2, pp. 268-284, 1997.

[22] M. Porat and Y. Y. Zeevi, “Localized texture processing in vision:
Analysis and synthesis in gaborian space,” IEEE Trans. Biomedical
Engineering, vol. 36, no. 1, pp. 115-129, 1989.

[23] J. Portilla and E. P. Simoncelli, “A parametric texture model based
on joint statistics of complex wavelet coefficients,” Int. Journal of
Computer Vision, vol. 40, no. 1, pp. 49-71, 2000.



[24] T. Randen and J. H. Husoy, “Filtering for texture classificatiob: A
comparative study,” pami, vol. 21, no. 4, pp. 291-310, 1999.

[25] S. D. Rane, G. Sapiro, and M. Bertalmio, “Structure and texture
filling-in of missing image blocks in wireless transmission and
compression appications,” ip, vol. 12, no. 3, pp. 296-303, March
2003.

[26] M. Tuceryan and A. K. Jain, “Texture analysis,” in Handbook of
Pattern Recognition and Computer Vision, . H. Chen, L. F. Pau, and
P. S. P. Wang, Eds. World Science Publishing, 1993, pp. 235-276.

[27] L. Y. Wei and M. Levoy, “Order-independent texture synthesis,”
Standford University, Computer Science Department, Tech. Rep. TR-
2002-01, April 2002.

[28] Y. Q. Xu, B. Guo, and H. Shum, “Chaos mosaic: Fast and memory
efficient texture synthesis,” Microsoft Research, Tech. Rep. MSR-
TR-2000-32, April 2000.

[29] J. Yuan and S. T. Rao, “Spectral estimation for random fields
with applications to markov modeling and texture classification,” in
Markov random Fields, Chellappa and Jain, Eds., 1993.

[30] J. Zhang and T. Tan, “Brief review of invariant texture analysis
methods,” Pattern Recognition, vol. 35, pp. 735-747, 2002.

[31] S. C. Zhu, Y. Wu, and D. Mumford, “Filters, random fields and
maximum entropy (FRAME): towards a unified theory for texture
modeling,” Int. Journal of Computer Vision, vol. 27, no. 2, pp. 107—
126, 1998.

APPENDIX
A. Proof of Theorem 1

In order to prove Theorem 1 we need the following
preliminary result:

Lemma 1: Consider the singular value decomposition of
a matrix H € H:

0
H= [U7 Un—’r' UJJ 0 Sn—r 0
o o o] |Vt
U,).

If o, > 0,41 then P U, € span colums(

Proof: Let
0 I, O 0
0o 0 I,
Pr = (23)
I, 0 0 ... 0

It can be easily verified that P HP r = H. Thus, for any
left eigenvector u” of HH' we have:
u"HH" = ou” = u"HH'P? = 5u"P? =
u"PITP,HPRPTHTPL = su’PT =

u"PTHH” = ou”P?

24)

where we used the facts that PEPL =Tand PRPL =1.
From the last equation it follows that u’P? is also an
eigenvector of HHT, with eigenvalue o. The proof follows
now from the facts that subspaces corresponding to different
eigenvalues of HH” are orthogonal and that the condition
oy > 0,41 guarantees that the subspaces spanned by the
columns of U, and U,,_, are orthogonal. [ |
The proof of Theorem 1 is given next:

Proof: Property (i): Start by partitioning U =
U, U,_, U,]. Since PrU, is orthogonal to
[U,_. U,], it follows that U, U'P, U, =

(1-U,,Ul_ -UTU,)P,U, = P,U, Thus

=1 1
AF = S, UT'P}U,S?. The fact that A" = I follows
directly from P’} = 1.
Property (ii): Start by defining:
k) - k) .
EM =0...01,...0, E¥) =[0...01, ...
k—1
g pxm _ g Ry)
h;; e R =E;'HE}

0]"
k—1

and use the expressions for C,,B, and A* to compute
C,A"1B, leading to:

C.AM'B, =UWUlPI U8, VD
-eu,u’pi'u,s, vl = EVPE-'U,S, V,EY

=EV VH,EY = hy,
(25)
Next, compute

h, ; = EYH,E, = EVP{VH,PLUVEY
_ gpiti2p, -y p VgD
—EYYHEY =hiyjoan

Thus, H, = (h; ;) has the required block circulant Hankel
structure. Since by construction Y is also a block circulant
Hankel matrix, it follows that He, =Y — H,. has a block
circulant Hankel structure. Moreover, from (10), it follows
that

o0 o o[Vl
H,=[U, U,., U/ [0 S, 0| |Vl
0o o of|VT

where S,,_, = diag{o,11,...,0,}. This, together with (9)
implies that 6(He) < e. Thus, from (7) we have that:

Y =H;H! =H, + H, =

(26)
H; = H,H, + H,

where we defined H, = H.,H,. Note that since H,, is
unitary, then d(Hy) < e. From the first column of the
(matrix) equation (26) it follows that:

n
R} =) CA*'Bu; + v
i=1
with w; = H,(4,1) and v = Hy (k,1). [ ]
Corollary 1: Given Y € 'H", consider the following
constrained approximation problem:

rank(H,) <r
H, e H"
Then the minimizing H, is given by (10) and p. = 0,41.

Proof: By construction (Mirsky’s Theorem [19]), H,.
solves the rank-constrained approximation problem

e = HI_lliIl (Y — H,) subject to { 27

pue = min5(Y — H,) subject to rank(H,) <r.

The fact that H,. solves (27) follows from the fact that in
general pi,. < p. with H,. achieving equality in this case.
|



