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Abstract— In the past few years, control of Linear Parameter
Varying Systems (LPV) has been the object of considerable
attention, as a way of formalizing the intuitively appealing
idea of gain scheduling control for nonlinear systems. However,
currently available LPV techniques are both computationally
demanding and (potentially) very conservative. In this paper
we propose to address these difficulties by combining Receding
Horizon and risk–adjusted techniques. The resulting controllers
are guaranteed to stabilize the plant and have computational
complexity that increases polynomially, rather than exponen-
tially, with the prediction horizon.

I. I NTRODUCTION

A widely used practice to handle nonlinear dynamics
is to linearize the plant around several operating points
and then use gain–scheduled linear controllers. However,
while intuitively appealing, this idea has several pitfalls
[17]. Motivated by these shortcomings, during the past
few years considerably attention has been devoted to the
problem of synthesizing controllers for Linear Parameter
Varying Systems, where the state–space matrices of the plant
depend on time–varying parameters whose values are not
known a priori, but can be measured by the controller.
This research has resulted in controller synthesis methods
guaranteeing worst case performance bounds (for instance
in an H2 or H∞ sense, see e.g. [1] and references therein).
While successful in many situations, these techniques are
potentially very conservative in others, since they are based
on sufficient conditions,. In addition, these methods are
computationally very demanding, requiring the solution of a
set of functional matrix inequalities. Obtaining computation-
ally tractable problems requires using both finite expansion
approximations as well as a gridding of the parameter space,
leading to further conservatism.

The present paper seeks to reduce both the computational
complexity and conservatism entailed in currently available
LPV synthesis methods by combining risk–adjusted (see eg.
[4], [5], [14]) and Receding Horizon (see [13] and references
therein) ideas. Our main result shows that, by searching over
a set ofclosed–loopstrategies the problem can be reduced to
finding a solution to a finite set of Linear Matrix Inequalities
(LMIs). Finding the exact solution to this problem has
computational complexity that grows exponentially with the
horizon length. To circumvent this difficulty, we propose to
use a stochastic approximation algorithm that is guaranteed
to converge to the solution with probability one, and whose
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computational complexity grows only polynomially with the
horizon.

The paper draws inspiration, in addition to [19], [21]
and [9], from [15], [7] and [3]. The main difference with
[15] and [7] is the use of Receding Horizon techniques.
Compared with [3], we consider the case of case of LPV
dynamics and we obtain a controller that minimizes the
worst case performance over all trajectories compatible with
the current parameter value. Finally, the use of closed–
loop strategies, based on the solution of a set of LMIs,
results in substantial reduction of computational complexity.
In this sense the work presented here is related to the earlier
work in [22] advocating the use of Riccati based receding
horizon controllers forH∞ control of Linear Time Varying
systems, and to the work in [12], proposing an LMI–based
optimization ofclosed–loopcontrol strategies.

II. PRELIMINARIES

A. The LPV Receding HorizonH2 Control Problem

In this paper we consider discrete time LPV systems of
the form:

G

 x(t +1) = A[ρ(t)]x(t)+B1[ρ(t)]w(t)+B2[ρ(t)]u(t)
z(t) = C1[ρ(t)]x(t)+D12[ρ(t)]u(t)
y(t) = C2[ρ(t)]x(t)+D21[ρ(t)]w(t)

(1)
wherex∈Rnx,u∈Su⊆Rnu, z∈Rnz, y∈Rny andw∈Rnw rep-
resent the state, control, regulated variables, measurements
available to the controller and a white Gaussian exogenous
disturbance, respectively,Su is a convex set containing the
origin in its interior, ρ denotes a vector of time–varying
parameters that can be measured in real time, and where
all matrices involved are continuous functions ofρ. Further,
we will assume that the set of parameter trajectories is of
the form:

FΘ = {ρ ∈ P : ρ(t +1) ∈Θ [ρ(t)] , t = 0,1, . . .} (2)

whereP ⊂ Rnρ is a compact set andΘ : P → P is a given
set valued map. Our goal is to, given the present valueρ(k)
of the parameter vector, find an output feedback control law:

u(k) = f [y(k),y(k−1), . . . ,ρ(k),ρ(k−1), . . .] ∈ Su

that minimizes, in some sense, the effect of the disturbance
w on the performance outputz. In the case of LTI systems,
this leads to the well knownH2 control problem. In the case
of Linear Time Varying systems, one could proceed as in [6]



by considering the performance index

J
.= lim

T→∞
E

{
1
T

T−1

∑
t=0

zT(t)z(t)

}
(3)

whereE{·} denotes expected value. Note however, that such
a performance index takes into account only thesteady state
behavior of the closed–loop system. Moreover, since the
present value of the time–varying parameter typically does
not provide information on the value of the parameter as
t→∞ (assuming that all of the parameter setP is reachable
from any starting value),robustlyoptimizing an index of the
form (3) entails considering a potentially very conservative
double worst–case scenario: worst case trajectory and worse
case initial condition inP . Improving both the transient
and steady–state behavior while minimizing conservatism
suggests the use of a performance index of the form:

J
.= E

{
1
N

N−1

∑
t=0

zT(t)z(t)

}
where the horizonN is a design parameter. In turn, this leads
naturally to the following Receding Horizon formulation:

Problem 1: Given an LPV system of the form (1), find an
output feedback control law:

u(k) = f [y(k),y(k−1), . . . ,ρ(k),ρ(k−1), . . .] ∈ Su

that (i) renders the origin an exponentially stable equilibrium
point of the closed loop system, and (ii) at each timek it
minimizes the following performance index:

J[ρ(k),u] = sup
ρ∈FΘ

E

{
1
N

k+N−1

∑
t=k

zT(t)z(t)

}
(4)

Remark 1:The horizonN is a parameter than can be use
to tune transient versus steady–state behavior. A reasonable
value forN is the minimum amount of time needed for the
parameter trajectoriesρ(.) to transition between any 2 arbi-
trary points inP , since the parameter value at timet carries
no information about its value beyondt +N. Hence beyond
this horizon the problem reverts to a robust optimization over
all possible parameter values.

In the sequel, for simplicity, we make the following stan-
dard assumptions:DT

12D12 = I , CT
1 D12 = 0, andE(wkwT

k ) = I .
In addition, the explicit dependence of matrices onρ will be
omitted, when it is clear from the context.

B. Preliminary Results

In this section we introduce some definitions and prelim-
inary results that will be used to reduce the minimization of
(4) to a tractable finite dimensional optimization. For ease
of reading, all proofs in this section are relegated to the
Appendix.

Definition 1: A setSx
.= {x∈ Rnx : F(x)≤ 1} is said to be

mean controlled invariantfor the system (1) if, given an
initial condition xo ∈ Sx there exist a sequence of admissible
control actions{ui}, ui ∈ Su such that the corresponding
trajectory satisfiesE{F [x(k)]} ≤ 1, for all k> 0, where the
expectation is taken with respect to the input sequencew(.).

Lemma 1:Consider an exponentially stable Linear Time
Varying (LTV) system of the form:

x(t +1) = A(t)x(t)+B(t)w(t)
z(t) = C(t)x(t)+D(t)w(t)

(5)

with a Gaussian distributed initial conditionxo with covari-
anceE(xoxT

o ) = Xo. Then, for anyX(t) ≥ 0 satisfying the
affine matrix inequality

A(t)X(t)AT(t)−X(t +1)+B(t)BT(t)≤ 0 (6)

with initial condition X(0)≥ Xo the following bound holds:

E

{
1
T

T−1

∑
t=0

zT(t)z(t)

}
≤ 1

T

T−1

∑
t=0

Trace
[
C(t)X(t)CT(t)

+D(t)DT(t)
] (7)

Similarly, if Y(t)≥ 0 satisfies:

AT(t)Y(t +1)A(t)−Y(t)+CT(t)C(t)≤ 0 (8)

then

E
{

1
T ∑T−1

t=0 zT(t)z(t)
}
≤ Trace[XoY(0)]+

+ 1
T ∑T−1

t=0 Trace
[
BT(t)Y(t +1)B(t)+DT(t)D(t)

] (9)

Next, we show that theH2 cost can be partitioned into a
portion related to a state-feedback problem for an auxiliary
plant, plus an “observation” cost. These results can be
though of as an extension to the LPV case of some general
orthogonality results originally introduced in [16] for the LTI
case.

Theorem 1:Consider an LPV system of the form (1) and
define the following auxiliary state–feedback plant:

Gs f

 xs f(t +1) = A[ρ]xs f(t)−L[ρ]Rc[ρ]w(t)+B2[ρ]u
z1(t) = C1[ρ]xs f(t)+D12[ρ]u(t)
y(t) = xs f(t)

(10)
where

L =−AZ−1CT
2 R−2

c

Rc = (I +C2Z−1CT
2 )

1
2

(11)

and whereZ(.) > 0 satisfies the following affine matrix
inequality: −Z(θ) Z(θ)A(ρ) Z(θ)B1(ρ)

AT(ρ)Z(θ) −Z(ρ)−CT
2 (ρ)C2(ρ) 0

BT
1 (ρ)Z(θ) 0 −I

< 0

(12)
for all ρ ∈ P and θ ∈ Θ(ρ). Finally, let K[ρ] be such that
A[ρ] + B2[ρ]K[ρ] is exponentially stable for all admissible
parameter trajectories and consider the following output
feedback controller:

xc(t +1) = (A[ρ]+B2[ρ]K[ρ]+L[ρ]C2[ρ])xc(t)−L[ρ(t)]y(t)
u(t) = K[ρ]xc(t) xc(0) = 0

(13)
and denote byGcl andzcl the system obtained by closing the
loop around (1) using the controller (13), and its correspond-
ing output, respectively. Then (i)Gcl is exponentially stable
and, (ii) The corresponding closed loop trajectories satisfy

E
[
zT(t)z(t)

]
≤ E(zT

s fzs f)+Trace
[
C1(t)Z−1(t)CT

1 (t)
]

(14)



where zs f denotes the output ofGs f corresponding to the
control lawus f =−K[ρ]xs f.

III. R ISK ADJUSTEDRECEDING HORIZON CONTROL:
THE UNCONSTRAINED CONTROL CASE

A. Motivation:

In this section we introduce a conceptual receding horizon
control law for unconstrained LPV systems that provides
the motivation for the risk–adjusted approach pursued latter
in the paper. In principle, one could synthesize a receding
horizon control law by exploiting Theorem 1 to reduce
the problem to an equivalent state feedback one, which in
turn can be reduced, via Lemma 1 to a (functional) convex
optimization over the set of matrix functions ofρ. However,
solving this problem is far from trivial, even when making
several approximations such as assuming memoryless, ar-
bitrarily fast time–varying parameters1, typically requiring
both gridding of the parameter setP and approximating
Y(.) by a finite expansion in order to get a tractable, finite
dimensional problem [1]. To avoid this difficulty, motivated
by the work in [22], [21], in the sequel we will search over
closed–loop strategies, rather than control actions. To this
effect, denote byXN+1 : Θ×{−1,0,1, . . . ,N−1} → P and
VN+1 : Θ×{−1,0,1, . . . ,N−1} → P the set of all bounded
matrix functions that mapN+1–length admissible parameter
trajectories toP, the class of all symmetric positive definite
matrices andV, the class of allnu×nx matrices respectively,
and consider the following receding horizon type control law:

Algorithm 1:

0.- Setxc(0) = 0, X̃(0) = W̃(0) = E(xoxT
o ), andn = 1.

1.- Let ρ(n) denote the measured value of the parameter
at time n and solve the following LMI optimization
problem inX ,W ,Γi :

min
X ,W ∈ XN+1

V ∈ VN+1

Trace

{
1
N

N−1

∑
i=0

Γi

}
(15)

subject to:

M(ρ) .=

[
M11 D12(n+ i)V(i) C1(n+ i)

VT(i)DT
12(n+ i) −X(i) 0

CT
1 (n+ i) 0 −W(i)

]
≤ 0 (16)

R(ρ) .=
[
R11 R12

RT
12 −X(i−1)

]
< 0 (17)

S(ρ) .=

[−W(i) S12 S13
ST

12 S22 0
ST

13 0 −I

]
< 0, (18)

1In this case the problem becomes essentially equivalent to synthesizing
a controller for a system subject to parametric uncertainty, and it is well
known that these problems are generically NP hard.

where:

M11 =−Γi +C1(n+ i)X(i)CT
1 (n+ i),

R11 =A(n+ i−1)X(i−1)AT(n+ i−1)

+B2(n+ i− i)V(i−1)AT(n+ i−1)

+A(n+ i−1)VT(i−1)BT
2 (n+ i−1)

+B1(n+ i−1)BT
1 (n+ i−1)−X(i),

R12 =B2(n+ i−1)V(i−1),
S12 =W(i)A[ρ(n+ i−1)], S13 =W(i)B1[ρ(n+ i−1)],

S22 =−W(i−1)−CT
2 [ρ(n+ i−1)]C2[ρ(n+ i−1)];

for all ρ(n+ i +1) ∈Θ[ρ(n+ i)], i = 0,1, . . . ,N−1

with boundary conditionsX(−1) = X̃(n− 1) and
W(−1) = W̃(n− 1), where, with a slight notational
abuse, we denoteX[ρ(t), t] and W[ρ(t), t] simply as
X(t),W(t).

2.- SetX̃(n) = X(0), W̃(n) = W(0),Ṽ(n) = V(0) and com-
pute:

L(n) =−A(n)W̃−1(n)CT
2 (n)R−2

c (n)

K(n) = Ṽ(n)X̃−1(n)
xc(n+1) = [A(n)+L(n)C2(n)+B2K(n)]xc(n)

−L(n)y(n)

(19)

3.- Use as control action at timen

uRH[ρ(n)] = Ṽ[ρ(n)]X̃−1[ρ(n)]xc(n) (20)

Setn = n+1 and go to step 1.
Theorem 2:The control lawuRH renders the origin an

asymptotically stable equilibrium point of (1). Moreover the
corresponding closed loop trajectory satisfies:

Jworst[ρ(n)] .= sup
ρ∈FΘ

E

{
1
N

n+N−1

∑
t=n

zT(t)z(t)

}

≤ Trace

{
n+N−1

∑
t=n

Γt

} (21)

Proof: Let Gs f,cl denote the closed loop system obtained
by closing the loop aroundGs f using the full state
feedback control lawu = ṼX̃−1x. A Schur complement
argument shows that the inequality (17) implies:

AT
K(t−1)X̃−1(t)AK(t−1)− X̃−1(t−1)< 0

where AK
.= A + B2ṼX̃−1. Moreover, compactness of

P , together with continuity of all matrices involved,
implies that there exist some constantsc1,c2 such that
c1I ≥ X̃−1 ≥ c2I . Hence xT X̃−1[ρ]x is a parameter
dependent Lyapunov function for the plantGs f,cl , which
implies thatx→ 0 ast→∞. Moreover, this convergence
is uniform, since all matrices involved are functions
of t only through ρ. Exponential stability ofGs f,cl

follows now from the equivalence between uniform
asymptotic and exponential stability for linear systems
([10], Theorem 3.9). Finally, the inequality (18) implies
that AL

.= A+LC2 is exponentially stable (see the proof
of Lemma 3 in the Appendix). Exponential stability of



the plantG when using (20) follows now from Theorem
1 and Lemma 3. Finally, note that

Trace{(C1 +D12K)X(C1 +D12K)T}
= Trace{X(C1 +D12VX−1)X(C1 +D12VX−1)T}
= Trace{C1XCT

1 +D12VX−1VTDT
12}

(22)
where we made use of the factC1DT

12 = 0. Hence, the
inequality (16) implies that, for all parameter trajecto-
ries compatible with the present value of the param-
eter we have:∑N−1

i=0 Ccl(n + i)X(i)CT
cl(n + i) + C1(n +

i)W−1(i)CT
1 (n+ i) ≤ ∑N−1

i=0 Γi , whereCcl
.= C1 + D12K.

The bound in (21) follows from Theorem 1 and Lemma
1.

B. Reducing the computational complexity

As shown in Theorem 2, the receding horizon control law
(20) is guaranteed to stabilize the system while minimiz-
ing a performance index that takes into account both the
transient and steady state behavior. However, in principle
it has a high computational complexity, since it requires
finding feasible solutions to the set of LMIs (16)–(18). To
avoid this difficulty, in the sequel we propose to pursue a a
stochastic approximation approach, whose complexity grows
polynomially (rather than exponentially) with the horizonN.
To this effect, assume thatρ̂ = [ρ(n+1)ρ(n+2) · · ·ρ(n+N)]
has a non–zero probability density for allρ ∈ Fθ. Next, note
that to computeu(n), one only needsX(0), W(0) andV(0).
This observation allows for reformulating the optimization
problem (15) to eliminate the need to explicitly compute
X(i), W(i) and V(i), i = 1, . . . ,N− 1 as follows: Given a
fixed instantn, ρ(n) and ρ̂ ∈ Fθ, define

M(n) .=

M̃
R̃

S̃

 .
where

T̃ =

T[ρ(n)]
...

T[ρ(n+N−1)]

 , T = M,R,S.

In terms ofM, the constraints (16)–(18) can be expressed as:

λ(Γ0, . . .ΓN−1,X(0),W(0),V(0),ρ(n), ρ̂) .=

min
X(1), . . .X(N−1)
W(1), . . . ,W(N−1)
V(1), . . . ,V(N−1)

λmax
[
M(n)

]
< 0.

(23)

Thus, in this context, one does not need to compute the
explicit value ofX(i), W(i) andV(i), i = 1, . . . ,N−1, as long
as the minimum above can be computed. Note in passing,
that this reformulation preserves convexity, since the function
λ(·) is a convex function of its arguments. To complete the
approximation of the original optimization problem by a
stochastic one, givenζ> 0, define

g̃(x) =
eζx−1

ζ

and collect all the optimization variables (e.g., the entries of
Γ0, . . . ,ΓN−1, X(0), W(0) andV(0)) in a vectorxn. Define
the following functions

f0(xn,ρ(n), ρ̂) .= Trace

{
1
N

N−1

∑
i=0

Γi

}
;

f1(xn,ρ(n), ρ̂) .= g̃[λ(Γ,X(0),W(0),V(0),ρ(n), ρ̂)]+ ε.

Consider now the following convex problem

minEρ̂ [ f0(xn,ρ(n), ρ̂)] = minTrace
{

1
N ∑N−1

i=0 Γi
}

s.t.Eρ̂ [ f1(xn,ρ(n), ρ̂)]≤ 0;
(24)

whereEρ̂[·] denotes the expected value with respect to the
random variablêρ. It can be easily shown that the solution
to this problem tends to the solution of the problem (15) as
ζ→ ∞ and ε→ 0. We are now ready to provide the main
result of this section: an algorithm for solving problem (24)
in polynomial time. For technical reasons, in the sequel we
will assume that the solution to this problem is known to
belong to a given compact convex setX (where the matrices
Γ0, . . . ,Γn−1, X(0), W(0) andV(0) have bounded entries and
X(0) andW(0) are positive definite).

Let π(·) denote the projection ontoX ; i.e.,

π(x) = arg min
x̃∈X
‖x− x̃‖2.

and consider the following algorithm:
Algorithm 2:

1.- Initialization: Determinex0
n, y0

i ; i = 0,1 and z0
1. Let

k = 0.
2.- Generate a samplêρk = [ρk(n+1), . . . ,ρk(n+N−1)]
3.- If zk

1≤−γ0/kγ then

xk+1
n = π

[
xk

n−bky
k
0

]
.

Otherwise,xk+1
n = π

[
xk

n−bkyk
1

]
.

4.- Let

yk+1
i = yk

i +ak

(
∂ fi(xn,ρ(n), ρ̂k)

∂xn

∣∣∣∣
xn=xk

n

−yk
i

)
i = 0,1 and

zk+1
1 = zk

1 +ak

(
f1(xn,ρ(n), ρ̂k)−zk

1

)
;

5.- If zl
1 < 0 and | f0(xk,ρ(n), ρ̂)− f0(xk−1,ρ(n), ρ̂)| < εo

for l = k−Ngood+1, . . . ,k+1 stop. Otherwise, letk =
k+1 and go to step 3.

Theorem 3:Let ak = α0
kα ; bk = β0

kβ , whereα0, α, β0 andβ
are positive constants. Furthermore, assume thatγ0 andγ are
also positive. Then, if

∞

∑
k=0

ak =
∞

∑
k=0

bk = ∞;
∞

∑
k=0

a2
k < ∞; lim

k→∞

bk

ak
= 0

and 2β−α−2γ > 1 the sequencexk
n converges with proba-

bility one to the solution of the problem (24).

Proof: Direct application of Theorem 1 in [8].



C. Adding Control Constraints

In this section we briefly indicate how to modify the
algorithm presented above to handle constraints in the control
action. In the case of deterministic systems this can be
accomplished by suitably scaling the control action using
state dependent weights [20], [21]. However, this approach
cannot be directly applied here, since the stochastic nature
of system (1) prevents predicting the future values of these
scalings, or, equivalently rendering suitable sets controlled–
invariant. To circumvent this difficulty, in this paper we pro-
pose to replace the constraintsu(n+ i)∈Su∀i = 0,1, . . .N−1
in the optimization of (4) by the relaxed setu(n) ∈ Su,
E[u(n+ i)] ∈ Su, i = 1, . . . ,N−1. That is, at each given time
n, the present value of the control action is subject to the
hard constraintu(n) ∈ Su, while only theexpectedvalue of
predicted future control actionsu(n+1), . . . ,u(n+N−1) is
required to satisfy the constraints.

Specifically, assume that the control constraint set is of
the formSu{u: ‖u‖∞ ≤ 1}. When using a control law of the
form (20), this constraint is equivalent to

|u j | ≤ 1 ⇐⇒ |v jX
− 1

2 X−
1
2 x| ≤ 1, j = 1, . . . ,nu

wherev j denotes thej th row of the matrixV. This can be
relaxed to:

|u j | ≤1⇐ (v jX
−1vT

j )·(xTX−1x)≤1⇐
{

v jX−1vT
j ≤ 1

c
xTX−1x ≤ c

(25)
wherec> 0 is an arbitrary constant. We propose to further
relax this constraint foru(n+ i) to:

E{|u j(n+ i)|} ≤ 1⇐
{

v jX−1vT
j ≤ 1

c
E(xTX−1x) ≤ c

(26)

Assume next thatX is chosen so that the closed–loop system
satisfies (6) withX(0)≥ Xo. Then the corresponding closed
loop trajectories satisfyX(n + i) ≥ E{x(n + i)xT(n + i)}.
Hence

E
[
xT(n+ i)X−1(n+ i)x(n+ i)

]
= Trace

{
X−1(n+ i)E

[
x(n+ i)xT(n+ i)

]}
≤ Trace{Inx}= nx

(27)

It follows that the ellipsoidx(n+ i)TX−1(n+ i)x(n+ i)≤ nx

is mean controlled invariantand thus the control constraints
(26) can be enforced by simply enforcing the constraint
v jX−1vT

j ≤ 1
nx

. These observations lead to the following
Receding Horizon algorithm:

Algorithm 3:

0.1- Setxc(0) = 0, X̃(0) = W̃(0) = E{xoxT
o} andn = 1.

1.- Let ρ(n) denote the measured value of the parameter
at time n and solve the following LMI optimization
problem inX ,W ,V andΓi :

min
X ,W ∈ XN+1

V ∈ VN+1

Trace
{

1
N ∑N−1

i=0 Γi
}

(28)

subject to (16), (17), (18) and[
nx xT

c (n)
xc(n) X(n)

]
≥ 0,

[
1
nx

v j (n+ i)
vT

j (n+ i) X(n+ i)

]
≥ 0(29)

j = 1, . . . ,nu, i = 0,1, . . . ,N−1

for all ρ(n+ i +1) ∈Θ[ρ(n+ i)], i = 0,1,2, . . . ,N−1
2.- Set X̃(n) = X(0), W̃(n) = W(0),Ṽ = V(0) and com-

pute:

L(n) =−A(n)W̃−1(n)CT
2 (n)R−2

c (n)

K(n) = V(n)X̃−1(n)
xc(n+1) = [A(n)+L(n)C2(n)+B2K(n)]xc(n)

−L(n)y(n)

(30)

3.- Use as control action at timen

uRH[ρ(n)] = Ṽ[ρ(n)]X̃−1(n)xc(n) (31)

Setn = n+1 and go to step 1.
Theorem 4:Assume that the origin is an exponentially

stable equilibrium point ofA[ρ(.)] for all ρ ∈ FΘ Then, the
control law (31) (i) is admissible, in the sense that it satisfies
the control constraintsu(k) ∈ Su, ∀k, and (ii) it renders the
origin a globally exponentially stable point of the closed loop
system for all admissible parameter trajectories.

Proof: From Theorem 1 it follows that we only need to
consider the state feedback case. The proof of stability
in this case is similar to the proof of Theorem 2,
provided that the additional constraints (30) are feasible.
Feasibility of these constraints follows from the fact that
exponential stability ofA(.) always allows for scaling
the matricesV and X so that the constraints hold.
Finally, the fact that the control law (31) satisfies the
constraints|ui(.)| ≤ 1 follows immediately from (30)
and (25).

Remark 2: If the open loop system is not exponentially
stable the algorithm above will (under mild controllability
and observability hypothesis) locally stabilize the system in
some neighborhood of the origin, which can be estimated by
computing the sets where the constraints (17) and (30) are
feasible.

Remark 3:As before, the computational complexity of
the optimization problem above grows exponentially with
the horizon, even when approximatingX,V andW by finite
expansions. However, the stochastic approach used in Algo-
rithm 2 can also be used here, with minimal modifications,
to obtain polynomial growth approximations.

IV. I LLUSTRATIVE EXAMPLE

Consider the discrete time LPV system that has the
following system matrices:

A(ρ(t)) =
[

1.01 0.1
0 1−0.1ρ(t)

]



B1(ρ(t)) =
[

0.1 0
0.2 0

]
, B2(ρ(t)) =

[
0

0.0787

]′
C1(ρ(t)) =

[
1 0
−1 0

]
, D12(ρ(t)) =

1√
2

[
1 1

]′
C2(ρ(t)) =

[
1 0

]
, D21(ρ(t)) =

[
0 1

]′
with admissible parameter set

FΘ = {ρ(t) : ρ(t +1) ∈ [−1,1], |ρ(t)−ρ(t +1)| ≤ 0.2, ∀t} .
(32)

It can be verified that the matrix function:

Y(ρ(t)) = Y0 +Y1ρ(t)+Y2ρ2(t)

with

Y0 =
[

0.0339 −0.0197
−0.0197 0.0326

]
Y1 =

[
0.0031 −0.0065
−0.0065 0.0100

]
Y2 =

[
0.0013 −0.0024
−0.0024 0.0032

]
satisfies the functional matrix inequality:[
−Y(ρ)+B2(ρ)BT

2 (ρ) Y(ρ)AT(ρ)−B2(ρ)BT
2 (ρ) Y(ρ)CT

1 (ρ)
A(ρ)Y(ρ)−B2(ρ)BT

2 (ρ) −Y(θ) 0
C1(ρ)Y(ρ) 0 −I

]
≤ 0

(33)
for all ρ ∈ P and θ ∈ Θ(ρ). Hence the state feedback gain
K(ρ) =−BT

2 (ρ)Y−1(ρ) provides a suboptimalH2 controller
for the pair(A,B2) (see [1], [21] for details). In addition:

Z(ρ(t)) = Z0 +Z1ρ(t)+Z2ρ2(t)

with

Z0 =
[

7.5801 −3.9968
−3.9968 3.3243

]
Z1 =

[
−1.8298 1.0069
1.0069 −0.1874

]
Z2 =

[
1.1208 −0.8476
−0.8476 0.8066

]
satisfies (12). Thus a parameter dependent controller of the
form (13) exponentially stabilizes the system and gives a
bound on the performance index. Next, we compare the per-
formance achieved by this controller, which is essentially the
discrete time counterpart of the conventional LPV controllers
proposed in [1], against the proposed risk adjusted receding
horizon controller.

Experiments were run with different parameter trajecto-
ries. The following values were used for the risk adjusted
RH controller: N = 10, ζ = 30, α = 0.6, α0 = 1, β = 1,
β0 = 10−2, γ = 0.15 andγ0 = 10−6. At each time instant,
at most 100 iterations of Algorithm 2 were used to obtain
an approximate solution to (15). Table I compares the perfor-
mance of the receding horizon and conventional controllers.
Here, for comparison purposes we used the cost function

1
t f inal

∑
t f inal
t=0 zT(t)z(t). As shown there, the risk adjusted con-

troller yields roughly a 40% performance improvement on
average.

Max Min Mean
Conventional 8.1929 2.2943 5.0713

Risk Adjusted RH 5.3897 1.0587 2.9043

TABLE I

COMPARISON OFRESULTS

V. CONCLUSIONS

Practical tools for synthesizing controllers for LPV sys-
tems have emerged relatively recently and are still far from
complete. Among others, issues not completely solved yet
include non–conservative handling of performance specifi-
cations and overall computational complexity.

In this paper we take some steps towards removing
these limitations by combining Receding Horizon and risk–
adjusted control ideas. Motivated by some earlier results
on stabilization of LTV and LPV systems [22], [19] the
main idea of the paper is to recast the problem into an
equivalent (functional) convex optimization by searching
over a suitable set of closed–loop strategies. This leads to
a globally stabilizing control law that is less conservative
than techniques currently used to deal with LPV systems.
However, in principle this is achieved at the expense of
computational complexity, since this law requires the on–line
solution of a set of functional LMIs. We propose to address
this difficulty by using a risk–adjusted approach, where in
exchange for a slight probability of constraint violation, one
obtains a substantial reduction in computational complexity.
Moreover, this approach scales polynomially, rather than
exponentially, with system size [11], [23].

These results were illustrated with a simple example
where a risk-adjusted receding horizon controller was used
to control a second order LPV plant. As shown there the
proposed risk-adjusted receding horizon controller improves
performance vis-a-vis a conventional LPV controller, while
substantially reducing the computational effort required by a
comparable Receding Horizon controller.

Research is currently under way seeking to extend these
results to address the issue of model uncertainty, both para-
metric and dynamic.

APPENDIX

PROOFS OF THE RESULTS IN SECTIONII-B

A. Proof of Lemma 1

Proof of (7) follows immediately by noting that
X(k) .= E[x(k)xT(k)] satisfies the equality in (6) and that
E[zT(k)z(k)] = Trace[C(k)X(k)CT(k)+D(k)DT(k)]. Finally,
note that for anyX̃ satisfying (6), one has̃X(k)−X(k) ≥
0,∀k ≥ 0, from where the bound (7) follows. To prove
(9), let φ(t, i) denote the transition matrix of (5). Then its
convolution kernel is given by

h(t, i) =

 C(t)φ(t, i +1)B(i) t > i
D(t) t = i

0 t < i



and
T−1

∑
t=0

E[zT(t)z(t)] =Trace

{
T−1

∑
t=0

T−1

∑
k=0

hT(t,k)h(t,k)

+φT(t,0)C(t)CT(t)φ(t,0)Xo +DT(t)D(t)
}

=
T−1

∑
k=0

Trace
[
BT(k)Y(k+1)B(k)+DT(k)D(k)

]
+Trace[Y(0)Xo]

(34)
where we used the facts thatE[(w(k)wT( j)] = Iδ(k− j) and
E[w(k)xT(i)] = 0 and defined

Y(k) .=
T−1

∑
t=k

ΦT(t,k)CT(t)C(t)Φ(t,k) (35)

Straightforward computations show thatY(k) ≥ 0 satisfies
the equality in (8). As before, given any other solutionỸ(k)
to the inequality (8), from the exponential stability ofA(k)
it follows that Ỹ(k)−Y(k) ≥ 0 from where the bound (9)
follows.

B. Proof of Theorem 1

In order to prove this Theorem, we need the following pre-
liminary result establishing a general orthogonality property,
valid for any stabilizing controller.

Lemma 2:Consider an LPV system of the form (1)
and define the following (disturbance feedforward) auxiliary
plant GDF :

GDF

 x(t +1) = A[ρ(t)]x(t)−LRc[ρ(t)]w(t)+B2[ρ(t)]u(t)
zDF(t) = C1[ρ(t)]x(t)+D12[ρ(t)]u(t)

y(t) = C2[ρ(t)]x(t)+Rc[ρ(t)]w(t)
(36)

where L and Rc are defined in (11). Then for any strictly
proper LPV controllerK of the form:

K

{
xc(t +1) = Ac(t)xc(t)+Bc(t)y(t)

u(t) = Cc(t)xc(t)
(37)

the following properties holds:
• (i) K internally internally stabilizesG if and only if it

internally stabilizesGDF

• (ii) The corresponding closed loop trajectories satisfy

E
[
zT(t)z(t)

]
≤ E(zT

DFzDF)+Trace
[
C1(t)Z−1(t)CT

1 (t)
]

(38)
Proof: Property (i) follows immediately from the fact
that G and GDF share the same triple(A,B2,C2). To
prove property (ii) start by considering the following
state space realizations of the closed loop systemsGcl

andGDF,cl :

Gcl
.=
(

Acl Bcl

Ccl 0

)
,GDF,cl

.=
(

Acl BDF,cl

Ccl 0

)
(39)

where

Acl =
[

A B2Cc

BcC2 Ac

]
, Bcl =

[
B1

BcD21

]
,

BDF,cl =
[
−LRc

BcRb

]
, Ccl =

[
C1 D12Cc

] (40)

For each fixed parameter trajectory, letXDF [ρ(t)] ≥ 0
denote the solution to the equation:

Acl [ρ]XDF [ρ(t)]AT
cl [ρ]−XDF [ρ(t +1)] =

−BDF,cl [ρ]BT
DF,cl [ρ]

(41)

define

X[ρ] .= XDF [ρ]+
[
Z−1[ρ] 0

0 0

]
(42)

whereZ[ρ]> 0 satisfies (12). Straightforward algebraic
manipulations using (11) yield:

Acl[ρ]X[ρ(t)]AT
cl [ρ]−X[ρ(t +1)] =−

[
F11 F12

FT
12 F22

]
(43)

where

F11 = L[ρ]RcL[ρ]T +Y[ρ(t +1)]−A[ρ]Y[ρ(t)]AT [ρ]
F12 =−LR2

cBT
c −A[ρ]Y[ρ(t)]CT

2 [ρ]BT
c [ρ]

F22 = Bc[ρ]
(
R2

c−C2[ρ]Y[ρ(t)]CT
2 [ρ]

)
BT

c [ρ]

and where we have definedY
.= Z−1 and made use

of the explicit expressions (40). A Schur complement
argument shows that (12) is equivalent to

A(Z(ρ)+CT
2 C2)−1AT−Z−1[ρ(t +1)]+B1BT

1 < 0 (44)

and application of the Matrix Inversion Lemma yields:

A(Z(ρ)+CT
2 C2)−1AT −Z−1[ρ(t +1)]+B1BT

1 =

AZ−1[ρ(t)]AT −Z−1[ρ(t +1)]+B1[ρ]BT
1 [ρ]−LR2

cLT =

ALZ−1[ρ(t)]AT
L −Z−1[ρ(t +1)]+B1[ρ]BT

1 [ρ]+LLT < 0
(45)

where we have definedAL = A+ LC2. Substitution of
(11) and the second inequality in (45) in (43) yields:

Acl[ρ]X[ρ(t)]AT
cl [ρ]−X[ρ(t +1)]≤−Bcl [ρ]BT

cl (46)

SinceDcl = 0, from Lemma 1 it follows that, for every
admissible parameter trajectory we have:

E{zT(t)z(t)} ≤Trace
{
Ccl [ρ]X[ρ(t)]CT

cl [ρ]
}

=Trace
{
Ccl [ρ]XDF [ρ(t)]CT

cl [ρ]
}

+Trace
{
C1[ρ]Z−1[ρ(t)]CT

1 [ρ]
}

=E{zT
DF(t)zDF(t)}

+Trace
{
C1[ρ]Z−1[ρ(t)]CT

1 [ρ]
}

(47)

Next, we extend to the LPV case the well known equivalence
(see for instance [24], [18]) between Disturbance Feedfor-
ward and State Feedback Problems.

Lemma 3:Given an LPV system of the form (36), with
initial condition x(0) = 0, consider the auxiliary state–
feedback plantGs f defined in (10) and letK[ρ] be such that
A[ρ] + B2[ρ]K[ρ] is exponentially stable for all admissible
parameter trajectories. Finally, denote byGDF,cl and zcl the
system obtained by closing the loop around (36) using the
controller (13), and its corresponding output, respectively.
Then GDF,cl is exponentially stable and, for each fixed
parameter trajectory it satisfies:

E{zT
clzcl}= E{zT

s fzs f} (48)



where zs f denotes the output ofGs f corresponding to the
control lawus f =−K[ρ]xs f

Proof: Let e(k) .= x(k) − xc(k) and ξ(k) .=
[
x(k)
e(k)

]
.

Straightforward computations show that the closed loop
system admits the following state space realization:

ξ(k+1) =
[
A+B2K −B2K

0 A+LC2

]
ξ(k)+

[
−LRc

0

]
w(k)

z(k) =
[
C1 +D12K −D12K

]
ξ(k)

(49)
A Schur complement argument shows that the last
inequality in (45) is equivalent to:

0> AT
L

(
Z−1[ρ(t +1)]−B1BT

1 −LLT)−1
AL−Z[ρ(t)]

≥ AT
L (Z[ρ(t +1)])AL−Z[ρ(t)]

which implies thatAL is exponentially stable. To show
exponential stability of the closed loop system, consider
any initial conditionξ(0) .= [xT(0) eT(0)]T . SinceA+
LC is exponentially stable, it follows thate(.) is bounded
ande(t)→ 0 ast→ ∞. Since all the matrices involved
are continuous functions ofρ and P is compact, from
exponential stability ofA + B2K it follows that the
system:

x(k+1) = (A+B2K)x(k)−B2Ke(k)

is input to state stable ([10], Page 217). Thus, bound-
edness ofe(.) implies that thatx(.) is bounded, and
the fact that e(t) → 0 implies that x(t) → 0 ([10],
Lemma 5.6). Moreover, the rate of convergence does not
depend on the initial time, since all matrices involved
depend on time only throughρ(.). Henceξ = 0 is a
uniformly asymptotically stable equilibrium point of the
closed loop system. Exponential stability follows from
the equivalence of uniform asymptotic and exponential
stability for linear time varying systems ([10], Theorem
3.9). To prove (48) note thate(k) is decoupled from
the disturbance inputw. Hence, sincee(0) = 0, e(t)≡ 0
which implies thatxs f(t) = x(t).

Proof of Theorem 1
Property (i) follows now the facts that the strictly proper

controller (13) stabilizesGDF (Lemma 3) and hence it
stabilizesG (Lemma 2). Property (ii) follows from properties
(ii) in Lemmas 3 and 2.
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