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Abstract—In the past few years, control of Linear Parameter computational complexity grows only polynomially with the
Varying Systems (LPV) has been the object of considerable horizon.

attention, as a way of formalizing the intuitively appealing The paper draws inspiration, in addition to [19], [21]
idea of gain scheduling control for nonlinear systems. Howevet, ! !

currently available LPV techniques are both computationally ~and [9], from [15], [7] and [3]. The main difference with

demanding and (potentially) very conservative. In this paper [15] and [7] is the use of Receding Horizon techniques.
we propose to address these difficulties by combining Receding Compared with [3], we consider the case of case of LPV
Horizon and risk—adjusted techniques. The resulting controllers dynamics and we obtain a controller that minimizes the

are guaranteed to stabilize the plant and have computational .ot case performance over all trajectories compatible with
complexity that increases polynomially, rather than exponen-

tially, with the prediction horizon. the current parameter value. Finally, the use of closed—
loop strategies, based on the solution of a set of LMIs,
|. INTRODUCTION results in substantial reduction of computational complexity.

A widely used practice to handle nonlinear dynamicdn this sense the work presented here is related to the earlier
is to linearize the plant around several operating pointgork in [22] advocating the use of Riccati based receding
and then use gain—scheduled linear controllers. Howevdprizon controllers for#,, control of Linear Time Varying
while intuitively appealing, this idea has several pitfallssystems, and to the work in [12], proposing an LMI-based
[17]. Motivated by these shortcomings, during the pastptimization ofclosed—loopcontrol strategies.
few years considerably attention has been devoted to the
problem of synthesizing controllers for Linear Parameter Il. PRELIMINARIES
Varying Systems, where the state—space matrices of the plant , ,
depend on time—varying parameters whose values are rfot 1he LPV Receding Horizaf, Control Problem
known a priori, but can be measured by the controller. |n this paper we consider discrete time LPV systems of
This research has resulted in controller synthesis methofige form:
guaranteeing worst case performance bounds (for instance

in an %5 or %, sense, see e.g. [1] and references therein). [ X(t+1) = Ap)]X(t) +Ba[p(t)|w(t) + Ba[p(t)u(t)
While successful in many situations, these techniques a%?e 2t) = Cifp(t)]x(t) +Daofp(t)]u(t)
potentially very conservative in others, since they are based yt) = Cofp(t)]x(t) +D2a[p(t)]w(t)
on sufficient conditions,. In addition, these methods are (1)

computationally very demanding, requiring the solution of gvherexe R™ueS CRY, zERY, y€ R”v'andwe R rep-

set of functional matrix inequalities. Obtaining computation—rese_}nt the state, control, regulated _varlables,_ measurements

ally tractable problems requires using both finite expansio vailable to the cont_roller e_md a white Gaussuan_e_xogenous

approximations as well as a gridding of the parameter spac%smrb.amfe’ _resp_ectlveIﬁJ IS a convex set con taining Fhe

leading to further conservatism. origin in its interior, p denotes a vector of time—varying
The present paper seeks to reduce both the computatioﬁﬁ'fame.ters Fhat can be mea}sured n real time, and where

complexity and conservatism entailed in currently availabl' matrices involved are continuous funchonsgafFur‘Fher,_

LPV synthesis methods by combining risk-adjusted (see eg_e will z.issume that the set of parameter trajectories is of

[4], [5], [14]) and Receding Horizon (see [13] and reference e form:

therein) ideas. Our main result shows that, by searching over

. = P:pt+1)eOpt)],t=0,1,... 2

a set ofclosed—loopstrategies the problem can be reduced to Fo={pe®:pt+1)cOlp)] @
finding a solution to a finite set of Linear Matrix Inequalitiesyyhere » - R% is a compact set an®: 2 — P is a given
(LMIs). Finding the exact solution to this problem hasset valued map. Our goal is to, given the present valike

computational complexity that grows exponentially with theyf the parameter vector, find an output feedback control law:
horizon length. To circumvent this difficulty, we propose to
use a stochastic approximation algorithm that is guaranteed u(k) = f [y(k),y(k—1),...,p(k),p(k—1),...] € &,
to converge to the solution with probability one, and whose
that minimizes, in some sense, the effect of the disturbance
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by considering the performance index Lemma 1:Consider an exponentially stable Linear Time
171 Varying (LTV) system of the form:
{T Z)z%)z(t)} (3) X(t+1) = AMX(t) +B(t)w(t)
t=

Z(t) = C(t)x(t) + D(t)w(t)

whereE {-} denotes expected value. Note however, that such. . . _— L . .
a performance index takes into account only steady state with a GauTSS|an distributed initial conditiog W!th covarl-
behavior of the closed-loop system. Moreover, since th%#.ceE(Xo;(‘?) " Xo. 'Ir_?en, for anyX(t) > 0 satisfying the
present value of the time—varying parameter typically doedNnNe matrix inequality

not provide information on the value of the parameter as ADX(AT () —X(t+1)+B(t)BT(t) <0 (6)
t — oo (assuming that all of the parameter gets reachable
from any starting value)obustlyoptimizing an index of the

form (3) entails considering a potentially very conservative 171 T 171 -
double worst-case scenario: worst case trajectory and worseE | T Z) z ()zt) o < T zo Trace[C(t)X(t)C' ()
t=

J=1IlimE
T—o

(®)

with initial condition X(0) > X, the following bound holds:

- 7
case initial condition in?. Improving both the transient = - %
and steady—state behavior while minimizing conservatism +D(t)D" (t)]
suggests the use of a performance index of the form: Similarly, if Y(t) > 0 satisfies:

AN-1 T -~ T <
5 E{N % zT(t)z(t)} ATY(t+ DAL - Y1) +CT(MCH) <0  (8)
t= then
where the horizom is a design parameter. In turn, this leads ~ E{1 57 'ZT (t)z(t)} < TraceX,Y(0)] + 9
naturally to the following Receding Horizon formulation: +4 th:‘olTrace[BT (t)Y(t+1)B(t) + DT (t)D(t)] ©)
Problem 1: Given an LPV system of the form (1), find an  Next, we show that th& cost can be partitioned into a
output feedback control law: portion related to a state-feedback problem for an auxiliary

_ _ _ plant, plus an “observation” cost. These results can be
u(k) = Fly(k),y(k=1),....p(k), plk = 1), ] € &, though of as an extension to the LPV case of some general
that (i) renders the origin an exponentially stable equilibriunerthogonality results originally introduced in [16] for the LTI

point of the closed loop system, and (ii) at each tikm& case.
minimizes the following performance index: Theorem 1:Consider an LPV system of the form (1) and
define the following auxiliary state—feedback plant:

k+N—-1
Jlp(k),u] = seu?pE{% Ek ZT(t)Z(t)} ) Xsi(t+1) = Alplxs(t) — L[p]Re[pw(t) + Bz[pju
Remark 1:The hofizoer)]N is a ;tJarameter than can be useGSf Zl(? _ Cl[a]xs'((t) +Dazplu(t)
to tune transient versus steady—state behavior. A reasonable yO = %) (10)
value forN is the minimum amount of time needed for the, hare
parameter trajectorigg(.) to transition between any 2 arbi- L=-AZcIR;?
trary points in®, since the parameter value at tirearries 1 (11)

_ —1-~T
no information about its value beyond- N. Hence beyond Ro=(1+CZ7G; )2
this horizon the problem reverts to a robust optimization oveand whereZ(.) > 0 satisfies the following affine matrix

all possible parameter values. inequality:
In the sequel, for simplicity, we make the following stan- _7(0 Z(6)A Z(6)B
dard assumption@{lezz l, CID12: 0, andE(wkwI) =1. AT(p)(de) ~Z(p) Egg((g))cz(p) ( )ol(p) <0
In addition, the explicit dependence of matricespowill be BI (p)Z(6) 0 2
omitted, when it is clear from the context. ! (12)

B. Preliminary Results forall pe P anq 6 € O(p). Einally, let K[p] be such. th.at
. . . _ . Alp] + B2[p]K]p] is exponentially stable for all admissible

. In this section we introduce some def|n|t|0n§ .an_d p,rel'm'arameter trajectories and consider the following output
pany esuts at il e s 0 redce e MINTIZELO legack conroer
of reading, all proofs in this section are relegated to th&e(t+1) = (Alp] + Ba[p]K[p] + L[pC2[p]) Xe(t) — Lp(t)]y(t)
Appendix. ut) =Kplxe(t)  x(0)=0

Definition 1: A setS,= {x € R*: F(x) < 1} is said to be _ (13)
mean controlled invarianfor the system (1) if, given an and denote bysq andz the system obtained by closing the
initial conditionx, € S; there exist a sequence of admissibld®0P around (1) using the controller (13), and its correspond-
control actions{u;}, ui € S, such that the corresponding N9 output, respectively. Then (§¢ is exponentially stable

trajectory satisfie€{F[x(K)]} < 1, for all k > 0, where the and, (ii) The corresponding closed loop trajectories satisfy
expectation is taken with respect to the input sequavice  E [ (t)z(t)] < E(zzs1) + Trace[Cy(t)Z L(t)C] (t)] (14)



where zss denotes the output oBss corresponding to the
control law ust = —K|[p]Xsf.

I11. RISK ADJUSTEDRECEDING HORIZON CONTROL:
THE UNCONSTRAINED CONTROL CASE

A. Motivation:

In this section we introduce a conceptual receding horizon
control law for unconstrained LPV systems that provides
the motivation for the risk—adjusted approach pursued latter
in the paper. In principle, one could synthesize a receding
horizon control law by exploiting Theorem 1 to reduce
the problem to an equivalent state feedback one, which in
turn can be reduced, via Lemma 1 to a (functional) convex
optimization over the set of matrix functions pf However,
solving this problem is far from trivial, even when making
several approximations such as assuming memoryless, a
bitrarily fast time—varying parametéstypically requiring
both gridding of the parameter s€t and approximating
Y(.) by a finite expansion in order to get a tractable, finite
dimensional problem [1]. To avoid this difficulty, motivated
by the work in [22], [21], in the sequel we will search over
closed-loop strategiegather than control actions. To this

where:

M1y =—T; +Ci(n+)X(i)C] (n+1i),

Rit =A(N+i—1)X(i— )AT(n+i—-1)
+Bo(n+i—i)V(i— AT (n+i—1)
+AN+i—1VT([i—1)BJ(n+i—1)
+B1(n+i—1)B] (n+i—1)—X(i),

Ri2 =Bo(n+i—1)V(i— 1),

S12 =W(i)Alp(n+i—1)], Si3=W(i)Bi[p(n+i—1)],

Spo =—W(i—1) = CF [p(n+i - 1)Co[p(n+i - 1)];

for allp(n+i+1) € ©lp(n+i)],i=0,1,...,N—-1
with boundary conditionsX(—1) = X(n— 1) and

W(-1) = W(n— 1), where, with a slight notational
abuse, we denotX[p(t),t] and Wp(t),t] simply as

X (t),W(t).

2.- SetX(n) = X(0), W(n) =W(0),V(n) =V(0) and com-

pute:

L(n) = —AMW(n)C3 (NR:?(n)
K(n) =V (n)X~(n)
Xe(N+1) = [A(n) + L(n)Cz(n) 4 B2K ()] x¢(n)

—L(n)y(n)

(19)

effect, denote byXn1:©x{-1,0,1,... N—1} — P and 3. Use as control action at time

VNi1:0©x{-1,0,1,..., N—1} — P the set of all bounded
matrix functions that mapl + 1-length admissible parameter
trajectories taP, the class of all symmetric positive definite
matrices and/, the class of alh, x ny matrices respectively,
and consider the following receding horizon type control law;

UrHIP(N)] =V [p(M]X*[p(n)%c(n)  (20)
Setn=n+1 and go to step 1.

Theorem 2:The control lawugry renders the origin an
asymptotically stable equilibrium point of (1). Moreover the

Algorithm 1: corresponding closed loop trajectory satisfies:

0.- Setx¢(0) =0, X(0) =W(0) = E(xX} ), andn=1.

1.- Let p(n) denote the measured value of the parameter
at time n and solve the following LMI optimization
problem inx, W,T;:

1 N-1
min Trace< — zo I (15)
X, W e Xnp1 N &

VeVNi1
subject to:
M11 D12(n+i)V(i) C]_(n+i)
M(p) = |VT(i)DI,(n+i) —X(i) 0 <0 (16)
Cl (n+i) 0 -W(i)
- |Ru Ri2
R(p)= {RIz CX(i- 1)] <0(17)
s0) lV¥(i) Si2 313]
p)= S 0] <0, (18)
S“i 0 -l

1in this case the problem becomes essentially equivalent to synthesizing
a controller for a system subject to parametric uncertainty, and it is well
known that these problems are generically NP hard.

pefo t=n

1n+N71
Jworst[P(N)] = SUpE{N Z ZT(t)Z(t)}
n+N-1 (21)
< Trace z I't}

t=n
Proof: Let Gs¢ ¢ denote the closed loop system obtained
by closing the loop aroundss; using the full state
feedback control laws =VX~1x. A Schur complement
argument shows that the inequality (17) implies:

ALt—DX At —1)-XLt-1) <0

where Ax = A+ BoVX 1. Moreover, compactness of
P, together with continuity of all matrices involved,
implies that there exist some constantsc, such that
cil > X~ > cyl. Hence x"X~1[p]x is a parameter
dependent Lyapunov function for the pl&Bds ¢, which
implies thatx — 0 ast — c0. Moreover, this convergence
is uniform, since all matrices involved are functions
of t only through p. Exponential stability ofGs g
follows now from the equivalence between uniform
asymptotic and exponential stability for linear systems
([10], Theorem 3.9). Finally, the inequality (18) implies
that AL = A+LGC; is exponentially stable (see the proof
of Lemma 3 in the Appendix). Exponential stability of



the plantG when using (20) follows now from Theorem and collect all the optimization variables (e.g., the entries of

1 and Lemma 3. Finally, note that Fo,...,M'n—1, X(0), W(0) andV (0)) in a vectorx,. Define
Trace{(Cy + D12K)X(Cy + D12K) T} the following functions
= Trace{X(Cy 4+ D1pVX H)X(Cy +D1pvVXHT} X P N-1
= Trace{C1XC] + D12V X VTD],} fo(xn,p(n),p) = Trace ¢ < Z) e
(22) i=

where we made use of the faC{Di, = 0. Hence, the (. o(n) p) = §[A(F,X(0),W(0).V(0),p(n), )] +.
inequality (16) implies that, for all parameter trajecto-

ries compatible with the present value of the paramConsider now the following convex problem
eter we have:y N 'Co(n+ )X (I)CL(n+i) +Cy(n+ - ~ - 1 oN-1
; ; i= ] minEg [fo(Xn, p(N),p)] = minTrace{ s S:- 4 [
DW=L(i)C] (n+i) < $N'Ti, whereCy = C; + D12K. i Ef)[fo( P )Ap)]< 0 ipateal;
, s.t.Ep [f1(xn, p(n),p)] <O
The bound in (21) follows from Theorem 1 and Lemma
1. where E3[-] denotes the expected value with respect to the
B. Reducing the computational complexit random variabléd. It can be easily shown that the solution
: uct g. putatl p xity . to this problem tends to the solution of the problem (15) as
As shown in Theorem 2, the receding horizon control laf _, « ande — 0. We are now ready to provide the main
(20) is guaranteed to stabilize the system while minimizresylt of this section: an algorithm for solving problem (24)
ing a performance index that takes into account both thg polynomial time. For technical reasons, in the sequel we
transient and steady state behavior. However, in prinCiplgill assume that the solution to this problem is known to
it has a high computational complexity, since it requiregelong to a given compact convex setfwhere the matrices

finding feasible solutions to the set of LMIs (16)-(18). Tor, .. r,_;, X(0), W(0) andV (0) have bounded entries and
avoid this difficulty, in the sequel we propose to pursue a &(0) andW(0) are positive definite).

stochastic approximation approach, whose complexity grows | et () denote the projection onta; i.e.,
polynomially (rather than exponentially) with the horizhin

To this effect, assume that=[p(n+1)p(n+2)---p(n+N)] T(x) = arg minjx —X]|.
has a non—zero probability density for plE 7. Next, note
that to computei(n), one only need¥(0), W(0) andV (0).
This observation allows for reformulating the optimization
problem (15) to eliminate the need to explicitly compute

X(i), W(i) andV(i), i =1,....,N—1 as follows: Given a 1.~ Initialization: Determinex3, y?; i = 0,1 and Z. Let

(24)

and consider the following algorithm:
Algorithm 2:

fixed instantn, p(n) andp € %, define k=0.
i 2.- Generate a sampgt = [pX(n+1),...,p5(n+N —1)]
— ~ .- < — d
Mi(n) = [ & ~] 3.- If Z < —yo/K' then
S xXl—mn {xﬁ — bkyé} .
where
Tio(n)] Otherwise ™ = 1t [xK — byyX] .
~ 4.- Let
T= ,T=MRS N »
i X b n )
Tlp(N+N—1)] yik+1:yik+ak<% k_yg(>
. n n=Xg
In terms ofM, the constraints (16)—(18) can be expressed as: g .
A . i=0,1an
A(FOV FN,l,X(O),W(O),V(O),p(n),p) =
_ . A=A+ a(falxnp(n), 09 - 2)
min Amax[M(n)] < 0. (23)
X(1),...X(N—-1) 5.- If 2 <0 and|fo(x,p(n),p) — fo(Xk-1,P(N),P)| < &
W(1),...,W(N-1) for I =k—Ngood+1,...,k+1 stop. Otherwise, let=
V(1),...,V(N-1) k41 and go to step 3.

Thus, in this context, one does not need to compute the Theorem 3:Let &= {§; b= R, wherea, a, By andB
explicit value ofX (i), W(i) andV (i),i=1,...,N—1, as long are positive constants. Furthermore, assumeythandy are

as the minimum above can be computed. Note in passin@SO positive. Then, if

that this reformulation preserves convexity, since the function o ® 2, by

A(+) is a convex function of its arguments. To complete the Z & = Z by = ; Z a < Widmi =0

approximation of the original optimization problem by a k=0 k=0 k=0

stochastic one, giveq > 0, define and B—a —2y > 1 the sequenceX converges with proba-
X1 bility one to the solution of the problem (24).

G(x) Z Proof: Direct application of Theorem 1 in [8].



C. Adding Control Constraints

In this section we briefly indicate how to modify the min Trace{{ 5o Ti} (28)
algorithm presented above to handle constraints in the control X, W € Xn+1
action. In the case of deterministic systems this can be V€V
accomplished by suitably scaling the control action using subject to (16)(17),(18) and
state dependent weights [20], [21]. However, this approach
cannot be directly applied here, since the stochastic nature [ Ny xg(n)} >0 { T vi(n+i)] o 029)
of system (1) prevents predicting the future values of these xc(n)  X(n)| =7 vT(n+ i) X(n+i)| =
scalings, or, equivalently rendering suitable sets controlled— j=1,...,n,i=01...,N-1
invariant. To circumvent this difficulty, in this paper we pro- .
pose to replace the constraini@+i) € §,vi=0,1,...N—1 forall p(n+i+1) € Op(n+i)],i=01,2,....N~1
in the optimization of (4) by the relaxed setn) € S,, 2.- SetX(n) = X(0), W(n) = W(0)V = V(0) and com-
Eluin+i)] €S, i=1,...,N—1. That is, at each given time pute:
n, the present value of the control action is subject to the L(n) = —AMW 1(n)C] (N)R;2(n)
hard constrainu(n) € S, while only theexpectedvalue of K(n) =V (n)X~1(n)
predicted future control actiongn+1),...,u(n+N—1) is (30)
required to satisfy the constraints. o Xo(n+1) = [AM) + L(M)Ca(n) + B2K ()] xe(n)
Specifically, assume that the control constraint set is of —L(ny(n)
the formS, {u: ||ul|» <1}. When using a control law of the 3.- Use as control action at time
form (20), this constraint is equivalent to Urnlp(N)] :V[p(n)]Xfl(n)xc(n) (31)

uj| €1 = \va‘%X‘%x|§1, i=1...,n

wherev; denotes thg™ row of the matrixV. This can be

relaxed to:
viX~tvf

< <
ul <1 X A)-0x g <1 VT

VARV

wherec > 0 is an arbitrary constant. We propose to further

relax this constraint fou(n+i) to:

. vix W <
. < J j =
E{|u,(n+|)}_1«t{ EXX 1) <

O ol

Assume next thaX is chosen so that the closed—loop system
satisfies (6) withX(0) > X,. Then the corresponding closed

O ol

(25)

(26)

loop trajectories satisfyX(n+i) > E{x(n+ i)x"(n+1i)}.

Hence

EXT(n+i)X1(n+
= Trace {X " 1(n+i)
< Trace{ln,} = ny

)X( )]
E [x(n+i)x" (n+i)] }

It follows that the ellipsoidk(n+i)T X1

Recedlng Honzon algorithm:
Algorithm 3:

0.1- Setx¢(0) =0, X(0) =W(0) = E{xox} } andn=1

(27)

(n+i)x(n+1) <ny
is mean controlled invarianand thus the control constraints
(26) can be enforced by simply enforcing the constrai
VX~ 1vT < X. These observations lead to the following

Setn=n+1 and go to step 1.

Theorem 4:Assume that the origin is an exponentially
stable equilibrium point ofA[p(.)] for all p € o Then, the
control law (31) (i) is admissible, in the sense that it satisfies
the control constraintsi(k) € §,, Yk, and (ii) it renders the
origin a globally exponentially stable point of the closed loop
system for all admissible parameter trajectories.

Proof: From Theorem 1 it follows that we only need to

consider the state feedback case. The proof of stability

in this case is similar to the proof of Theorem 2,

provided that the additional constraints (30) are feasible.

Feasibility of these constraints follows from the fact that

exponential stability ofA(.) always allows for scaling

the matricesV and X so that the constraints hold.

Finally, the fact that the control law (31) satisfies the

constraints|ui(.)| < 1 follows immediately from (30)

and (25).

Remark 2:If the open loop system is not exponentially
stable the algorithm above will (under mild controllability
and observability hypothesis) locally stabilize the system in
some neighborhood of the origin, which can be estimated by
computing the sets where the constraints (17) and (30) are
feasible.

Remark 3:As before, the computational complexity of
the optimization problem above grows exponentially with
tpe horizon, even when approximatiXgV andW by finite
expansions. However, the stochastic approach used in Algo-
rithm 2 can also be used here, with minimal modifications,
to obtain polynomial growth approximations.

IV. ILLUSTRATIVE EXAMPLE
Consider the discrete time LPV system that has the

1.- Let p(n) denote the measured value of the parameté?”ow'ng system matrices:

at time n and solve the following LMI optimization

problem inXx, W,V andr;:

1.01

Apm)=| T

1-0.1p(t)



B1(p(1)) { 0.1 0} Bo(p(t)) [ 0 }’ Max Min Mean
1(P = , b2(p = Conventional 8.1929 | 2.2943| 5.0713
02 0 0.0787 Risk Adjusted RH| 5.3897 | 1.0587 | 2.9043

Cl(p(t)) = [ _11 8 } ) Dlz(p(t)) - % [ 11 ]/ COMPARTSA()BI\II_I(E)I:IRESULTS
Co(p(t))=[1 0],Dalpt))=[0 17

with admissible parameter set
Fo={pt): p(t+1) € [-1,1], [p(t) —p(t+1)] < 0.2, ¥t}.

V. CONCLUSIONS

(32) Practical tools for synthesizing controllers for LPV sys-
It can be verified that the matrix function: tems have emerged relatively recently and are still far from
complete. Among others, issues not completely solved yet
Y(p(1)) = Yo +Yap(t) +Yap*(t) include non—conservative handling of performance specifi-
with cations and overall computational complexity.
0.0339 -0.0197 In this paper we take some steps towards removing
Yo = [ _0.0197 00326 } these limitations by combining Receding Horizon and risk—
00031 —0.0065 adjusted control ideas. Motivated by some earlier results
Y1 = [ i i } on stabilization of LTV and LPV systems [22], [19] the
—0.0065 00100 S X .
main idea of the paper is to recast the problem into an
Yz:[ 0.0013 —0-0024} equivalent (functional) convex optimization by searching
—0.0024 00032 over a suitable set of closed—loop strategies. This leads to
satisfies the functional matrix inequality: a globally stabilizing control law that is less conservative

than techniques currently used to deal with LPV systems.
However, in principle this is achieved at the expense of
computational complexity, since this law requires the on—line

(33) solution of a set of functional LMIs. We propose to address
for all p € P and 8 € ©(p). Hence the state feedback gainthis difficulty by using a risk—adjusted approach, where in
K(p) = —BJ(p)Y !(p) provides a suboptimats controller exchange for a slight probability of constraint violation, one
for the pair (A, By) (see [1], [21] for details). In addition:  obtains a substantial reduction in computational complexity.

A(P)Y(p) —B2(p)BJ () -Y(6) 0

l —Y(p)+B2(p)BI(p)  Y(P)AT(p) — Ba(p)B] (p) Y(p)CI(p)] 0
CL(p)Y(p) 0 - B

_ 2 Moreover, this approach scales polynomially, rather than
Z2(P1) = 2o+ Z1p(t) + Z20°(1) exponentially, with system size [11], [23].

with These results were illustrated with a simple example
| 75801 —3.9968 where a risk-adjusted receding horizon controller was used

Z0= [ —3.9968 33243 } to control a second order LPV plant. As shown there the

218298 10069 proposed risk-adjusted receding horizon controller improves

4= [ 1.0069 —0.1874} performance vis-a-vis a conventional LPV controller, while

| 1 o T e et T 199012

Research is currently under way seeking to extend these

satisfies (12). Thus a parameter dependent controller of thésults to address the issue of model uncertainty, both para-
form (13) exponentially stabilizes the system and gives @etric and dynamic.

bound on the performance index. Next, we compare the per-

formance achieved by this controller, which is essentially the APPENDIX

discrete time counterpart of the conventional LPV controllers PROOFES OF THE RESULTS IN SECTION-B
proposed in [1], against the proposed risk adjusted receding

horizon controller. A. Proof of Lemma 1

Experiments were run with different parameter trajecto-
ries. The following values were used for the risk adjusteg(
RH controller: N =10, =30, a =06, ag =1, B =

Proof of (7) follows immediately by noting that
= E[x(K)xT (k)] satisfies the equality in (6) and that

E[zT(k)z(k)] Trace[C(k)X(k)CT (k) +D(k)DT (k)] Finally,

2 6

Po=10"% y=015 andyp = 10°". At each time mstant, note that for anyX satisfying (6), one haX(k) — X (k) >

at most 100 iterations of Algorithm 2 were used to obtarb vk > 0, from where the bound (7) follows. To prove

an approximate solu_tlon to .(15) Table | compares the perfog ), let @(t,i) denote the transition matrix of (5). Then its
mance of the receding horizon and conventional controller onvolution kernel is given by

Here for comparison purposes we used the cost function
ztf'“a' Z' (t)z(t). As shown there, the risk adjusted con- { CH)Qt,i+1)B(i) t>i
h(t,i)

tfinal

troller yields roughly a 40% performance improvement on
average.

D(t) t=i
0 t<i



and

Z}E Trace{TZ)lTZth (t,k)h(t,k)

+4" (,0)C(t)CT (1)@(t,0)X + D' (t)D(t) }

:sz Trace [B' (K)Y (k+1)B(k) + D' (k)D(K)]

+ Trace[Y (0)Xo]

(34)
where we used the facts thaf(w(k)w' (j)] = 18(k— j) and
E[w(k)x" (i)] = 0 and defined

T-1
(35)

K= S o7 (t,k)CT(t)C(t)D(t,k
) tzk (t,kIC (1)C(t)P(t,k)

Straightforward computations show thétk) > 0 satisfies
the equality in (8). As before, given any other solutibfk)
to the inequality (8), from the exponential stability Atk)

it follows that Y (k) —Y(k) > 0 from where the bound (9)
follows.

B. Proof of Theorem 1

In order to prove this Theorem, we need the following pre-
liminary result establishing a general orthogonality property,
valid for any stabilizing controller.

Lemma 2:Consider an LPV system of the form (1)
and define the following (disturbance feedforward) auxiliary
plant Gpg:

{ Xt+1) = Ap®)Xt) - LRe[pt)w(t) + Ba[p(t)]u(t)
Gorq or() = Cfp(t)x (t)+Dlz[ ®)Ju()
y(t) = Clp()Ix(t) +Relp(t)w(t)

(36)
whereL and R; are defined in (11). Then for any strictly
proper LPV controlleiK of the form:

SRt D) = AOx(t) +Bet)y(t)
ut) = Ce(t)x(t)
the following properties holds:
« () K internally internally stabilize$s if and only if it

internally stabilizesGpr
« (ii) The corresponding closed loop trajectories satisfy

E [Z' (t)z(t)] < E(zbrzor) + Trace[Cy(t)Z 1 (t)C] (1)]
(38)

(37)

For each fixed parameter trajectory, Msr[p(t)] > 0
denote the solution to the equation:

A [P]Xor [P(t)]AG [P —Xor [p(t +1)] = (a1)
— Bor.cl [PIBDecl[P]
define 1
xiol=xorlpl+ |2 P ) @)

whereZ[p] > 0 satisfies (12). Straightforward algebraic
manipulations using (11) yield:

AapXIpIAL Pl X[p(t+ 1] = - [ B B a3
where

Fia = LIBIRLIDI +Yip(t-+ 1] ~ AlpIY (0T o)

Fiz— - LREB ~ AIY[p(0IC] /B! 0

F22 = Be[p] (RE — C2[p]Y [p(t)IC] [p]) BL [0]

and where we have defined = Z~1 and made use
of the explicit expressions (40). A Schur complement
argument shows that (12) is equivalent to

AZ(p)+CICo) AT —Z p(t+1)] +B1B] <0 (44)
and application of the Matrix Inversion Lemma vyields:
AZ(p) +CJCo) AT — 2 [p(t + 1)] + BlBT -

AZ [p(t)]AT — Z Yp(t+1)] + By [p)B] [p] — LRALT =
AZ pMIAL - Z M p(t+ 1) + Bl[p]BI [p] +LLT (f; 50)

where we have defined, = A+ LC,. Substitution of
(11) and the second inequality in (45) in (43) yields:

AgigX[P(M)IAG[P] — X[p(t+1)] < —Ba[p]BY  (46)

SinceD¢ = 0, from Lemma 1 it follows that, for every
admissible parameter trajectory we have:

E{Z (t)z(t)} <Trace{Culp] )]CT [P]}
=Trace{Ca[p]Xor [P(1)]C [ ]}
+Trace{Cl p®)Icipl} (47)
—E{ze (t)20F (1)}

+ Trace{C1[p]Z *[p(t)IC] [p]}

Proof: Property (i) follows immediately from the fact Next, we extend to the LPV case the well known equivalence

that G and Gpg share the same tripléA By,C;). To

(see for instance [24], [18]) between Disturbance Feedfor-

prove property (ii) start by considering the followingward and State Feedback Problems.

state space realizations of the closed loop syst&gs

and Gpr ¢
. [ Ag | By . [ Ad | BpFrel

(40)

Lemma 3:Given an LPV system of the form (36), with
initial condition x(0) = 0, consider the auxiliary state—
feedback planGss defined in (10) and leK[p] be such that
Alp] + B2[p]K[p] is exponentially stable for all admissible
parameter trajectories. Finally, denote Gyr ¢ andz the
system obtained by closing the loop around (36) using the
controller (13), and its corresponding output, respectively.
Then Gpgg is exponentially stable and, for each fixed
parameter trajectory it satisfies:

E{zgza} = E{Zzst} (48)



where zss denotes the output oBss corresponding to the [4]
control law ust = —K|[p]Xsf
Proof: Let e(k) = x(k) — x.(k) and &(k) = ZEB . B

Proof of Theorem 1

Straightforward computations show that the closed loog®!
system admits the following state space realization:

e b LUR i UG
z(k) = [CL+D12K  —D12K] &(K) [8]

(49)
A Schur complement argument shows that the last

inequality in (45) is equivalent to: (]
0> A (Z Y p(t+1)] BBl ~LLT) AL~ Z[p(t)] g
> A (Z[p(t+1)]) AL —Z[p(t)] a1

which implies thatA, is exponentially stable. To show
exponential stability of the closed loop system, conside[ﬁz]
any initial condition&(0) = [x" (0) €' (0)]". Since A+

LC is exponentially stable, it follows thaf.) is bounded
ande(t) — 0 ast — . Since all the matrices involved [
are continuous functions gf and ? is compact, from
exponential stability ofA+ ByK it follows that the
system:

[14]

[15]

X(k+1) = (A+B2K)x(k) — B2Ke(k) [16]

is input to state stable ([10], Page 217). Thus, bounqm
edness ofe(.) implies that thatx(.) is bounded, and

the fact thate(t) — O implies thatx(t) — 0 ([10],
Lemma 5.6). Moreover, the rate of convergence does ngts]
depend on the initial time, since all matrices involved19]
depend on time only througp(.). Hence§ =0 is a 20]
uniformly asymptotically stable equilibrium point of the
closed loop system. Exponential stability follows from
the equivalence of uniform asymptotic and exponenti I21]
stability for linear time varying systems ([10], Theorem
3.9). To prove (48) note that(k) is decoupled from
the disturbance inpw. Hence, since(0) =0, e(t) =0
which implies thatxs¢(t) = x(t).

[22]

[23]

Property (i) follows now the facts that the strictly proper
controller (13) stabilizesGpr (Lemma 3) and hence it [24]
stabilizesG (Lemma 2). Property (ii) follows from properties
(i) in Lemmas 3 and 2.
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