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Fig. 22. Controller architecture of CMU DD Arm II. 

achieved a computation time of 1 ms by implementing these on the 
Marinco proccssor. The details of the customized algorithm, hard- 
ware configuration, and the numerical values of the dynamics 
parameters are presented in 161. 
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An Adaptive Controller for a One-Legged 
Mobile Robot 

M. SZNAIER AND M. J .  DAMBORG 

Abstract-An adaptive controller based upon the on-line minimization 
of a performance criteria is described. The adaptive controller is used to 
improve the performance of a one-legged mobile robot, removing prob 
lems experienced with previous controllers. The performance of several 
minimization algorithms is analyzed and, as a result, the Adaptive Step 
Size Random Search algorithm is selected. Finally, a series of experiments 
illustrating the ability of the adaptive controller to handle a changing en- 
vironment is presented. 

I. INTRODUCTION 
Walking machines pose two broad categories of problems: those 

related to movement over uneven terrain and those related to dynamic 
balance while walking and running. 

The first class of problems can be explored with machines that are 
inherently stable. The need for dynamic balance is avoided by having 
enough legs [ 11, [ 2 ] .  Several six-legged, computer-controlled ma- 
chines have been built that perform satisfactorily. Their movement 
resembles the crawling displayed by insects, achieving a velocity of 
about 2 mi/h [3]. 

The second class of problems, namely, those related to dynamic 
balance, are the typical problems that arise in the study of animal and 
bipedal locomotion. In contrast to a crawling machine, a dynamically 
balanced vehicle can be allowed to tip for brief intervals as long as 
an adequate base of support is provided on the average. Dynamically 
stabilized legged systems have various modes of motion. They can 
either walk, in which case some of the legs provide support while 
the others move, or they can run and jump, in which case there are 
time intervals where all the legs leave the ground. A comprehen- 
sive discussion of dynamically stabilized walking machines and their 
applications can be found in [4]. 

The simplest dynamically stabilized system is a unipedal system, 
which can move only by jumping. The importance of this uniped 
resides in the fact that it provides a good model for studing the 
relevant problems involved in the walking and running motions of 
dynamically stabilized legged machines without the complexity asso- 
ciated with systems having a higher number of legs. Although the 
motion of legged machines takes place in a three-dimensional space, 
the control of such systems along a straight path does not need to 
deal explicitly with three-dimensional dynamics. It is possible to de- 
compose the control law to a planar and an extraplanar part where 
the task of this extraplanar part is to restrict the motion to a plane. 
Most of the motion will take place then in a plane with small extra- 
planar movements. In this case, a simple two-dimensional model will 
be enough to study the problem and to design an effective control 
system that can be ported to the actual robot [5 ] .  Raibert [6]-[8] 
designed a controller that allows a bidimensional, one-legged hop- 
ping robot to move from one point to another with a given veloc- 
ity. The resulting algorithms were successfully ported to a physical, 
computer-controller machine. However, as is reported in [8], the ap- 
plication of this controller results in a steady-state velocity error or 
bias that depends on the forward velocity and on the parameters of 
the model. 

In this communication we propose a new control law for the ver- 
tical controller that reduces the coupling between the horizontal and 
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vertical motions. We also propose an adaptive control law for the 
horizontal controller which not only completely removes the bias in 
the forward velocity, but does so adaptively to off-nominal con- 
ditions. Through simulations it is shown that the adaptive control 
law can also compensate for different velocities and for deviations 
from the nominal conditions that were used for the controller design. 
These deviations are intended to model conditions that a robot might 
he subjected to such as changing mass due to different payloads or 
changes in the environmental characteristics such as ground softness 
or slope. Our adaptive controller proves capable of handling such 
variations thereby providing a dynamically stabilized legged robot 
with enough flexibility to function in a more realistic environment. 

11. DESCRIPTION OF THE PROBLEM 

A .  Statement of the Problem 

In [7], Raibert presents a control algorithm that allows a dynami- 
cally stabilized, one-legged robot to travel from one place to another 
at a prescribed velocity while maintaining a predetermined hopping 
height. In this communication our goal is to design a control algo- 
rithm that will remove the steady-state velocity error experienced by 
Raibert and will allow the robot to sustain a stable motion with a 
given velocity under widely variable conditions. 

Throughout this communication we will employ the model de- 
veloped in [7] .  This model describes a computer-controlled “pogo 
stick,” consisting of a body (which will carry all the electronics and 
any payload) and a springy, nonzero mass leg that articulates with 
respect to the body. The leg is modeled as a spring attached on one 
end to a foot and on the other to a position actuator that is used to 
control its overall length and to inject energy into the system. The 
control inputs to the system are a torque T applied at the hip and 
the displacement X of the position actuator. Finally, the ground is 
modeled as a spring KG and damper B G ,  in both the vertical and 
horizontal direction. The device is illustrated in Fig. 1. 

B. Survey of Raibert’s Control Algorithms 

Raibert [7] separates the controller design into a vertical and a 
horizontal controller that are assumed to be decoupled: 

Vertical Controller: The tasks of the vertical motion controller 
are to initiate and terminate the hopping and to control its height. 
All of these tasks are accomplished by changing the energy of the 
resonant mass-spring system formed by the leg and the body using 
changes in the length of the position actuator. 

Horizontal Controller: The task of the horizontal controller is 
twofold: it must control the forward velocity and it must maintain 
reasonable values for the body attitude to prevent the robot from 
tipping. 

Hopping systems are able to change their linear and angular mo- 
mentum only during stance since it is only during this phase that 
external forces act on the system. The reaction of the ground gen- 
erates a torque about the center of gravity which is proportional to 
the displacement of the foot and that can be used to modify the an- 
gular and horizontal accelerations. Consider the trajectory described 
by the center of gravity of the system during stance; the horizon- 
tal projection of this trajectory is called the “CG print.” Assuming 
that the motion is perfectly symmetric around the center of the CG 
print, then, if the foot is placed exactly there, the reaction of the 
ground generates no net torque around the center of mass. Applying 
the same symmetry considerations, we have that the net horizontal 
force is zero and thus the system maintains its present velocity. This 
point in the CG print that generates no net acceleration is called the 
neutral point. If the foot is displaced from the neutral point, a net 
torque that modifies the horizontal velocity is generated. To control 
the forward velocity, Raibert [7] uses a linear law to determine the 
displacement of the foot relative to the neutral point 

where XCG is the velocity of the center of gravity during the last 
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Fig. 1. The physical model 

flight, Xr,f is the desired forward velocity, and K,, is a constant deter- 
mined experimentally. The landing position of the foot is computed 
as the estimated position of the neutral point plus the displacement 
Xerr and the leg is driven to the desired position by applying a torque 
a the hip. 

The second task of the horizontal controller is to prevent the robot 
from tipping by maintaining the body attitude angle within certain 
limits. This task can be accomplished by simply driving the body 
attitude to zero during stance. 

C. Analysis of the Simulation of the Control Algorithms 

Fig. 2 shows the results of the simulation of Raibert’s control law. 
After a transient that decays quickly, the robot reaches a steady state 
characterized by the fact that the velocity remains roughly constant 
from hop to hop. The simulations show the existence of a velocity- 
dependent steady-state velocity error. The existence of this error 
means that, under steady-state conditions, the position of the neutral 
point is displaced from the center of the CG print by an amount given 

To examine the origin of the displacement of the neutral point, we 
need a more thorough analysis of the robot’s motion during stance. 
As a first approximation to this motion, we will study the motion of 
the simple mass-spring system shown in Fig. 3. The system consists 
of a mass m positioned on top of a spring with rest length I o  and 
constant k .  A position actuator of length X acts between them and 
will serve as our control input. For simplicity, this system will be 
restricted to unidimensional motion. Our goal is to explore the force 
exerted by the ground on the system and to find a control input X I t )  
that will cause this force to be symmetric (in time) around the lowest 
point of the trajectory. 

The Newton equation applied to the system in the y direction is 

by (1) .  

my = -mg - k ( y  - X ( t )  - lo). (2)  

The initial conditions for the system are assumed to be: y ( 0 )  = I ,  
(rest length), y(0) = -UO (downward velocity), and the numerical 
values for the coefficients: m = 10 kg, k = lo00 Nim. lo = 1 m. 
uo = 5 m/s. If we assume a piecewise-linear input X ( t )  

for 0 < t < t ,  

for t ,  < t < t z  - t l ) ,  

where t ,  and t2 are parameters to be determined. Then, neglecting 
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Fig. 2 Velocity response of Raibert's algorithm for Kx = 0.09 and refer- 

ence velocity = I m/s. 
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Fig. 3 .  A simple model to study motion during stance. 

the term mg in (2), the solution for the force F(t )  is given by 

F ( t )  = - k (y ( t )  - X ( t )  - lo) = v0& sin Wmt, t < t i  

= u o G  sin Wmt + a 6  sin wm(t - t i ) ,  

t ,  < t < t ,  

where 

W m  = .\ik/m. 

From these expressions it is clear that, in order to get a symmetric 
force around the lowest point of the trajectory, we must hve 

tl = 0 t 2  = 7 r a  ( 5 )  

that is, the leg should be expanded linearly (in time) starting at touch- 
down and finishing at liftoff in order to cancel the effects of the 
vertical motion controller upon the horizontal motion and conserve 
the overall symmetry required by Raibert's algorithm. A simulation 
of the full two-dimensional robot hopping in place, with the linear 
expansion of the leg beginning at touchdown, is shown in Fig. 4(a). 
Here, Fy is the vertical force acting on the foot and F k  is the total 
force exerted by the spring. The plots show that the results agree 
with the analysis and that the forces are sinusoidal except during a 
brief interval at touchdown and liftoff where collision phenomena 
occur. 

The situation departs from the ideal case analyzed when the robot 
is running as is shown in Fig. 4@). Even though the basic analysis 
of the vertical motion remains correct there is now a nonsymmetric 
horizontal force (Fx).  During stance, this force accelerates the robot 

, . .  
O l i l i  I,rV 'W) !50 :01r :511 3011 >50 J ' ?X 

Time ( s e c o n d s )  

(b) 

acting on the robot while running. 

resulting in a larger than expected velocity during part of the trajec- 
tory. This, in turn, results in a larger than estimated CG print. The 
consistent underestimation of the CG print coupled to the asymmetric 
nature of the force generates a forward displacement of the neutral 
point. Hence, to maintain its present velocity, the robot must dis- 
place the foot from the center of the CG print by means of a positive 
velocity error. 

III. ADAPTIVE CONTROL ALGORITHM 

Fig. 4. (a) Forces acting on the robot while hopping in place. @) Forces 

A .  Modification of the Controt Algorithm 
In the last section we identified the displacement of the neutral 

point from the center of the CG print as the source of the steady- 
state error in velocity. This displacement can be counteracted by 
modifying (1) which computes the displacement of the foot to 

where the term Kco, provides the required correction to the dis- 
placement. In principle, Kcom is a function of the velocity and of 
the parameters of the model (such as mass and the constants of the 
ground model). However, because of the complex dynamics of the 
system, the form of this function is not known. Rather than deriv- 
ing or estimating a relationship between Kcon and the velocity error 
we will use an idea central to adaptive control. We will couple the 
original control algorithm to an on-line numerical minimization pro- 
cedure that will attempt to minimize the square of the velocity error, 
considered as a function of the correction term. The square of the 
velocity error as a function of Kcom in the relevant range is shown in 
Fig. 5. From the observed displacement of the neutral point in sim- 
ulations this relevant range is determined to be the interval [0.007 
0.0251. The plot shows that the function is well-behaved and almost 
quadratic in this interval, suggesting that the numerical minimization 
will converge rapidly. 
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Fig. 5 .  The error2 as a function of K,,,,. 

B. Proposed Adaptive Horizontal Control Algorithm (IO/ 
In Section 11-C we saw that the response to a step in the ref- 

erence velocity is characterized by a transient period, in which the 
velocity changes rapidly, followed by a steady-state regime in which 
it remains roughly constant from hop to hop. Hence, the adaptive 
control algorithm is composed of two parts: 

1) The original algorithm proposed by Raibert, modified by re- 
placing (1) for computing the displacement of the foot by (6). 

2) An on-line minimization procedure for minimizing the square 
of the velocity error which is considered to be a function of the 
correction term Kcor, in (6). 

Part 1 of the algorithm is responsible for controlling the robot 
during the the transient. Part 2, the adaptive part, will function dur- 
ing steady-state operation and its purpose is to zero the steady-state 
velocity error generated by part 1. During the transient period the 
value of the correction term is kept constant. 

We will consider that a steady-state situation is reached when the 
absolute and relative changes in error from one hop to the next are 
both less than a threshold which is a design parameter. This threshold 
represents a compromise between robustness and speed of response 
of the algorithm. Once the steady-state situation is reached, the on- 
line minimization is activated. If, at some point, both the absolute 
and relative changes in the error exceed the threshold, the controller 
assumes that a change in some of the parameters (mass, ground 
resiliency, slope) has occurred and the algorithm reverts to part 1 
until a steady-state situation is reached again. 

C. Analysis of the Different Alternatives for  the On-Line 
Minimization Algorithm 

In this section we present a summary of the experiments carried out 
to select the minimization algorithm. Since our primary interest was 
to isolate the effects of the adaptive horizontal controller, the action 
of the vertical controller was limited to injecting enough energy into 
the system to maintain hopping but without any attempt to control 
the hopping height. 

Two classes of algorithms were tested for the on-line minimization: 

1) random search techniques 
2 )  deterministic minimization techniques. 

The main comparison criteria were the number of function evdua- 
tions required to reach the minimum with a given accuracy and the 
robustness of the algorithm, that is, its ability to handle large varia- 
tions in the nominal parameters and to reject spurious disturbances. 

Random Search Algorithms: For a function of one variable, the 
number of function evaluations needed to reach the minimum is 
known to be greater for random search techniques than for the classi- 
cal, deterministic techniques such as gradient searches [ll]. How- 
ever, random search algorighms are especially suited for the case 
where the structure of the objective function is unknown and where 
the relevant penalty involved in the search is associated with the 

Time ( s ~ r i , n i i s j  

(b) 

the ASSRS algorithm 
Fig. 6 .  (a) Velocity error for the ASSRS algorithm (b) Velocity error for 

number of function evaluations required to reach the minimum [ 1 I ] .  
Another appealing feature of these algorithms is that they are simple 
and easily implemented. 

From this class of algorithms we selected the Adaptive Step Size 
Random Search (ASSRS), proposed by Schumer and Steiglitz [ 1 1 I .  
as an approximation to a hypothetical algorithm that always uses the 
optimal step size for the random search. In the ASSRS algorithm, 
the search for the minimizing parameter is conducted by a process of 
trial and error. In the general case of an n-dimensional minimization. 
a random direction, distributed uniformly over an n-dimensional hy-  
persphere is selected. Starting from the last approximation to the 
minimum, a two-step search is conducted in the selected direction. 
Let s be the step size selected during the last search as an approx- 
imation to the optimal step size. The points located at a distance s 
and s * (1 + a)  in the selected direction, where a is a uniform random 
variable in [-0.5, O S ] ,  are tested as candidates for the new approx- 
imation to the minimum. The point that yields the best improvement 
over the current optimum is adopted as the new guess and its distance 
from the previous guess becomes the new step size. If neither of the 
points yields an improvement a new direction is selected and the 
search resumes. If m consecutive searches (where m is a parameter 
of the algorithm) have been unsuccessful, the step size is halved and 
the algorithm starts earching again using the new step size. To prevent 
the algorithm from locking into a local minimum due to the step size 
becoming too small, a larger step is tested after a large number of 
iterations has passed. The complete algorithm particularized for the 
one-dimensional case is listed in [IO]. 

Fig. 6(a) and (b) shows the results of the simulation of the ASSRS 
algorithm for a step of 1 mis in the reference velocity applied to the 
system at t = 6. From t = 6 to t = 13 only the basic controller is 
acting. At t = 13 the system is close enough to a steady state and 
the adaptive controller begins to act. The plots show that the error 
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error for the Newton-Raphson algorithm. 
Fig 7 (a) Velocity error for the Newton-Raphson algorithm (b) Velocity 

decays very quickly and remains in the order of 0.01 m/s, compared 
to an error on the order of 0.2 m/s when only the basic controller is 
utilized. 

Deterministic Minimization Algorithms: 
a) Gradient search algorithms: Fig. 5 shows that the square 

of the velocity error as a function of the correction term Kcorr is uni- 
modal and approximately quadratic in the neighborhood of the min- 
imum. Thus we can expect gradient minimization algorithms such 
as the Newton gradient method to converge rapidly, at least in the 
local region of the minimum. The difficulty with these methods is 
that the gradient of the function (and also the Hessian for the New- 
ton method) must be estimated numerically since the functional form 
is unknown. This numerical estimation causes problems in the im- 
mediate neighborhood of the minimum where the increments in the 
independent variable generated by the algorithm become increasingly 
smaller and hence being greatly influenced by the error in the gra- 
dient estimation. This difficulty can be partially overcome using an 
alternative formulation for the problem [ 101. 

The response of the controller employing the Newton-Raphson 
algorithm for the numerical minimization to a step of 1 m/s in the 
reference velocity is shown in Fig. 7(a) and (b). The plots show that 
once the adaptive controller is applied (at t = 13 s) the velocity error 
decays quickly. In the amplification of the last part of the trajectory, 
shown in Fig. 7(b), we see that the remaining error is of the order of 
0.0 I m/s compared with an error of 0.2 m/s when using only the basic 
controller. However, note that the trajectory is irregular in the sense 
that at some instants the error increases and then decreases rapidly. 
This irregularity is caused by the errors in the numerical estimation 
of the gradient when the algorithm gets close to the minimum [lo]. 

6) Other sequential search algorithms: As an alternative to 
the gradient type techniques, we explored a class of algorithms that 

I I- 

n- 

I 
I I I 1 I I 

I 1  2 li 3 0  53 fil l 
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Fig. 8. Response of the ASSRS algorithm to a 30-percent decrease in 
mass. 

start from an interval that is known to contain the minimizing pa- 
rameters and generate a sequence of subintervals that also contains 
the parameter and converges to zero length. We found that, although 
these algorithms converged quickly, they were extremely sensitive to 
the initial guess for the interval that brackets the minimum [lo]. We 
can conceivably provide a good initial guess for the required interval 
for a nomind set of parameters of the robot. Hence, the procedure 
will work well enough for small variations of the parameters around 
their nominal value, but it will severely limit the adaptability of the 
robot to larger variations. Therefore, this class of algorithms is not 
well suited for our application. 

Based upon the series of experiments presented in this section, we 
selected the ASSRS algorithm for the on-line minimization. As ex- 
pected, the Newton-Raphson algorithm converges faster, but it had 
difficulties associated with the numerical estimation of the gradient. 
Further, due to this numerical estimate, we can expect the algorithm 
to be only moderately robust. A spurious disturbance can cause a 
false estimate for the gradient and drive the algorithm far away from 
the true minimum. On the other hand, the ASSRS algorithm con- 
verges almost as fast as the Newton-Raphson without the problems 
associated with the numerical estimate of the gradient. Furthermore, 
since the algorithm tests two different step sizes in each direction, 
the second one being random, any spurious disturbance will not have 
an effect as pronounced as in the Newton-Raphson case. 

IV. EXAMPLES OF THE PERFORMANCE OF THE 
ADAPTIVE CONTROLLER 

In this section we present some examples of the performance of 
the adaptive controller, using the ASSRS algorithm, for different 
situations. Since some of the cases involve rather large departures of 
the robot parameters from their nominal values we needed a vertical 
control algorithm which could control accurately the hopping height. 
Hence we employed an algorithm different from the one proposed by 
Raibert [SI, although based upon the same idea. This new algorithm 
uses a different estimate for the energy to be injected into the system 
that takes into account the finite time interval needed to expand the 
leg. This estimate is combined with a linear feedback of the hopping 
height error in previous hops. The algorithm is described in the 
Appendix. 

Fig. 8 shows the response to a decrease in the mass for our stan- 
dard input (a step of 1 m/s in the reference velocity, applied at t = 6 
s). The initial mass is 12 kg, 20 percent higher than the nominal value 
and represents a robot of 8 kg loaded with a payload of 4 kg. During 
the first stance period after t = 30 s the mass is decreased to 8 kg, 
modeling the drop of the load. Fig. 9 also shows the response for a 
change in mass. At t = 0 the mass is set to 8 kg, 20 percent lower 
than the nominal value. During the first stance period after t = 30 
s the mass is increased to 12 kg, representing the robot picking up 
some payload. 

Fig. 10 shows the response to a change in the characteristics of 
the ground model. At t = 0 the ground model constants are set 
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Fig. 9 Response of the ASSRS algorxthm to a 30-percent increase In 
mass. 
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Fig. 10. Response of the ASSRS algorithm to a change in the ground 
model. 
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Fig. 11. Response of the ASSRS algorithm to a change in slope 

to their nominal values. At t = 30 s their values are changed to 
K G  = 0.7* lo4 Nini and BG = 100 N-s/m modeling a softer, 
lossier terrain. 

Our last experiment, Fig. 1 1 ,  shows the robot going up a slope. 
The robot starts moving on level ground and at x = 15 m, measured 
from the starting position, the ground is changed to a slope of 6 " .  

This series of experiments confirms the fact that our adaptive con- 
troller is capable of controlling the robot for a wide range of varia- 
tions in the values of the parameters, variations that model some of 
the tasks relevant to a dynamically stabilized walking machine. 

V, CONCLUSION 
This communication presents an application of adaptive control 

based upon the numerical minimization of a performance criteria. 

Specifically, we seek to replace an existing controller for a dynami- 
cally stabilized legged machine with an improved adaptive controller. 
This adaptive controller eliminates the problem of a bias in the For- 
ward velocity experienced with the nonadaptive controller and, at 
the same time, provides the flexibility required to allow a dynarn- 
ically stabilized legged machine to perform satisfactorily under the 
widely varying conditions that exist in the real world. We beiievr that 
adaptive controllers based upon on-line numerical minimization may 
prove of great importance in robotics problems where the complete 
dynamics of the plant is either unknown or too complex to work with. 
In particular, based on our experience with the one-legged robot, we 
feel that random search algorithms may prove to be a valuable too1 
in such cases, outperforming other minimization algnrithms. 

APPENDIX 

THE VERTICAL CONTROLLER 

In this Appendix we give a brief description of the fundamentals of 
the vertical controller used for the examples of Section I V .  We wi l l  
use the model developed in Section 11-C to compute the amount of 
energy to be injected into the system in order to achieve the desired 
hopping height. 

Assume that the leg is extended, starting at touchdown, using the 
linear law 

Then the solution for the motion is given by 

X ( t )  = at.  1 4 1 )  

y ( t )  = - (ug  + u ) ( l / w m )  sin wrrIt + at + lo ( A ? )  

where uo is the velocity immediately after touchdown and W , ~ I  = 

The kinetic and potential energies of the system immediately 
before liftoff are given by 

TLo- = Q.5m(uo + 2u)' z ~ 0 . 5 m u ~  + 2niuou i A 3 )  

U = mgX(tL,) = mgnTsr (A41 

where fLo, is the liftoff instant and TsT is the total duration of the 
stance period. 

Generalizing these results to the actual robot and applying conser- 
vation of linear momentum we have that the toial energy immediately 
after liftoff is 

( A ~ J  

At the highest point of the trajectory, all the energy is in the form of 
p:tential energy so the maximum height achieved in the next hop. 
H k + ,  , is given by 

( A h )  

By similar considerations, the velocity immediately after touchdown 
is related to the maximum height achieved in the previous hop. HA, 

U: = 2gHkM*/(h'f, + Mz). iA7 )  

From (A5)-(A7) we can obtain a relationship between tt.e variable a 
(our control input), the height acJieved in the last hop H k .  and  the 
desired height for the next hop Hk+ I 

E, = Q.5M2u; + 2M2~,,u + ( M ,  + M2)guTsa .  

E j k + l  = E~o/fhfi + M,)g. 

by 

where R,, = M2/(M, + M , )  (A81 

Combining this control law with a linear feedback of the hopping 
height error we finally get 
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actual maximum height at the k hop 
desired height at the k hop 
gain constants (0.1 in our simulation) 

H k  
H k  
K,,,, Kin[ 
tTD touchdown instant. 
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