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Abstract 

A successful controller design paradigm must take into account both 
model uncertainty and performance specifications. Model uncertainty 
can be addressed using the 31- robust control framework. However, 
this framework cannot accommodate the realistic case where in addition 
to robustness considerations, the system is subject to time domain 
specifications. We recently proposed a design procedure to explicitly 
incorporate timedomain specifications into the H, framework [I]. 
In this paper we apply this design procedure to the simple flexible 
structure used as a benchmark in the 1990-1992 ACC, with the goal of 
minimizing the peak control effort due to disturbances while satisfying 
settling time and robustness specifications. The results show that there 
exist a severe trade-ff between peak control action and robustnesa to 
unstructured model uncertainty. 

1. Introduction 

A substantial number of control problems, spanning appli- 
cations as diverse as thermo-electric generating plants, robotic 
systems and large space structures, can be summarized as the 
problem of designing a controller capable of achieving acceptable 
performance under system uncertainty and design constraints. 
This statement looks deceptively simple, but even in the case 
where the system under consideration is linear, the problem is far 
from solved. During the last decade a large research effort has 
been devoted to the problem of designing "robust" controllers, 
capable of achieving desirable properties under various classes of 
plant uncertaiaties while, at the same time, satisfying frequency- 
domain constraints. As a result, a powerful framework has 
been developed, addressing the issues of robust stability and 
robust performance in the presence of norm-bound uncertainties 
by minimizing a weighted 31, norm [2,3]. The 31, formalism 
has gained wide acceptance, since i t  embodies many desirable 
design objectives. Further, in conjunction with p-analysis [4], 
it has been successfully applied to a number of hard practical 
control problems (see for instance [5]). However, in spite of 
this success, it is clear that plain 31, control can only address 
a subset of the common performance requirements since, being 
a frequency domain method, it can not address time domain 
specifications. Recently some progress has been made in this 
direction [6-91, but most of the proposed methods rely on a 
number of approximations, which may preclude finding a solution 
if the design specifications are tight. 

t Supported in part by a grant from the Division of Spon- 
sored Research, University of Central Florida and by a grant from 
FSGCITRDA. 
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A different approach to robust control has been pursued 
in [lo-131, where robustness and disturbance rejection are ap- 
proached using the 11 optimal control theory introduced by 
Vidyasagar [lo] and developed by Pearson and coworkers [ll- 
131. These methods are attractive since they allow for an explicit 
solution to the robust performance problem. However, they 
cannot accommodate some common classes of frequency domain 
specifications (such as 312 or H, bounds). 

In recent papers [l, 141 we addressed the problem of finding 
an internally stabilizing compensator that minimizes the maxi- 
mum amplitude of the output to a fixed given input, subject to 
constraints upon the 31, norm of a relevant transfer function. In 
thi* 3aper we apply this framework to the problem of designing 
a co,&oller for the 1990-1992 ACC Robust Control Benchmark 
Problem capable of achieving minimum peak control effort while, 
a t  the same time, maintaining an adequate robustness level 
against model uncertainty. This simple flexible structure example 
highlights both the strength of the method, namely the ability 
to explicitly identify the trade-off between time and frequency 
domain specifications, and its main disadvantage, the fact that it 
results in high order controllers that may necessitate some form 
of model reduction. Thus, a t  this stage the main contribution of 
the framework is to serve as a benchmark, indicating the limits 
of performance imposed by the plant, rather than providing a 
practical design tool. 

The paper is organized as follows: In section I1 we introduce 
the mixed l,/Hm optimization problem and we briefly review 
the solution method presented in [l]: The main result of this 
section shows that the mixed optimization problem can be ezactly 
solved by using a two step procedure that involves solving first 
a finite dimensional convex, albeit in general non-differentiable, 
optimization prohlem, and then solving an unconstmined Nehari 
approximation. In section I11 we present a simple design example 
and we compare our controller to the unconstrained optimal 31, 
controller. In section IV we apply the framework to design a 
controller for a simple flexible structure, the ACC Robust Control 
Benchmark Problem. Finally, in section V, we summarize our 
results and we indicate directions for future research. 

2. Problem Formulation. 

3 1 wota t ion  

By L, we denote the Lebesgue space of complex valued transfer 
matrices which are essentially bounded on the unit circle with 
norm llT(z)llx, ~:o,,x(T(eJw).)7fm (Rm-) denotes the set of 
stable (antistable) complex matrices g ( z )  E L,, i.e analytic 
in z 2 1 (z 5 1). 'RH, ('Ra;) denotes the subset of 31, 
(Ha-) formed by real rational transfer matrices. I ,  denotes 
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the space of bounded red sequences { e k }  eqnippd with the 
n o m  Ilcltb&supIchl. To avoid confuSMn, we will denote the 

?i, norm of a transfer f u n d h a  as Il.l]n, and the I, nor- 
m of a sequence as 1l . I l l~ .  Throughout the paper we will 
use packed notation to represent state-sprce rediZations, i.e. 

1, 

For a transfer matrix G(z), &G'($) where ' indicates transpose 
conjugate. Finally, 2 indicates that z is a vector quantity. 

2.2 S t a t e m e n t  of t h e  Problem 

Consider the system represented by the block diagram 1, 
where the scalar signah U, 1~ and U represent an exogenous distur- 
bance, a harm, fized signal, and the control action respectively; 
C and r/l represent the outputs subject to frequency and time 
domain performance specifications respectively; and y represents 
the measurements available to the controller. Note that U and C 
include fictitious signals used to assess stability in the presence 
of model uncertainty. Then, the mized l,/?i, problem can be 
stated as follows: 

U __cI 

Figure 1: Block Diagram of the Generalized Plant. 

Given the nominal system (S), with frequency-domain 
performance specifications of the form: 

IITC"l17fm I 7  (PI 

4 2 )  = K(z)y(z) (C) 

find an internally stabilizing controller 

such that the maximum amplitude of the regulated out- 
put + due tow is minimized subject to the performance 
specifications (P) 

2.3 Problem Solut ion 

In this section we briefly review the framework presented in 
[l]. The main result of this section shows that the mixed l , /? f ,  
optimization problem can be decoupled into a constrained convex 
finite dimensional optimization and an unconstrained Nehari 
extension problem. The key to this rC-l+ to i) use the Youla 
[ 151 parametrization of all stabilizing controllers to transform 
the problem into a constrained convex optimization problem ii) 
expand the free parameter q into a poa,,. *cries and iii) observe 
that only the first N (where N depends on the problem but can 
be determined before hand) terms of this expansion appear in the 
optimization of the time response. These results are summarized 
in the following theorems: 

Theorem 1: The set of all closed-loop transfer matri- 
ces achievable by an internally stabilizing compensator can be 
parametrized ia term8 of a free parameter Q E R?f, as: 

(1) 
Tcv = Ti1 + TizQTzi 
T+w = T$ + T;l?QG 

where Ti,T,? E RX,. Moreover, it is possible to select the 
parametrization in such a way that Tlz(z) and Tzl(z) are inner 
and co-inner respectively (i.e. T12'T11 = I, T~1T21- = I ) .  

Proofi These results are well known and have been proved in 
several different ways. See for instance [3,16] for a proof using 
an observer-based argument. 

R e m a r k  1: For the SISO case, equation (1) reduces to: 

where ti, t!,q are stable transfer functions and where tz is inner. 
Since 11.llx, is invariant under multiplication by an inner function 
we have: 

IITcvlh, = lltl + tzqlln, = IItltz- + nllx, = llR + ellx, (3) 

where R(z)&l(z)tz-(z) has all its poles outside the unit disk. 

By using this parametrization the mixed optimization problem 
can be now precisely stated as solving: 

where 

Problem (OPT) is a convex optimization problem in 'R'H,. 
However, since this space is not compact, a minimizing solution 
may not exist. Moreover, even when a solution does exist, it 
may yield a system with extremely large settling time. These 
difficulties can be avoided by constraining the poles of the closed- 
loop system to lie in a disk with radius 6 < 1. Thus, rather thsn 
solving the original problem (OPT) it is convenient to solve the 
following modified problem (OPT6): 

subject to: 
l l t l (4  + t2(Z)4(Z)IIRb I Y 

t i ,  t:, q analytical in l z l z  

where 6 < 1, R?i& = {q(z) E 'R'H,:q(z) analytical in 111 2 a}, 
and where llnIlx1, = A SUP In(z)l. 

Irl=6 

Note that from the maximum modulus theorem, llTcvll~t 2 
IITCvllx,. Thus, a solution to (OPT6) is guaranteed to satisfy 
the original constraints (C). It follows that pf is an upper 
bound of p c .  In the sequel, we show that (OPT6) can be solved 
by solving first a finite dimensional optimization problem and 
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then solving an unconstrained Nehari optimization problem. We 
begin by showing that the minimization of [l$klll- subject to the 
constraints (P) requires considering only a finite number N of 
elements of the sequence $ k .  

Theorem 2: Assume that the mixed optimization problem is 
feasible and let q*,V denote the solution. Then, there exist a 
finite number N such that: 

(4) 

- ( I * 2 ( q o  - - .  PN-1 

and where ti,, denotes the IC'" element of the impulse response of 
t r ( z & ( z )  (i.e. t f ( z & ( z )  = x t i k z - k )  

Proof: See [I]. 

Theorem 3: Let q F  = qiz-i E R'Hm be given. Then, there 

exist qR E RH, such that IIR + qF + Z-NQRIIw, I 7, where i f l  
IlQllz 5 Y where: 

00 

0 

N-1 

l=o 

(*A R) 

- 1  

ani "dere L.", and L f  are the solutions to the following 
Lyapunov equations: 

(7) 
A R L ~ A ~  - L: = bRbk 

A ~ L F A ~  - L: = ( A ~ ) ~ c ~ c R ( A R ) ~  

Proof: Let GkR + QF. The proof follows by noting that, 
given q F ,  there exist qR E 'RXm such that IITcwllx, 5 7 ifl 
the corresponding unconstmined 1 block Nehari approximation 
problem has a solution, i.e. if: 

where I'H indicates the maximum Hankel singular value and 
where we used the facts that zN is an inner function and that 
the best stable approximation to a given function coincides with 
the best antistable approximation to its conjugate. In order 
to compute rH we need to compute the observability Lo and 
controllability L ,  grammians of the stable part E of r N G - .  In 
[l] we showed, through some lengthy computations, that these 
gramrnians can be computed explicitly. Furthermore, Lc is 
independent of qF and Lo is given by: 

Hence: 
L?L,L? = Q'Q 

From Nehari Theorem it follows that: 

(9) 

where p indicates the spectral radius. Since Q is a linear function 
of the soefficients of qF i t  follows that the constraint (10) is 
convex in the variables qi 0. 

Remark 2: The results of Theorem 3 can be applied to the 
constraint [ITcvllH(, I 7 by using the change of variable z = 62 
to map the C-disk to the unit disk. 

The following result is now obvious: 

Theorem 4: qo = q$ + z-Nq& solves the mixed lm/'Hm 
control problem iff 2" = ( q; . . . Q N - ~  )' solves the following finite 
dimensional convex optimization problem: 

and q i  solves the unconstrained Nehari approximation problem 

where R is defined in Theorem 1. 

Remark 3: From the results of Theorem 4, it follows that the 
mixed optimization problem can be solved by using the following 
algorithm: i) Use the transformation z = 62 to map the 6-disk to 
the unit disk, ii) solve the convex finite dimensional optimization 
(11); iii) solve the unconstrained Nehari approximation problem 
(12), iv) use the transformation i = 6- ' z  to obtain the controller 
and the closed-loop system. 

273 

___- - 



3. A Simple Example 

Consider the problem of minimizing the step response error 
for the non-minimum phase plant shown in figure 2. Further- 
more, assume that the system is subject to unstructured multi- 
plicative uncertainty as shown in figure 2 .  Table 1 shows l l $ l l r ,  
and IITc,,IIx, for different designs, with the corresponding step 
and frequency responses shown in figure 3. By using the results 
of [13, Theorem 41, it can be easily shown that the infimum of 
the error is Il$llr, = $, achieved with the controller C(z )  = e. 
The same controller yields IITc,,ll%, = 5 thus guaranteeingrobust 
stability against unstructured perturbations IlAlln, 5 0.2. Note 
that this controller is not internally stabilizing due to the pole- 
zero cancellation at z = 1. The optimal 31, controller yields 
IITc,,llx,' = 3 and Il$Jlll, = 4. Mixed lm/7im optimization with 
IITculllx, 5 3.3 yields 11$JI11, = 3.31. However, this procedure 
results in a controlIer with 153 states. Finally, the last entry in 
Table 1 corresponds to a reduced-rder controller with 5 states. 
In spite of the substantial order reduction, this controller yields 
virtually the same performance as the mixed l,/?fm controller. 

Figure 2. Block Diagram with Multiplicative Uicertainty A "Pulled-Ou 

Table 1. IITc,,llx, vs II$Jlll, for the Simple Example 

4. 
mark Problem 

Controller Design for the ACC Bench- 

The issues involved in controlling systems subject to model 
uncertainty and constraints can be illustrated by the simple 
system shown in figure 4, consisting of two unity masses coupled 
by a spring with constant 0.5 5 b 5 2 but otherwise unknown. 
A control force acts on body 1 and the position of body 2 is 
measured, resulting in a non-colocated sensor actuator problem 
that embodies many of the pathologies and challenges present in 
realistic problems, such as control of complex aircraft and large 
space structures [17]. This system has been used as a benchmark 
during the last few years at the American Control Conference 
[18-191 to highlight the issues and trade-offs involved in robust 
control design. 

J 
0 S 10 1s 20 25 30 35 40 4s 50 

ThK 
F m c  Rcranw 

-1 I 

10' . . . . . . . . . . . . . . . . . . .  ..AT . . . . . . . . . . . . . . . . . . .  ""7 

Figure. 3. Step and Frequency Responses for Different Designs. 

Consider the problem of designing a stabilizing controller 
subject to the following performance specifications: i) the closed- 
loop system must be stable for all possible values of the uncertain 
parameter k. ii)-the peak of the control action following a unit 
impulse disturbance w acting on m2 should be minimized; and iii) 
for the same disturbance the displacement y of m2 has a settling 
time of about 15 seconds. 

Figlire 4 The ACC Robust Control Benchmark Problem. 

In order to fit the problem into the 71, framework, the 
uncertain spring constant le is modeled as k = k, + A  (with k, = 
1.25 and IlAll 5 0.75) and, following a standard procedure [16], A 
is "pulled out" of the system, as shown in figure 5. The problem 
can be stated now as the problem of minimizing the peak control 
effort tbpk over the set of all internally stabilizing controllers, 
subject to the settling time and IITc,,IIx, 5 # constraints. 

The system, with the uncertainty "pulled out", can be 
represented by the following state space realization: 

/ o  0 1 0 \  / o  0 0 
0 1 0  

A = [ - : .  lo 8 :J B =  1 1 0 1  
k, 4, 0 0 -1  0 0 

c = ( :  -d 8 :) 
D = ( 8  0 0 0  8 i) 0 1 0 0  
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the specifications are achievable with the the following second 
order controller: 

= (0.9950 1.7404 -0.a69)  = (0.9:75) 

CC = (-1.1347 1.0044) DC = 4.1150 

Although IITcvllx, = 1.43 a simple analysis shows that the 
closed-loop system is stable for all 0.5 5 k 5 2. 

Figure 5 Block Diagram with the Uncertainty 
“Pulled Out” of the System. 

In order to fit the problem into our framework, the system was 
discretized using sample and hold elements at  the inputs and 
outputs, with a sampling time of 0.1 seconds. 

The need to explicitly take into account the peak of the 
control action is illustrated in figure 6 ,  showing the frequency 
and impulse responses obtained with a controller obtained using 
the standard statespace ‘Hm design procedure [3]. This con- 
troller achieves llTc,,ll, = 1.1 (hence satisfying the robustness 
constraint), however it results in a clearly unrealistically large 
peak control action. 

Frequency 
Control Action for the Central X, Controller for 7 = 1.1. 

1 

I 
0 100 2M) 300 400 500 600 700 800 900 loo( 

No. of Samples 

Figure 6. Frequency Response and Control Action 
for an Unconstrained Controller. 

Figure 7 shows the peak control action versus IITc,,ll, subject 
to the settling time constraint. From the figure, it follows that 
there exist a severe trade-off between peak control action and 
robustness to unstructured dynamic uncertainty. In particular, 
achieving IITcJlx, 5 4, requires a peak control action of approx- 
imately 1. Hence, for the discretized version of the BMP, the 
specifications are (barely) achievable, although they may require 
a very large order controller. It should be noted that the settling 
time constraint is binding. By slightly relaxing this constraint, 

I .4 I 

1 2 5 -  

1 2 -  

I IS- 

1.1 

I 05 - 
l -  

, , I ,  

- 

0 5 IO 15 20 U 30 35 40 45 50 

kak Con“ Acuon 

Figure 7. Peak Control Action vs. IITc,,llx, 

5.  Conclusions 

Most realistic control problems involve both some type of 
time and frequency domain performance requirements and cer- 
tain degree of model uncertainty. However, the majority of 
control design methods currently available focus only on one 
aspect of the problem. 

We recently proposed to address this type of problems using 
a mixed l = / ‘ H ,  optimization approach. In this approach, the 
degrees of freedom available in the problem are used to optimize 
a time-domain performance measure over all the controllers that 
guarantee a desired robustness level, expressed in terms of the 
11.llx, of a transfer function. The resulting convex optimization 
problem can be decoupled into a finite dimensional, albeit non- 
differentiable, constrained optimization and an unconstrained 
Nehari approximation problem. Thus, the solution does not 
necessitate the use of approximations used in some previous 
approaches . 

The examples of sections I11 and IV highlight both the 
strengths and weaknesses of the proposed design paradigm: The 
method allows for dealing explicitly with time-domain specific& 
tions, removing some of the undesirable features of optimal 3-1, 
controllers. However, i t  may result in very larg, -.,qp: controllers 
(twice the number of time elements of {$k) considered), necessi- 
tating some type of model reduction. 
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