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Abstract 

The problem of rendering the origin an asymptotically 
stable equilibrium point of a nonlinear system while, 
at the same time, optimizing some measure of perfor- 
mance has been the object of much attention in the 
past few years. In contrast to the case of linear sys- 
tems where several optimal synthesis techniques (such 
as 'H-, 'H1 and L') are well established, their nonlin- 
ear counterparts are just starting to emerge. More- 
over, in most cases these tools lead to partial differen- 
tial equations that are difficult to solve. In this paper 
we propose a suboptimal regulator for nonlinear affine 
systems based upon the combination of receding hori- 
zon and state dependent Riccati equation techniques. 
The main result of the paper shows that this controller 
is nearly optimal provided that a certain finite hori- 
zon problem can be solved on-line. Additional results 
include sufficient conditions guaranteeing closed loop 
stability even in cases where there is not enough com- 
putational power available to solve this optimization 
on-line, and an analysis of the suboptimality level of 
the proposed method. 

1 Introduction 

A large number of control problems involve design- 
ing a controller capable of rendering some point an 
asymptotically stable equilibrium point of a given 
time invariant system while simultaneously opti- 
mizing some performance index. In the case of 
nonlinear dynamics, popular design techniques in- 
clude feedback linearization (FL) [16], the use of 
control Lyapunov functions (CLF)[l, 10, 211, re- 
cursive backstepping [16], and recursive interlacing 
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[18]. While these methods provide powerful tools 
for designing globally (or semi-globally) stabilizing 
controllers, performance of the resulting closed loop 
systems can vary widely. To illustrate this point 
consider the following system [lo] 

z'l = r2 
2.2 = -e=a + izl) + ;z2e*01+30a + , 2 0 1 + 2 ~ ~  

with initial condition [ -2 01'. It can be shown 
that the optimal control law that minimizes the 
performance index 

(1) 

a3 

J = ] (xi + U') dt 

is given by U* = -x2e2x1+2a, with the correspond- 
ing value of J* = 4. On the other hand, FL 
and CLF designs yield the values JFL = 238 and 
JCLF = 390 (see [lo] for details). Indeed, while the 
methods mentioned aboved can recover the optimal 
under certain conditions [8, 61, in general there are 
no guarantees on the performance of the resulting 
system. 

0 

As an alternative, during the past few years non- 
linear counterparts of %, [2, 11, 14, 201 and L1 [15] 
have started to emerge. However, from a practical 
standpoint they suffer from the fact that they lead 
to Hamilton-Jacobi-Isaacs type partial-differential 
equations that are hard to solve, except in some 
restrictive, low-dimensional cases. 

In this paper we propose an alternative controller 
for suboptimal regulation of non-linear &ne sys- 
tems. This controller is based upon the combi- 
nation of receding horizon and State Dependent 
Riccati Equation (SDRE, [4]) ideas, and follows in 
the spirit of a similar controller successfully used 
in the case of constrained linear systems [22, 231. 
The main result of the paper shows that this con- 
troller is nearly optimal and globally stabilizes the 
plant, provided that enough computational power 
is available to solve on-line a finite horizon opti- 
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mization problem. In cases where this condition 
fails, we show how to modify the proposed con- 
troller to guarantee stability (possibly at  the ex- 
pense of optimality) and we establish a connection 
with the well known CLF methodology. Additional 
results include an analysis of the suboptimality of 
the proposed method and show that if an approx- 
imate solution to the problem is known in a set 
containing the origin, then our controller yields an 
extension of this solution with the same subopti- 
mality level. 

Due to space constraints, all the proofs have been 
omitted. A full version of the paper can be ob- 
tained by contacting the authors. 

2 Preliminaries 

2.1 Notation and Definitions 
Consider the control-affine nonlinear system: 

x = f(.) +g(z)u (2) 
where x E R”, U E R”, the vector fields f(.) and 
g(.) are known C1 functions, and where f(0) = 0. 
Given a function V :  R” ---t R its Lie derivative 
along f is defined as 

Definition 1 A positive definite and radially un- 
bounded C1 funct ion V : Rn -, R+ is a Control 
Lyapunov function f o r  the system (2) i f  

V x # 0 ( 3 )  inf [ L j V ( x )  + L g V ( x ) u ]  < 0, 

It is well known (see for example [16], pag 26) that 
existence of a control Lyapunov function is equiv- 
alent to the existence of a globally asymptotically 
stabilizing feedback control law u(z)l. 

2.2 The Nonlinear Regulator Problem 
Consider the nonlinear system (2). Our goal is to 
find a feedback control law U(.) that minimizes the 
following performance index 

J ( x , ,  U) = [x ’Q(z )x  + u’R(x )u]  d t ,  x ( 0 )  = a ,  
0 

(4) 

7 
where Q(.) and R(.) are C1, positive definite 
matrices’. It is well known [3] that this problem 

in addition the so-called small control property holds 
then the stabilizing control law is continuous. 

‘This condition can be relaxed to Q(I) 2 0 

is equivalent to solving the following Hamilton- 
Jacobi-Bellman partial differential equation: 

av 1av aV’ 
a x  4 a x  0 = --f - --gR-’g’- a x  + ~ ’ Q ( z ) z ,  V(0) = 0 

(5) . .  

If this equation admits a C1 nonnegative soh- 
tion V ,  then the optimal control is given by 1~ = 
-5  R-lg’g’ and V ( x )  is the corresponding opti- 
mal cost (or storage function), i.e. 

m 

(x’Qx + u‘Ru) dt 
0 

3 An Equivalent Finite Horizon Regulation 
Problem 

Unfortunately, the complexity of equation (5) pre- 
vents its solution except in some very simple, low 
dimensional cases. In this section we introduce a 
finite horizon approximation of the nonlinear regu- 
lation problem stated in section 2.2 and we analyze 
its properties. This approximation forms the basis 
of the proposed method. 

Lemma 1 Consider an compact set S containing 
the origin in i ts  interior and adsume that the opti- 
mal storage function V ( x )  i s  known f o r  all x E S. 
Let c = minZEas V ( x )  where as denotes the bound- 
ary of S. Finally, define the set s,, = ( a :  V ( x )  < c} .  
Consider the following two optimization problems: 

Eo 

minu J ( z , u )  = J[z’Q(z)z +u’Ru]dt } 
{ o  

{ 
(6) 

0 I manu JT(z, U) = (z’Q(z)z + u‘Ru) d t  + V [ z ( T ) ]  (7) 

subject to (2). Then the following facts hold: 

1. An optimal solution of problem (7) i s  abo  op- 
timal for  (6) in the internal [O,T] provided 
that x ( T )  E S,,. 

2. Consider now TI > T .  If z ( T )  E S,, then  a 
controller that optimizes JT i s  also optimal 
with respect to J T ~  in [O,T]. 

This Lemma shows that if a solution to the HJB 
equation (5) is known in a neighborhood of the ori- 
gin, then it can be extended via an explicit finite 
horizon optimization, well suited for an on-line im- 
plementation. This suggest a receding horizon type 
control combining an on-line optimization with an 
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off-line phase t3 find a local solution to (5). How- 
ever, finding (and storing) this local solution can 
be very computationally demanding in cases where 
the dimension of the problem is not low. Thus it is 
of interest to consider the case where an approxi- 
mation Q(z) rather than the true storage function 
is used in (7). The next result shows that in this 
case the approximation error does not grow (to the 
first order). In other words, the difference between 
the true optimal V[z(O)] and J*[z(O)] is approxi- 
mately equal to the difference between V [ z ( T ) ]  and 
QW)I. 

Theorem 1 Let 9 :R” 4 R+ be 4 positive defi-  
nite function and consider the following optimiza- 
tion problem: 

T 
Jq(z,t) = m i n l  (z’Qz + u’Ru)dT + Q[x(T) ]  

(8) 
subject to (2). Define the approximation eTroT 
e ( x , t )  & J q ( z , t )  - V ( z )  and assume that Q U 
selected so that S 0 .  Then J q ( z , t )  - 
V [ z ( t ) ]  ? Q[z(T)] - V[z (T) ]  (to the first order). 

4 Proposed Control Algorithm 

From Lemma 1 it follows that, given an initial con- 
dition z(O),  problem (6) can be solved by solving 
a sequence of problems of the form (7) with in- 
creasing T until a solution such that x(T) E s,. 
Moreover, once such a solution is obtained, no fur- 
ther improvement of the cost can be achieved by 
increasing the horizon T. These results suggest the 
following receding-horizon type control law. Let 
x ( t )  denote the current state of system (2). Then: 

1. If z ( t )  E s,,, U = -LR-‘g’!=’ a+ 
2 

2. If z ( t )  6 S,, then solve a sequence of opti- 
mization problems of the form (7) until a so- 
lution such that z (T)  E S,, is found. Use the 
corresponding control law u(t) in the interval 

From the results above it is clear that the resulting 
control law is globally optimal and thus globally 
stabilizing. However, as we indicated before, the 
computational complexity associated with finding 
V ( z )  (even only in the region S,,) may preclude 
the use of this control law in many practical cases. 
Thus, it is of interest to consider a modified con- 
trol law where an approximation 9 ( z )  (rather than 
V(z)) is used. To this effect consider a compact 
set S containing the origin in its interior and let 

[to, to + 6tI. 

\k: S -+ R+, 9 E C1 be a Control Lyapunov Func- 
tion for system (2). Denote by U+ the correspond- 
ing control law. Finally, let c = mi&ces q(z) and 
define the set Sg C S = {z:Q(z) 5 c} .  Then we 
propose the following modified control law: 

1. If z E S,j,, *(z) = argmin{LjQ + L,Qu} 

2. If x # Ss then consider an increasing se- 
U 

quence Ti. Let 

T 
U;. = argmin { / (z’Qz + u’Ru) dt + \E [z (T) ]  

Denote by a*(.) the corresponding o p  
timal trajectory and define: T ( z )  = 
inf {T : z* (T)  E &I3. Then %(z) 1 
U;(&), t E [to, t o  + 4. 

Note that from Theorem 1 it follows that the sub- 
optimality associated with the modified algorithm 
is approximately given by e q  = sup IQ(z)-V(z)j. 

x€S, 

Theorem 2 Assume that g[Q(z)] > U,,, > 0 for 
all x ,  where E(.) denotes the minimum singular 
value. Then the control law 9 globally stabilizes 
(2) 

5 A Modified Receding Horizon Controller 

In the last section we outlined a receding horizon 
type law, that under certain conditions, is nearly 
optimal and globally stabilizes system (2). While 
most of these conditions are rather mild (essen- 
tially equivalent to the existence of a CLF), the 
requirement that T should be large enough so that 
z(T) E S,j, could pose a problem, specially in cases 
where the system has fast dynamics. In this section 
we propose a modified control law that is guaran- 
teed to stabilize the system, even when this con- 
dition fails, and that takes into account computa- 
tional time constraints. 

Consider the following receding horizon control 
law: 

Algorithm 1 

0.- Data: a CLF 9 ( x ) ,  an invariant region Sq 
such that 0 E int{Sg}, a horizon T .  

‘From Barbalat’s Lemma ([16), Fag. 491) we have that 
oo. Hence for every xo, T ( x O )  is x’Qx + u’Ru 

finite. 
0 aa T 
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1.- 

2. - 

I UY = argmin { ~ [ Z ’ Q Z  + u‘Ru) d t  + 9 [z(T + t ) ]  

(9) 
subject to: 

-u[z(~ + T)] > z ( t  + T)’Qz(t + T) + L f 9  

+min u‘(t + T)Ru(t + T) + L,rk 
I = ( t t T )  

I =(*+TIu}  

(10) 

-I 
-z( t)’Qz( t )  - U*‘( ~ ) R u *  ( t )  

where U(.) is some positive definite function 
such that a(=) 5 z’Qz. 

Theorem 3 The  control law U* generated by Al- 
gorithm 1 hw the following properties: 

It renders the origin a globally mymptotically 
stable equilibrium point of (2) 

Coincides with the globally optimal control 
law when *(z) = V(z). 
Is nearly optimal (in the sense of Theorem 1) 
when z (T)  E Sq. 

Remark 1 Let  S(z) = a’P(z)z, where P denotes 
the solution to  the S D R E  

A ’ ( z ) P ( z )  + P(z)A(z) 
-P(z)B(z)R-’(z)B’(z)P(z) + Q(z) = 0 

(11) 
where f(z) = A(z)z  and B ( z )  = g(z) .  It can be 
shown that there ezists To such that f o r  all T > To 
the constraints (10) are feasible. It follows that 
*(z) = z’P(z)z is a suitable choice fo r  the termi- 
nal penalty. Moreover f r o m  the properties of the 
SDRE method (see [4]) it follows that wi th  this 
choice, the control law satisfied all the necessary 
conditions f o r  optimaiity ab o [I)z(t + ~ ) l l ’ ]  

Finally, before closing this section we consider a 
modified control law that takes into account the 
sample and hold nature of receding horizon imple- 
mentations. 

Algorithm 2 

0.- Data: a CI;F * ( E ) ,  a n  invariant region S,p 
such that 0 E in t (S*} ,  a horizon T, a sam- 
pling interval T, . I 

1 

1.- I f z ( t )  E S+, u,(z) = argmin(Lj* + L , h }  

2.- If z ( t )  e S* then  
U 

subject to: 

- u[z(T + t + T)] 
> Z(T + t + T)’Qz(r + t + T) + L t 9  I 
+ E ( d - t + T )  

min, {u’(T + t + T)Ru(s + t + T) 
+ L 8 I  = ( T t t + T )  U} 

- ~ ( t ) ’ @ ( t )  - u*’(t)Riu’(t), 
for d 0 5 r 5 T. 

(13) 

Lemma 2 The  control law us renders the origin a 
ylobally stable equilibrium point of (2). Moreover, 
it is nearly optimal and coincides with the globally 
sptimal control law when *(z) = V(z). 

6 Illustrative Example 

Example 1 This ezample consists of a planar 
ducted f a n  (a  simplified model of a thrwt vectored 
aircraft). The  dynamics are given by (see [17, 81 
for details) 

(14) 
where x ,  y and 0 denote horizontal, vertical and an- 
gular position respectively and where ul and up are 
the control inputs. The  numerical values of the 
parameters are m = 4Kg, J = 0.0475Kgm2 and 
p = 0.26m. The goal is to  minimize a performance 
indez of the f o r m  (4)  with: 

Q=diag[5 5 1 1 1 51, R=I2,2 

corresponding t o  the following.choice of state vari- 
ables: ( =  [ z  y 8 X 6 e]. 

Table 1 shows the result corresponding to  the initial 
condition ((0) = [ 0  0 0 12.5 0 01. Note 
that in this case the S D R E  solution yields the sec- 
ond  lowest cost. 

Figure 1 shows a comparison of the trajectories 
generated by the S D R E  and R S D R E  method, with 
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method 1 V li 

Table 1: Comparison of different methods for the 
DFAN example 

-1 0 1 2  3 4 5 6 7 8 
X 

Urn: X(O140 0 0 12.5 0 OL -1, Ts-0.5 

. . . .  . . . .  . . . .  . . . .  . . . .  

. . . .  . . . .  

Figure 2: The terms of the cost as function of the 
horiaon 

used techniques can successfully stabilize nonlin- 
ear systems, the resulting closed-loop performance 
varies widely. Moreover, these performance differ- 
ences are problem dependent, with performance of 
a given method ranging from (near) optimal to very 
poor. 

I In this paper we propose a new suboptimal regu- 
Figure ?jDRE and RSDRE trajectories for the Dfan lator for affine systems, based upon the 

1- ~a l l ry lr  combination of receding horizon and state depen- 

T = l s e c  and Td = O.5sec. In this case the RSDRE 
method produced a cost virtually equal to  the global 
optimal (found ofl-line by numerical optimization). 
This can be ezplained by looking at the plots in Fig- 
ure 2. These p lo ts  show that while q ( x )  = x ’ P ( x ) x  
gives initially a very poor estimate of the cost-to- 
go, the combination of@(.) and the eaplicit inte- 
gral in (9) give a very good estimate i f T  is chosen 
- > l s ec .  It is worth mentioning that a conventional 
receding horizon controller (i.e. one obtained By 
setting \E 3 0 in (9)) with the same choice of  hori- 
z o n  and sampling t ime  fails t o  stabilize the system. 

7 Conclusions 

In contrast with the case of linear plants, tools 
for simultaneously addressing performance and sta- 
bility of nonlinear systems have emerged rela- 
tively recently. Recent counterexamples [7, 81 il- 
lustrated the fact that while several commonly 

dent Riccati equation tkchniques. The main result 
of the paper shows that under certain relatively 
mild conditions this regulator renders the origin 
a globally asymptotically stable equilibrium point. 
In the limit as the horizon T * 0, the proposed 
control law reduces to the inverse optimal controller 
proposed by Freeman and Kokotovic [9]. Thus, 
these conditions are essentially equivalent to the 
existence of a Control Lyapunov Function. Addi- 
tional results in the paper show that the regulator 
is near optimal, provided that a good approxima- 
tion to the optimal storage function is known in 
a neighborhood of the origin. These results were 
illustrated with a practical example where the pro- 
posed controller outperformed several other com- 
monly used techniques. Finally, note in passing 
that the finite approximation (8) is also valuable 
as a tool to speed-up off line numerical computa- 
tion of near optimal solutions, for instance when 
combined with conjugate gradient type algorithms 
[51. 

An issue that was not addressed in this paper is 
that of the computational complexity associated 
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with solving the nonlinear optimization problem 
(9). Following [8] this complexity could be reduced 
by exploiting differential flatness to perform the o p  
timization in flat space. Additional research being 
pursued includes the explicit incorporation of state 
and control constraints into the formalism and its 
extension to handle model uncertainty. 
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