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Abstract 

Recently a new deterministic characterization 
of the 3 t 2  norm has been proposed, using a new 
norm (I\.~~J.V,), based on (approximate) set mem- 
bership modeling of white noise. The main re- 
sult in [lo, 11, 12, 131 shows that under mild 
conditions, for a fized system the gap between 
the "2 and W, norms can be made arbitrarily 
small. Motivated by these results it has been 
argued that the 11.llw, norm provides a useful 
tool for analyzing robust 7-12 controllers, spe- 
cially since in this context LMI based necessary 
and sufficient conditions for robust performance 
are available. Unfortunately, as we show here 
with an example involving a very simple plant, 
the worst case l l . l l ~ 7  norm can conservative by 
at least a factor of f i  (where rn denotes the 
dimension of the exogenous signal) for the orig- 
inal robust 3 t z  problem. Thus, at this point the 
problem of finding non-conservative bounds on 
the worst 3 t 2  norm under LTI or slowly-varying 
LTV perturbations still remains open. 

1 Introduction 

A large number of control problems of prac- 
tical importance involve designing a controller 
capable of stabilizing a given linear time in- 
variant system while minimizing the worst case 
response to some exogenous disturbances. De- 
pending on the choice of models for the input 
signals and on the criteria used to assess perfor- 
mance, this prototype problem leads to differ- 
ent mathematical formulations. The case where 
the exogenous disturbances w belong to the set 
of signals with spectral density bounded by one 
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and the objective is to minimize the worst-case 
"size" of the output z measured using the power 
seminorm' leads to the well known ?f2 control 
problem. 

7-12 control is appealing since there is a well es- 
tablished connection between the performance 
index being optimized and performance re- 
quirements encountered in practical situations. 
Moreover, the resulting controllers are easily 
found by solving two Riccati equations, and 
in the state-feedback case exhibit good robust- 
ness properties ([l]). However, as the classi- 
cal paper [4] established, these margins vanish 
in the output feedback case, where infinitesimal 
model perturbations can destabilize the closed- 
loop system. 

Following this paper, several attempts were 
made to incorporate robustness into the 7-12 

framework, at least for the case of minimum 
phase (or mildly non-minimum phase) plants 
[16, 191. More recently these efforts led to 
the mixed 7-12/3c,  problem [2, 5, 20, 7, 18, 
15, 31, where the resulting controller guaran- 
tees optimal performance for the nominal con- 
troller and stability against LTI dynamic un- 
certainty. While these results represent signifi- 
cant progress towards obtaining robust 7-10 con- 
trollers, they suffer from the fact that perfor- 
mance is only guaranteed for the nominal plant. 
Moreover, the resulting controllers have poten- 
tially high order (in fact, the optimal 7-12/3t ,  
controller is infinite dimensional [9]). 

Robust 3c2  performance was analyzed in [17] 
where bounds on the worst-case performance 

'An alternative stochasticinterpretationcan be given 
by considering the input signal w to be white Gaussian 
noise with unit covariance and having as design objec- 
tive the minimization of the FWS value of the output, 
lim € [ z T ( t ) 2 ( t ) ] ,  where E denotes expectation. 
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were obtained. These bounds are related to the 
auxiliitry problem introduced in [7] and lead to 
tractable synthesis problems. However, they are 
obtained assuming non-causal, non-linear time 
varying model uncertainty. Thus, they are po- 
tentially conservative for the case of causal, LTI 
perturbations. 

Recently [6] an upper bound on the worst case 
7-12 norm under passive uncertainty has been 
proposed. This upper bound is obtained us- 
ing an impulse response based interpretation of 
the norm and dynamic (non-causal) stabil- 
ity multipliers. This approach is appealing since 
it takes into account, to some extent, causality. 
However, in order to obtain tractable problems, 
these multipliers must be restricted to the span 
of some basis, selected a-priori. Moreover, the 
complexity of this basis is limited by the fact 
that the computational complexity of the re- 
sulting LMI problem grows roughly as the 10-th 
power of the state dimension [14]. 

Alternatively, a new research line has emerged 
[lo] based upon (approximate) set member- 
ship modeling of white signals. As shown in 
[lo, 11, 12, 131, for a fized,  given plant this al- 
ternative formulation can capture the F t 2  norm 
with arbitrary precision. Motivated by these 
results it has been argued Ell, 12, 131 that 
this approach provides a useful tool for ana- 
lyzing robust 2 2  controllers, specially since in 
this context LMI based necessary and sufficient 
conditions for robust performance are available. 
Moreover, these conditions are no more complex 
than comparable 7-1, conditions for the same 
problem. Unfortunately, as we show here with 
an example, these conditions can be conserva- 
tive by at least a factor of f i , where m denotes 
the dimension of the exogenous input, even for 
very simple plants. Thus, at the present time 
the problem of robust "2 analysis for general 
MIMO system still remains open. 

2 Preliminaries 

2.1 Notation and Definitions 
C, denotes the Lebesgue space of complex 
valued matrix functions which are essentially 
bounded on the unit circle, equipped with the 
norm IJG(z)lJ,=esssupl,l,l F(G(z)), where 5 
denotes the largest singular value. By 7-1, 
we denote the subspace of functions in C, 
with a bounded analytic continuation outside 
the unit disk. The norm on Ft, is defined 

by ((G(z)[l,+esssupl,(>la(G(z)). BY 3 t 2  we 
denote the space of complex valued matrix 
functions G(z) with analytic continuation out- 
side the unit disk and square integrable there, 
equipped with the usual 7-12 norm: 

where 1 1 . 1 1 ~  denotes the Frobenious norm. 

Given two matrices M and A of compatible di- 
mensions we denote by A * M the upper LFT 
Fu( M, A), i.e: 

Q * M  = M22 -+ M21A (I - MiiA)-'M12 

Let C ( P )  denote the set of linear bounded o p  
erators in t2.  In the sequel we will consider the 
following set of structured bounded operators in 
C ( P )  : 

BA = {A E C(12):  A = diag[611r,, . . . , 
W T L ,  Q L + l , *  * - 1  &+RI: IIAlllLP 5 1) 

The subsets of BA formed by Linear Time In- 
variant and (arbitrarily) Slowly Linear Time 
Varying operators will be denoted by BALT1 
and BAsLTv respectively. Finally, we will also 
make use of the following set of scaling matrices 
which commute with the elements in BA: 

Definition 1 ((Robust 7-12 performance)) 
The uncertain system (M,A)  with input U in 
l? has robust 77!2 performance against LTI p e r -  
turbations if it is robustly stable and 

SUP IlA*Mllz L 1 (1) 
A E BALT~ 

Definition 2 ( [ 8 ] )  A real function f : [a, b] -+ 

R is said to  be of bounded variation if there ez- 
ists 4 constant K such that for any partition of 
[a, bl 

n 

i= 1 

The total variation of f ,  denoted as TV(  f) is 
defined as 
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The approach proposed in [lo] is based upon ap- 
proximating white noise by a subset of 4' com- 
posed by "approximately" white signals, defined 
as follows: 

Definition 3 ([lo]) Given q > 0 ,  the set of 
"white up to accuracy q" signals i s  given by:  

where the 11.114) norm denotes the mazimum 
across the coordinates of the supremum norm. 

Thus this set includes all signals in tz such that 
their cumulative spectrum only deviates a small 
amount from the spectrum of a "true" white sig- 
nal. Given an tz stable system (not necessarily 
LTI) one can look then at the worst case value 
of the output (in the 1' sense) in response to 
signals in WF and use this to define an induced 
norm as follows: 

Definition 4 ([lo]) Given an t' stable opera- 
tor H ,  its WF norm is defined w: 

Since the set WF is formed by signal that 
are close to being white, one can expect that 
JIETJlw- is close to llHll2 in some sense. The 
followi?ng theorem shows that this is indeed the 
case as long as H is a fixed, given system. 

Theorem 1 ([IO]) For an tz stable LTI sys- 
tem H the following inequality holds: 

IlRll; I llm& 5 11"i + OTV(IHI2) 

Corollary 1 For a given, fixed system H ,  
1+0+ 

I l " W ~  - ll"2 

2.2 Robust ~ ~ ~ . ~ ~ w F  Performance 
Consider now the problem of assessing the worst 
case performance (in the WT sense) of the in- 
terconnection of a nominal LTI system M and 
bounded structured uncertainty. 

The uncertain system ( M ,  A) with input U in ly 
has robust 1 1 . 1 1 ~ ~  performance if it is robustly 
stable, and there ezisk > 0 such that 

SUP / / A  *M(lw,- I 1 (4) 
A E BASLTV 

The following result shows that this definition 
leads to a tractable necessary and sufficient con- 
dition that can be checked numerically to any 
desired degree of accuracy. 

Condition 1 ([lo]) The interconnection A * 
M achieves Tobust WF performance against 
A E BAsLTv (not necessarily causal) if and 
only if there exists X ( w )  E X, and a matriz 
function Y ( w )  = Y * ( w )  E Cmxm, such that 

Clearly, from Corollary 1 , having robust 11. IIw- 
performance in the sense of Definition 5 is a SUI- 
ficient condition for achieving robust 7 - f ~  pe:- 
formance in the usual sense. Moreover, moti- 
vated by Theorem 1 one may think that, a8 
argued in [lo], this is also necessary. How- 
ever, as we show in the sequel, in the case of 
MIMO systems this condition is only sufficient 
and potentially conservative by at  least a fac- 
tor of 6, where m is the dimension of the 
exogenous t2 disturbance. Thus, it follows that 
robust 3 t 2  performance (in the usual sense) and 
robust Wqm performance are different problems, 
and solving the latter does not necessarily solves 
the former. 

3 A Simple Counterexample 

Consider the following plant: 

: '1 
( I ,  
0 0  

(7) 

Definition 5 (Robust Il.IJwF performance) 
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Clearly for this plant we have that 

AE BALTI 
SUP IlA * Mila = 1 (8) 

Moreover, expanding the set of A's to include 
non-causal perturbation does not increase this 
worst-case norm. On the other hand, con- 
sider now the following perturbation An = 
[AT A;]: 

1 
0 otherme. 

1 
0 otherwise. 

if w E [E, w), k even, 

i f w  E [g,w)l k odd, 

A r ( j w )  = 

A ; ( j w )  = 

(9) 

By construction An is such that llAnlloo = 1 for 
all n. 

Finally, consider the following input: 

.f" = [E] 

By construction f" is an ea signal with 1 1 f 1 1 $  = 
2. Moreover, as we show next, given any r ]  > 0, 
f" is in the set W," of signals "white up to 7" 
for an appropriate choice of n. To this effect 
consider the following quantity: 

it can be easily shown that 

[%, v), k even 

It follows that f" E W,' for all n > &. Finally, 
the output zn corresponding to the uncertainty 

An and signal f" satisfies: 

lltnllaa = & J,'" [ ( A m a  + @;ma] & = 2 

(14) 
Hence in this case we have that, for any '1 > 0: 
1 = S U P A ~ ~ A L T I  J ( A * M ( ( 1 <  f i  

i SUPAEBALTI { s ~ ~ f q w ;  I I ( A * W I I ~ }  
- - S U P A ~ ~ A L T ~  IIA * MIlw: 

(15) 
This last equation shows that in the case of 
MIS0 systems having rn inputs the l l . ~ ~ ~ T  norm 
may be conservative by at  least a factor of f i  
and thus Definition 5 does not coincide in gen- 
eral with the standard definition of Robust 7 i a  
performance. 

Note that the perturbation An is not square. 
An example with square perturbations and hav- 
ing exactly the same gap can be obtained by 
simply setting: 

11 0 0 01 

Clearly A, * M, = [AI  A,] and the example 
reduces to the previous one. 

Further insight into the conservatism of the 
Il.llwT can be gained by using condition 1. Since 
in order to apply this condition M should be 
square, we add a row of zeros to M,, yielding: 

l o  0 0 o l  
Obviously, this does not change any of the fea- 
tures discussed previously. Since A is a full 
block, 

L 

and Equation ( 5 )  becomes 

1 0 0 0  0 0  

[ O  O O Z O  'I-[; 0 0 YI ya '1 < O .  (18) 

O O O G  0 0 Y3 314 

Equation (18) implies the following inequalities 

1 - z  < 0 

z - y 1  < 0 

z - y 4  < 0, 
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from which it follows that y1 > 1, y4 > 1 and 
thus trace(Y) > 2. Since Y does not depend on 
w , 

4 Where the problem lies 

From Theorem 1, one can conclude: 

dw 
trace(Y(w))- 2lr > 2 

and the inequality can be achieved up to arbi- 
trarily small E. In this case the worst case WT 
norm with respect to slowly time varying A's 
coincides with the worst case WT norm with re- 
spect to LTI A's and is f i  times bigger than the 
worst case 2-norm with respect to LTI A's. The 
conservativeness of condition 1 does not come 
from using slowly time varying perturbations, 
but from the definition of the worst case WT 
norm itself. 

A few comments are in order before closing this 
section. Note that the worst-case model un- 
certainty An as defined in (9) is non-causal. 
However, it is easily seen that the only prop- 
erty that we exploited in the example is that 
IAq(jw)l = 1. Therefore causal perturbations 
A: can be constructed by Urounding" the cor- 
ners of lAnl (approximating it for instance us- 
ing a Butterworth filter) so that the resulting 
A: has: 

a* 1 I I A X W ) I  - IAcE(jw)ll dw I E ,  i = 1,2 

(19) 
leading to causal perturbations. A similar tech- 
nique yields a causal la worst case signal. Thus, 
contrary to what it was conjectured in 1141 the 
gap (15) does not change when the model un- 
certainty is restricted to causal LTI operators. 
Note also that the worst case 2-norm of [AlA,] 
for causal and noncausal LTI operators is: 

2* 1 sup trace ([Al(e(jw)A2(dw)]* 
AE BALTI 

27 

= Jld sup trace ([Al(e(jw)A2(dw)] 
AEBALTI 

= 1  

and therefore 

For Definition 5 to be equivalent to the stan- 
dard definition of Robust 'HZ performance, the 
following would have to hold: 

SUPAcBALTI ( I A  * M113 <_ 

5 S U P ~ c ~ A t T !  ( / I A  * 
l i q - + o  S ~ P ~ E B A L T I  Ila *Milky (22) 

however, since in general 

lirn sup qTV(lA*MI2) # 0 (23) 
? + O ~ ~ B A L T I  

Equation (22) does not necessarily follow from 
Equation (21). Indeed, as the example pre- 
sented earlier in this paper shows, Equation (22) 
does not hold in general. By switching the lim 
and sup operators in Definition 5, the worst case 
Wflm penalises not only the 2-norm of the oper- 
ator A * W, but also its total variation. This 
fact causes the worst case WF to be achieved 
by A's that are not a good abstraction of physi- 
cal uncertainty, and thus artificially inflates the 
worst case norm with respect to the worst case 
'?i2 norm. 

5 Conclusions 

While the Il.llw," norm provides a useful tool 
for analyzing the %!a norm of a €ked given sys- 
tem, the simple counterexample presented here 
indicates that these results cannot be used in 
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general to assess the worst case 3 t 2  norm of 
uncertain systems, since there exists at least a 
f i  gap between the worst case 7 i a  norm and 
the worst case Il.llw-. Thus, necessary and 
sufficient conditions ?or robust performance in 
the wy sense are only sufficient for robust 3 t 2  

performance. Hence, a t  the present time the 
problem of obtaining tight bounds on the worst 
case 31:~ performance in the presence of LTI (or 
slowly LTV) uncertainty is still open. 
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