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Abstract

Recent hardware developments have rendered con-
trolled active vision a viable option for a broad
range of problems, spanning applications as diverse
as Intelligent Vehicle Highway Systems, robotic-
assisted surgery, 3D reconstruction, inspection, vi-
sion assisted grasping, MEMS microassembly and
automated spacecraft docking. However, realizing
this potential requires having a framework for syn-
thesizing robust active vision systems, capable of
moving beyond carefully controlled environments.
In addition, in order to fully exploit the capabilities
of newly available hardware, the control and com-
puter vision aspects of the problem must be ad-
dressed jointly. In this paper we illustrate with a
simple example the control-related issues involved
in active vision and we show how some very recently
developed control and computer vision techniques
can be brought to bear on the problem. These re-
sults also point out new research directions and pos-
sible extensions of currently available techniques.

1 Introduction

Visual servoing systems, i.e. systems incorpo-
rating vision as an integral part of the loop ap-
peared as far back as late 1970’s [12]. Even
though these earlier systems were relatively slow
and had limited scope [6], it was already recog-
nized at this time that the relatively large la-
tency time involved posed a threat to closed-
loop stability. Since then, recent advances in
hardware have opened the possibility of having
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systems with performance comparable to that
of the human occulomotor system [7]. However,
realizing this potential requires control laws ca-
pable of fully exploiting these new hardware ca-
pabilities. Moreover, earlier attempts to im-
prove performance using simple controllers such
as PID resulted in closed loop systems with
poor stability properties and performance far
worse than expected from the sampling rates
employed [5]. This prompted a significant in-
crease in the amount of research being carried
out, both from computer vision (attempting to
reduce the delay) and from control standpoints.
An excellent survey of the state-of-the art as of
1996 and a comprehensive literature review up
to then can be found in {14].

Earlier systems dealt with the stability issue
by detuning the controller, at the expense of
performance, until stability was experimentally
accomplished. Latter approaches combine PID
controllers with some prediction (either using
Smith predictors or Kalman filters) to explicitly
address the delay [6, 3]. However, these predic-
tors can tolerate only small amounts of model
uncertainty [18]. Thus, this technique works
well only if the optical parameters of the camera
and the depth can be precisely estimated. More-
over, the combination PID controller/predictor
must be tuned using a trial and error process
without guarantee of optimality. As noted in
[5], due to the existence of modelling errors this
entailed considerable experimentation to obtain
a good compromise between stability and per-
formance. Performance can be improved by
using a two—degrees of freedom (2-DOF) con-
troller [5], where the feedback controller (in this
case a PI) stabilizes the loop and the feedfor-
ward controller (a predictor) improves tracking.
However, while the use of a 2-DOF structure



yields better set—point tracking [17], it can im-
prove neither robustness (related only to the
feedback controller) nor disturbance rejection
(in this case unanticipated target maneuvers).

Alternatively, the use of optimal control based
LQG controllers has been proposed [21, 11, 10].
As indicated in [10] these controllers have the
potential to minimize the effect of noise (pro-
vided that the features to be tracked are prop-
erly selected). However, optimizing perfor-
mance requires tuning the weighting matrices
by trial and error until satisfactory performance
is achieved. Moreover, there are no a—priori
guarantees of the robustness of the resulting sys-
tem to time—delays or modelling errors. This
has been experimentally corroborated by us-
ing a slightly defocused camera, where the mis-
match between the actual and nominal focal dis-
tance causes the controller to fail [21].

This difficulty can be overcome to a certain ex-
tent by using a self-tuning controller that at-
tempts to estimate the parameters in real-time,
modifying the gains accordingly. Experimental
results [20] show that this approach can toler-
ate errors ranging from 5% to 25%. However,
these bounds are obtained a—posteriori, experi-
mentally, with no attempt to design a controller
optimizing the maximum tolerable error before
instability occurs.

The issue of rendering the closed~loop system
insensitive to calibration errors has been re-
cently addressed in [8]. The main idea is to
use time-varying proportional feedback (either
based on the image Jacobian [8] or epipolar ge-
ometry [15]) to render the system asymptot-
ically stable and robust to calibration errors,
while exploiting the special form of the dy-
namics (containing an integrator) to guarantee
(asymptotically) perfect tracking. When com-
bined with a set of tools for fast visual track-
ing (XVision, [9]) this approach has been suc-
cessfully used for robot motion control [8] and
domain-independent navigation [15]. However,
while the control algorithm is simple and eas-
ily implementable, the gain matrices must be
empirically tuned to achieve good performance.
An additional difficulty is that implementing
the control action requires computing the im-
age Jacobian, which is a nonlinear function of
the distance from the camera to the feature. Fi-
nally, although this line of research addresses
both the computer vision and control aspects
of the controlled active vision problem, it uses
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a “separation principle” type approach where
these aspects are treated, to a very iarge extent,
independently.

It is worth stressing that the fact that dynamic
control effects coupled with the presence of un-
certainty are the factors limiting performance in
visual closed-loop systems has long been recog-
nized. Indeed, the motivation behind the dif-
ferent approaches mentioned above is to obtain
a compromise between these factors leading to
acceptable performance. However, only very re-
cently there have been attempts to explicitly
address some of these tradeoffs in a systematic
way, by recasting the problem in an optimiza-
tion form. For instance [22] proposed to op-
timize the size of the fovea in order to maxi-
mize the range of target velocities that can be
successfully tracked by recasting the problem
into an #! optimization form. However, neither
model uncertainty nor measurement errors were
taken into account.

In this paper we illustrate with a simple exam-
ple the control-related issues involved in active
vision and we show how some very recently de-
veloped control and computer vision techniques
can be brought to bear on the problem. These
results also point out new research directions
and possible extensions of currently available
techniques.

2 Illustrative Example

The control-related issues involved in active vi-
sion can be illustrated by considering a simple
model consisting of a moving target with a sin-
gle feature! located at a point P, and a moving
pinhole camera with a frame {R,} attached to
it {20]. Let (X,,Y,, Z,) and (z, y) denote the co-
ordinates of P with respect to {R,} and of its
projection P; on the image plane, respectively.
Assuming a focal distance f for the lens and
taking an ideal perspective projection yields:

=z (%]

Z,
Assuming that the camera moves with trans-
lational velocity T = (T;,Ty,T,) and angu-

z
y

X,

Y 1)

1 This simple model displays all the pathologies of the
problem, without the added complexity resulting from
additional features. Additional features can be accom-
modated by simply stacking the image Jacobians, al-
though care must be exercised to guarantee controllabil-
ity of the resulting augmented system [10].



lar velocity 8 = (6:,6,,6,), the velocity of the
point P with respect to {R,} is given by 4% =
—T — 6 x P. Finally, taking time derivatives of
(1) yields the following optical flow equations:

$ = P-4 e, - (F+5)8, + 0,
. 2
= y%‘%*‘(f‘?%)gz _cf_yey - z6,
(2)
Using (2) and assuming a sampling time 7, we
obtain a state-space model relating the pre-
dicted next position of the feature in the image
to its present position, 8 and T

2f(k+1) = Aszs(k) + Byu(k) + Eyu(k) (3)

where the state 2y = (z,y)7 € R? represents
the position of the feature, v = (vz,v,)T €
R? represents an exogenous disturbance, u =
(Tz, Ty, T}, 62,6,,6.)T € RS represents the con-
trol input, and where the matrices are given by:

Af = I?x?y Ef = %IZXZH
7= 0

By = 1| _ .
o # %

gy  _f42?

7 7 y
2497 =z _,
f f

Finally, assuming that the measurement avail-
able to the controller is the position of the fea-
ture corrupted by measurements errors (for in-
stance due to noise and blurring) the output
equation is given by:

= 16)+(z) o

where §; = (& &, )T represents the measured
position of the feature in the image plane and
w = (w; wy)T represents noise. Using (3)-
(5), the controlled active vision problem can be
recast into the following optimization problem:

Problem 1 Find a control law u(k) = f(&;, k)
such that the resulting closed loop system is
asymptotically stable and |le(t)|| = ||z — zref]|
s minimized; where ||.|| represents ¢ norm suit-
able for the intended application and where z.,.;
represents the desired position for the target fea-
ture.

In the sequel we consider the problem of smooth
pursuit, where v(k) models an unknown (but
bounded) target velocity and the goal is to keep
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the image of the target as close as possible to the
origin of coordinates in the image plane. Thus
here z,.; = 0. In this context, the minimiza-
tion of [|e(t)|| arises naturally both from cost
and stability considerations, since it is related
to the size of the region where the target is ex-
pected to be at any given time. Clearly, if a mul-
tiresolution strategy is to be implemented, this
size determines the size of the required fovea
[22]. In addition, the larger this region is, the
more computationally expensive it becomes to
find the target in each frame, resulting in larger
time-delays, which in turn can compromise sta-
bility [5].

In order to further simplify the example, assume
that the camera is constrained only to pan and
tilt motions and that the depth Z, remains con-
stant. Under these assumptions u and By in (3)
further reduce to:

v = (6:,6,)7 € R? (6)
= _I’_}t=_’
R =

Finally, if the change in the coordinates of the
target feature is small, equation (3) can be lin-
earized around the present position, yielding an
(approximately) equivalent Linear Time Invari-
ant problem, that can be solved using a number
of techniques either classical (PID [21, 5], pole-
placement [21, 5]) or modern (Linear Quadratic
Gaussian Optimal[11, 21, 20]).

Figure la shows the response of the nonlinear
model to a step velocity profile for the target
achieved by an LQG controller. Here we have
assumed that f = 75mm, Z, = 10m, a sam-
pling rate of 10Hz and a measurement noise
level of 5%, values consistent with a setup us-
ing a Bisight binocular head and a dedicated
pipelined processor for the image processing. As
shown in the figure, the closed-loop system ap-
pears to have good performance, with a settling
time of 0.5 seconds and no overshoot. Indeed, it
can be shown that in the absence of noise this
controller achieves perfect tracking. However,
experimental results [21] show that actual per-
formance can be far worse than expected based
on simulation results, even in cases where the
actual parameters of the system closely match
the values used for synthesizing the controller.
To a large extent this is due to the fact that the
simple model (3) does not take into account the
computational time required by the image pro-
cessing algorithms to locate the object in each
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Figure 1: Tracking error for an LQG controller:
(a) no delay (b) 0.03 sec. delay

frame. This computational time can be mod-
elled as time delay Ty (proportional to the im-
age size) appearing at the controller input. In
active vision applications the value of this de-
lay can be a substantial fraction of the sampling
time, leading to degraded performance or even
instability. This effect is illustrated in Figure 1b
showing the effect of a 0.03 sec delay (consistent
with image processing done using a pipelined
MV250 board). As shown there this delay re-
sults in substantial oscillations and an 30**—fold
increase in the settling time. Moreover, increas-
ing the delay to 0.05 seconds renders the system
unstable. In principle, these delays can be han-
dled by using a Smith Predictor [6, 3]. However,
this technique cannot handle modelling errors
[21], arising in this case from variations in the
optical parameters, changes in the depth Z,, lin-
earization and unmodelled head dynamics.

This example highlights several features that
make the problem challenging from a con-
trol stand-point, even when assuming that
computer-vision related issues have already
been addressed. In particular the problem in-
cludes:
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. Presence of uncertain, potentially sub-
stantial time-delays arising from the
amount of time required by the image pro-
cessing to locate features in each frame. This
delay depends on the size of the image and the
initial “guess” for the location of the feature.
Uncertain and time-varying parame-
ters. Uncertain parameters include for in-
stance the optical parameters of the camera
(unless it is carefully calibrated). In addition,
the depth Z, (entering the dynamics in a non-
linear way) changes as the object moves.

. Conflicting performance specifications.
For instance the control action should be
small in order to avoid actuator saturation
limits. At the same time, the tracking error
should stay small, since it is directly related
to the size of the region where the target is
expected to be at any time. The larger this
region, the more time—-consuming the image
processing is resulting in larger time—-delays
which in turn can compromise stability. Ad-
ditional specifications include good rejection
of noise having different characterizations and
adequate settling time.

Nonlinearities, since the dynamic equations
(3)- (4) are nonlinear in the states z,y and
the parameter Z,

4.

2.1 A possible solution using multiobjec-
tive robust control tools

The difficulties mentioned above can be over-
come by modelling (albeit in a conservative
fashion) the time delay as multiplicative dy-
namic uncertainty. Robust control techniques
such as Ho can then be brought to bear on
the problem, yielding a controller guaranteed to
stabilize the closed-loop for all possible values
of the time delay Thmin < Ty < Trnaz. More-
over, by expanding the uncertainty description
to include variations in the optical parameters,
a range of values for Z,, and the modelling error
incurred by approximating the nonlinear model
(3) by its linearization, it is possible to obtain a
controller guaranteeing acceptable performance
for a broader range of operating conditions at
the price of using a higher order controller and
more involved synthesis process.

Figure 2 shows the responses achieved by a
controller designed using pu—synthesis [18] corre-
sponding to Ty = 0 (nominal) and 0.05 seconds.

By experimenting with this problem we have
found that there is a severe tradeoff between ro-
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Figure 2: Tracking error for the u—controller

bustness, time—delay tolerance, control action,
settling time and controller complexity. Finally,
an additional important tradeoff can be made
apparent by examining the origin reachable sets
(i.e. the region in the image that can be reached
by the target), assuming that the target speed
is unknown but bounded (for simplicity, and
without loss of generality we have taken this
bound here to be 1m/s). Clearly, the smaller
this region is, the less costly the image pro-
cessing. Figure 3 shows the reachable regions
corresponding to a controller synthesized using
p—synthesis, an LQG controller and a controller
specifically designed to minimize this region (us-
ing a *norm approach [4]). Once more, the
tradeoff between robustness, control action and
performance (measured now in terms of the size
of the reachable set) becomes apparent.

Fovaas comesponaing to diferent conroters

-02 ]
x1

Figure 3: Foveas for different controllers

In this simpler case u—synthesis yielded a con-
troller achieving adequate performance. How-
ever, the problem was shifted from design-
ing a controller to finding appropriate weighting
functions, a process that requires both consid-
erably design skills and multiple trial and er-
ror iterations. Alternatively, these conflicting
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performance specifications can be analytically
traded—off by using multiobjective robust con-
trol tools[23, 24, 25]. To this effect the (lin-
earized) plant is recast into the form shown in
Figure 4.
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Figure 4: Visual Servoing as a Multiobjective
Control Problem

In this context, the visual servoing problem can
be stated in the following form:

Problem 2 Find an internally stabilizing con-
troller u(z) = K(2)y(z) such that the following
performance specifications are satisfied:

1 || Tgpw (2)|}+ < 7e; where ||.||s indicates a
suitable norm such as [|.||1 or||.{2;

2. ”T(Jw! (2)nee < Vsi
3. |W(2)Ttw, (2)|| 1o < 1; where W(z) is a
suitable weighting function.

and solved using the techniques proposed in
[25]. Here, the first specification is related to
both the maximum admissible tracking error
and the size of the required fovea?, the second
is related to (bounded energy) noise rejection
and the third is related to robustness against
unmodelled dynamics and time—delays.

3 Improving Performance

As illustrated in the last section, robust con-
trol tools recently developed have the poten-
tial to successfully address the challenging fea-
tures of visual servoing problems, by embed-
ding them into an uncertainty structure. How-
ever, robustness against this “uncertainty” is
achieved at the cost of perhaps substantial per-
formance degradation, since the resulting ro-
bust controller tries to guarantee performance

2the choice of norms depends on whether it is desired
to minimize the RMS or peak value of the error.



against situations that never arise. For instance,
the robust controller used in the example not
only guarantees stability against time~delays of
up to 0.05 seconds but against any model un-
certainty A(s) such that ||[W(s)A(s)]le < 1,
where W(s) WT%I A similar situation
arises when linearization errors are handled in
this way. Finally, multiobjective robust con-
trollers may have high order(25], leading to im-
plementation difficulties. In this section, we
briefly discuss some of the potential solutions
to these drawbacks.

1. Controller complexity: can be addressed
by using model reduction, but this step is far
from trivial due to the multiple performance
specifications involved. An alternative is to
use Linear Matrix Inequalities to optimize up-
per bounds of the performance[4]. This leads
to low complexity controllers at the prize of
some performance degradation.

. Nonconservative handling of time vary-
ing parameters: Equations (3)-(4) depend
nonlinearly in the depth Z,. Since Z;! mul-
tiplies the control action, changes in Z, ef-
fectively act as a varying gain in the loop
and, if large enough, can render the system
unstable. If the changes in Z, are relatively
small, they can be accommodated by mod-
elling the depth as a nominal value Z,, sub-
ject to uncertainty. One can design a linear
robust controller capable of accommodating
these changes, at the expense of performance.
Experimenting with the simple model used
in section 2 we found out that this approach
works well for small changes in Z,, but en-
tails substantial performance loss if the vari-
ations in the depth are not small. This is-
sue can be addressed by measuring Z, in real
time, recasting the problem into a Linear Pa-
rameter Varying (LPV) form and exploiting
very recently developed tools dealing with ro-
bust performance [27] and time delays [26]
in this context. However, an additional is-
sue that needs to be resolved is the fact that
the usual LPV formalism assumes that the
value of the time-varying parameter is in-
stantly available to the controller, while in vi-
sual servoing problems there is a delay until
Z, can be computed from stereo information.

. Nonconservative handling of nonlinear-
ities: The nonlinearities in equations (3) can
be handled by using the nonlinear controllers
originally proposed for linear systems in [2],
latter expanded to nonlinear systems in [16].
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The basic idea of the method exploits a ge-
ometrical interpretation of the peak-to—peak
(£*) norm to recast the synthesis problem as
the problem of minimizing the size of the
largest set contained in a given region that
can be rendered invariant by an appropriate
control action (in the context of visual ser-
voing this amounts to optimizing the size of
the fovea). However, the method needs to
be expanded to handle multiple performance
specifications and time delays.

. Reducing the Time Delay The time re-
quired to estimate the target position can
be substantially reduced by matching the ap-
pearance of local features[13]. The appear-
ance of a feature is given by the intensity
values in a window around the feature, and
can be modeled offline using a set of train-
ing images, compactly stored as manifolds in
relatively low dimensional spaces obtained by
a Karhunen-Loeve (K-L) reduction. This ap-
proach has the advantage that it processes
only a limited area of the image (the reach-
able set of the features being tracked, which
is minimized by the controller) and thus is
computational efficient as well as robust to
occlusion. Additionally, data noise models
can be propagated through this K-L reduc-
tion to provide the controller tight sensor er-
ror bounds.

4 Conclusions

Recent hardware developments have opened up
the possibility of applying active vision tech-
niques to a broad range of real-world problems,
such as Intelligent Vehicle Highway Systems,
robotic-assisted surgery, 3D reconstruction, in-
spection, vision assisted grasping, MEMS mi-
croassembly and automated spacecraft docking.
A salient feature common to all these applica-
tions is that using a feedback structure incorpo-
rating the visual information in the loop (as op-
posed to open loop control) offers the possibility
of achieving acceptable performance even in the
presence of process modelling errors, noise and
measurement noise, stemming for instance from
poorly calibrated cameras, blurring or only par-
tially determined feature correspondences be-
tween images.

However, as noted in a recent workshop (1] in-
volving both control and computer vision re-
searchers, while there seems to be a consensus in



these communities about the implicit power of
visual control, actually realizing this potential
requires controllers capable of accommodating,
in addition to uncertainty, the substantial time
delays and nonlinearities typical of visual servo-
ing problems.

In this paper we use a very simple example to
illustrate the pathologies present in these prob-
lems and we indicate how recently developed
robust control and computer vision techniques
can be brought to bear on the problem. The
paper concludes by analyzing different ways to
reduce conservatism and by pointing out direc-
tions to extend currently available formalisms
(such as multiobjective control and LPV sys-
tems) to make them better suited for applica-
tions involving computer vision in the feedback
loop.
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