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Abstract 

This paper addresses the problem of designing 
stabilizing controllers that minimize the 7 - l ~  
norm of a certain closed-loop transfer function 
while maintaining the C1 norm of a different 
transfer function below a prespecified level. 
This problem arises in the context of reject- 
ing both stochastic as well as bounded persis- 
tent disturbances. Alternatively, in a robust 
control framework it can be thought as the 
problem of designing a controller that achieves 
good nominal 7-12 performance, while a t  the 
same time, guaranteeing stability against un- 
modeled dynamics with bounded induced C, 
norm. The main result of this paper shows 
that, for the state feedback case, a subopti- 
mal static feedback controller can be synthe- 
sized by a two stage process involving a finite- 
dimensional convex optimization problem and 
a line-search. 

1. introduction 

During the last decade a powerful robust con- 
trol framework has been developed addressing 
the issues of stability and performance in the 
presence of norm-bound model uncertainty. 
Robust stability and performance are achieved 
by minimizing a suitably weighted norm (ei- 

of a closed-loop transfer function. This frame- 
work has gained wide acceptance among con- 
trol engineers, since it embodies many desir- 
able design objectives. However, it is limited 

ther Il.IIM [e, 7, 8 ,  151 or 11.111 [2 ,3,4,  5, 12, 131) 
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by the fact that in this context, performance 
must be measured in the same norm used to 
assess stability. Clearly, a single norm is usu- 
ally not enough to capture different, and of- 
ten conflicting, design specifications, such as 
simultaneous rejection of disturbances having 
different characteristics (white noise, bounded 
energy, persistent); good tracking of classes of 
inputs; satisfaction of bounds on the peak val- 
ues of some outputs; closed-loop bandwidth; 
etc. 

This paper addresses the problem of designing 
stabilizing controllers that minimize the 7 - l ~  
norm of a certain closed-loop transfer function 
while maintaining the Cl norm of a different 
transfer function below a prespecified level. 
This problem arises in the context of reject- 
ing both stochastic as well as bounded persis- 
tent disturbances. Alternatively, in a robust 
control framework it can be thought as the 
problem of designing a controller that achieves 
good nominal 7-l2 performance, while at the 
same time, guaranteeing stability against un- 
modeled dynamics with bounded induced C, 
norm. 

Both the discrete-time mixed 7-l2/l1 problem 
(and its dual, mixed Z1/7&) can be solved 
by using the Youla parametrization to cast 
the problem into a (infinite-dimensional) con- 
strained convex optimization form. It has 
been recently shown [14, 111 that for the 
case of a SISO plant having a single distur- 
bance input and a single performance output, 
the closed loop system has finite impulse re- 
sponse. This property can be used to reduce 
the synthesis problem to a finite-dimensional 
quadratic optimization. However, as in the 
case of pure l1 optimal control, the order of 



the controller is not bounded by the order of 
the plant, and could be arbitrarily high. While 
similar results are not yet available for the 
continuous-time counterpart of the problem, 
it is fair to assume (motivated by continuous- 
time L1 theory) that the problem is at least as 
hard as the discrete-time version, and that the 
optimal solution is likely to be non-rational, 
involving delay terms. 

Motivated by the complexity of these con- 
trollers, in this paper we propose an alter- 
native approach, based upon the use of u p  
per bounds of the 3C2 and L1 norms given 
in terms of Linear Matrix Inequalities, to ob- 
tain a modified problem such that its solution 
is both feasible and upper-bounds the orig- 
inal problem. The main result of this  pi^ 

per shows that for the state feedback case, 
the optimal cost over the set of all stabilizing 
controllers can be achieved with static state- 
feedback. Moreover, this controller can be 
found through a two-stage procedure entail- 
ing a finite-dimensional convex optimization 
and a one-dimensional line search. 

The paper is organized as follows: In sec- 
tion 2 we introduce the notation to be used 
and some preliminary results. In section 3 we 
show that, when suitably modified, the mixed 
7&/L1 problem can be reduced to a finite 
dimensional convex optimization and a one- 
dimensional line search. Finally, in section 4, 
we summarize our results and we indicate di- 
rections for future research. 

Due to  space limitations, all proofs have been 
omitted. They can be obtained by contacting 
the authors. 

2. Preliminaries 

2.1. Notation 
R+ denotes the set of nonnegative real num- 
bers. LC"O(R+) denotes the space of measur- 
able functions f ( t )  equipped with the norm: 
11 f 11, = ess sup lf(t)l. &(R+) denotes the 

space of Lebesgue integrable functions on R+ 

equipped with the norm 11f111 & If(t)Idt < 
00. Given a matrix Qk with elements Qij E &, 
representing a bounded linear operator de- 
fined by the usual convolution y = Q * U, its 

R i  

00 

0 

induced L, to Lm norm is defined as: 
n 

Given a function f(t)  E L?(R+), we 
define, following [9], the norm 11 f(t)llm,e 
suptlo {f(t) f (t)}"2, i.e. the supremum over 
time of the pointwise euclidian norm of the 
vector f ( t ) .  For an operator H : L Z  -+ Lz, 
we will denote the norm induced by I l . l l m t c  as 
llHlll,cr i.e. 

< o o  

will 

IIElll,e A SUP llE * vIlm,e 
II~II-,.< 1 

Note that for scalar signals these norms coin- 
cide with the usual I l . l l m  and 11.111 definitions, 
while in the general case we have: 

1 
-IIHlll I I P l l 1 , e  I fillHll1,e f i  

By 3C2 we denote the space of complex valued 
matrix functions G(s) analytic on the right 
half plane and square integrable on the jw -  
axis, with llG(s)llz defined in the usual way 
a: 

1 r+iw 
i i ~ i i f  .L J trace (G(jw)*G(jw)) ds 

2a -jm 
m 

= J, trace (G(t)'G(t)dt) 

where ' denotes transpose 

Throughout the paper we will use packed no- 
tation to represent state-space realizations, 
i.e. G(s)  will be written as 

G(s) = C(sI - A)-lB + D & (*) 
Finally, given two transfer matrices T = 

(:: 2;) and Q with appropriate dimen- 

sions, the lower linear fractional transforma- 
tion is defined as: 

2.2. Characterization of the Mixed 
3Ca/L1 Performance Measure 
Next, we recall a result on the computation 
of an upper bound of the the norm (and 
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thus also on the L1 norm) of a stable, finite- 
dimensional, linear time-invariant (FDLTI) 
controllable system: 

Lemma 1 ([Q, 11) Consider the stricfly 
proper, stable FDLTI system: 

G = ( c  A)B [ 0 )  

subject to 

AQ + QA'+ a Q  + BB' 5 0 (3) 

Remark 1 It is shown in [g] that  computing 
IIGII. can be reduced t o  the problem of mini- 
mizing a convez func t ion  over an interval on 
the  real line. Moreover, the funct ion and its 
subgradient can be computed by solving L p  
punov equations. Thus, computing the II.II. is 
computationally simple. 

Figure 1: The Generalized Plant 

By using the results of this Lemma we can 
characterize the mixed L l l X 2  performance 
measure as follows. Consider the FDLTI sta- 
ble system S shown in Figure 1, where w rep- 
resents an exogenous disturbance and where 
z1 and 22 represent performance outputs. As- 
sume that S has the following state-space re- 
alization: 

Then it is well known that: 

I I Z a w  11; = trace ( c ~ X C ; )  (5) 
where X > 0 is the controllability Gramian of 
(A, B), i.e. it satisfies the following Lyapunov 
Equation: 

AX +XA' + BB' = 0 (6) 

Moreover, the following Lemma can be easily 
proved: 

Lemma 2 Le t  Q denote any positive semi- 
definite solution t o  the Linear Mat r i z  Inequal- 
i t y  (3). T h e n  the following two properties 
hold: 

1. O c X s Q  
2. ll~.,wllS I trace (CzQCi) 

Assume now that llTzl,wll. 5 1. From Lemma 
1 this is equivalent to the existence of a > 
0,Q > 0 such that IlC1QCillz 5 a, where 
Q satisfies (3). Motivated by Lemma 2 we 
will consider the X2-type performance mea- 
sure J(Tzaur) = trace (CzQC;). 

2.3. The Mixed X 2 / L ,  Control Problem 

L 

Y 

Figure 2: Setup for the Mixed ' F l z / t l  Controller 
Synthesis 

Consider now the system shown in Figure 2, 
where ic and y represent the control action and 
the outputs available to the controller respec- 
tively. Then, the mixed 3tz/L, problem can 
be stated as: 

Problem 1 (7&/C,) Given the system S 
with state-space realization: 

find a n  internally stabilizing controller K such 
that J(TZaw) = trace(CZQC4) is minimized 
subject t o  ~ ~ T z l w ~ ~ *  5 1. 

3. Main Result 

In this section we analyze the structure of the 
optimal solutions to Problem 1. The main re- 

1354 



sult of this section shows that in the state- 
feedback case, the optimal cost over the set of 
stabilizing controllers can be achieved using 
static state feedback. 

3.1. The State Feedback Case 

Theorem 1 Assume  that  S has the following 
realization: 

where C ~ D Z Z  = 0 and DizD22 = I .  T h e n  the 
f o 1 lo wing statement are e quiv a1 ent  : 

There ezists a f inite dimensional LTI 
controller such that  J(T,,,) 5 r2 and 
l l ~ z l w l l *  5 1 -  
There ezists a static control law U = K z  
such that  J ( Z a w )  5 7' and lll;lwll* 5 
1. 
There exists a scalar a! > 0 and matrices 
Q > 0 ,  symmetric ,  and W such that the 
following LMIs have a solution: 

Trace ( S)<y2 

A Q + Q A ' + B z W + W ' B ; + B i B :  + a Q l o  
Moreover, the static controller K = WQ-' 
satisfies (b). 

As in [9], this theorem can be used to reduce 
the controller synthesis problem to the prob- 
lem of minimizing a real-valued function of 
a real variable. This can be accomplished as 
follows. Define the function A: (0,m) --+ R+ 

(10) 

Then, the solution to problem 1 is given by 
p = minA(cr) with the corresponding con- 
troller given by K = WQ-l. 

as: 

A ( a )  & (min7: (9) is feasible} 

a 

Remark 2 For a given a!, computing A ( a )  
entails finding a solution t o  a n  LMI gener- 
alized eigenvalue problem. Thus,  synthesiz- 
i n g  the controller requires solving a finite- 
dimensional convex optimization problem, a 

task that  can be ejgiciently accomplished (see 
[l, 101 f o r  details), followed by a one- 
dimensional minimization. Moreover, con- 
sistent numerical ezperience suggests that  the 
funct ion A ( a )  is unimodal, although n o  fo rmal  
proof of this fact  exists at the present. 

4. A Simple Example 

Consider the system given by the following 
state-space realization: 

. 2 = ( ; ) ,  c l=(o 4 3  J, 
C 2 = ( 1  - l ) , D l z =  ( ! ) ,D22=1  

and assume that it is desired to minimize 
IITZawllz subject to llTZlwlll -5 10. 

Figure 3: Upper bound of the 'HZ norm vs. a 

Figure 3 shows the performance index J ( T Z a w )  
versus a! for 7 = 10. Note that this func- 
tion is quasi-convex, with a global minimum 
f l  = 3.1484 corresponding to a! !a 1.165. 
The corresponding state-feedback controller is 
given by: 

U = (-0.3445 -3.7922) x 

These results are summari~ed in Table 1. 

Note that the gaps between the true 'HZ norm 
and its upper bound 0 and the L1 and * 
norms are smaller than 7%. 
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Table 1: Comparison of results 

5. Conclusions 

Mixed X2/.C1 problems arise in the context of 
rejecting both stochastic as well as bounded 
persistent disturbances, or, in a robust control 
framework, in the context of nominal X2 per- 
formance, subject to robust stability against 
&-bound perturbations. 

It has been recently shown [14, 111 that in the 
SISO discrete time case these problems can be 
reduced to a finite-dimensional quadratic o p  
timization. However, as in the case of pure 
Z1 optimal control, the order of the controller 
is not bounded by the order of the plant, and 
could be arbitrarily high. While similar results 
are not yet available for the continuous-time 
counterpart of the problem, it is fair to as- 
sume (motivated by continuous-time L1 the- 
ory) that the problem is at least as hard as 
the discrete-time version, and that the opti- 
mal solution is likely to be non-rational, in- 
volving delay terms. 

Motivated by the complexity of these con- 
trollers, in this paper we propose an alterna 
tive approach, based upon the use of an upper 
bound of the mixed 312/L1 cost. The main 
result of the paper shows that for the state 
feedback case, the optimal solution over the 
set of all stabilizing controllers corresponds 
to static state-feedback. Moreover, this con- 
troller can be found through a two-stage pro- 
cedure that entails solving a generalized eigen- 
value problem and a onedimensional min- 
imization. While consistent numerical evi- 
dence suggests that the objective of this last 
minimization is unimodal, no formal proof 
is available at this moment. Research is 
presently being carried out towards establish- 
ing this fact and towards extending these re- 
sults to the output feedback case. 
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