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Abstract 

A successful controller design paradigm must take into account both 
model uncertainty and design specifications. In this paper we propme 
a design procedure, based upon the use of convex optim'bation, 
that takes explicitly into account both time and frequency domain 
specifications. The main result of the paper shows that these 
controllers can be obtained by solving a sequence of problems, each 
one consisting of a finitedimensional convex optimisation and a 
standard, unconstrained 3t, problem. Additionally, the paper nerves 
as a brief tutorial on the issues involved in addreesing design problems 
with multiple design specifications via convex optimization. 

I. Introduction 

The control of systems under input/output time- 
domain constraints is a long-standing problem in control 
theory (see for instance [l-61). However, most of the design 
techniques currently available assume that the dynamics 
of the system are completely known. Clearly, such an 
assumption is too restrictive, resulting in controllers with 
limited application. 

During the last decade a powerful robust control frame- 
work has been developed addressing the issues of sta- 
bility and performance in the presence of norm-bound 
model uncertainty. Robust stability and performance are 
achieved by minimizing a suitable norm (either or I l . l l m )  
of a closed-loop transfer function. However, despite its 
significance, this framework is limited by the fact that in 
this context, performance must be measured in the same 
norm used to assess stability. Clearly, a single norm is 
usually not enough to capture different (and often conflict- 
ing) design specifications, such as mixed time/frequency 
domain specifications. Thus, designers are forced to use 
weighting functions and similarity scaling, coupled with 
extensive trial and error, to translate the specifications into 
a form amenable to the theoretical framework. 

Recently, some progress has been made towards solv- 
ing problems involving mixed time/frequency domain con- 
straints for SISO discrete [7-91 and continuous [lo-111 
time systems. In this paper we extend these results to 
the MIMO case. The proposed design method is based 
upon solving an auxiliary discrete-time problem, obtained 
using the simple transformation z = 1 + T S ,  and then 
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transforming back the resulting controller to the s domain. 
Noteworthy, solving this auxiliary problem only entails 
solving a finite dimensional convex constrained optimiza- 
tion problem and an unconstrained ?i, problem. Thus, 
solving these problems is no more demanding computation- 
ally than solving a finite dimensional convex optimization 
problem and two Riccati equations. 

The paper is organized as follows: In section I1 we 
introduce the notation to be used, we give a precise state- 
ment of the problem and we present some preliminary re- 
sults. Section IV contains the proposed synthesis method. 
Here we first extend the results of [7] to discrete-time 
MIMO systems (by using an all-pass embedding argument) 
and then combine these results with the properties of the 
EAS to obtain a design procedure for MIMO continuoue 
time systems. In section V we use our theory to design con- 
trollers for a two mass system widely used as a benchmark 
for robust control. Finally, in section VI, we summarize 
our results and we indicate directions for future research. 
Due to space limitations all proofs have been ommitted. 
They can be obtained by contacting the authors. 

11. Problem Formulation 

2.1 Notation 

By ~,( ja)  we denote the Lebesgue space of complex val- 
ued transfer matrices which are essentially bounded on the 
imaginary axis, with norm ~ ~ ! ? ' ( s ) l ~ ~ ~ *  supF(T(jW)), where 
a denotes the maximumsingular value. "($2) (%,[j 'R);)  
denotes the set of stable (antistable) complex matri- 
ces G(s) E L m ( j a ) .  Similarly, L,(T) denotes the 
Lebesgue space of complex valued transfer matrices which 
are essentially bounded on the unit circle with norm 
IIT(z) l lw,~~up~(T(e~")) .  L?(R+) ( I ? )  denotes the space 
of measurable vector functions f ( t )  (bounded sequences) 
equipped with the norm: Ilfll,+, = m,axess.sup If(t)l 

h( t ) )  we will denote its z-transform (Laplace transform) 
by H ( z )  ( H ( s ) )  and, by a slight abuse of notation, we will 
denote as IIH(z)/li-As;pIhkl ( I IF(s) l l~-~eas.sup If(t)l). A 

Y 

w 

(llflll- = m,bxsup(fkl). Given a sequence h (a R+ function 

denotes the space whose elements have the form: R+ 

k 

h = h y t )  + h,b(t) 

where h L ( t )  E L1(R+) and b( t )  is the Dirac function, 
equipped with the norm Ilhll~Allh~II~, + IhOl. We denote 
by d,,, the space of vector functions having m components 
in A. 
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2.2 Sta tement  of t h e  Problem 

Consider the system S shown in figure 1 ,  where the 
signals wf E cR, (a bounded energy signal), w: E D~ 
and U E LCmp represent exogenous inputs and the control 
action respectively, Dt is a given set of test inputs; and 
where 5, E L",,,,, Ct E I?,,,, and y E Lmml represent 
the regulated outputs and the measurements respectively. 
Then, the mixed Lm/& control problem can be stated as: 
Given the nominal system ( S ) ,  f ind  an internally stabilizing 
controller K ( s )  such that worst case peak amplitude of the 
performance output II(:/lL- due to signals in the set Dt is 
minimized, subject to the constraint llTcfwf IIx, 5 7 .  

Figure 1. The Plant 

In the sequel we will consider the case in which the 
set of test signals z): is finite, i.e. D: = (wt,, w t r . .  .wt,}. 
This case corresponds to the common practice of specifying 
some of the performance requirements in terms of the 
response of the closed-loop system to a given set of test 
inputs. 

R e m a r k  1: In the sequel we will assume, for simplicity, 
that the test signals are stable, i.e. w:, E d,,,. However, 
this does not entail any loss of generality, since unstable 
signals can be accommodated by absorbing their unstable 
poles in the plant (see [7] for details). 

2.3 Problem Transformation 

Assume that the system S has the following state- 
space realization: 

where D13 has full column rank, D31 has full row rank, and 
where the pairs (A ,&)  and (C3 ,A)  are stabilizable and 
detectable respectively. It is well known (see for instance 
[15]) that the set of all internally stabilizing controllers can 
be parametrized in terms of a free parameter Q E xm as: 

K = Fi(J, Q )  ( 1 )  

By using this parametrization, the closed-loop transfer 
matrices TC,,, and T C , ~ ,  can be written as: 

(2) 
Tcpf(z) = Tii(s) + Tiz(s)Q(s)Tai(s) 
Tc,w,(s) = Xi(.) t V,a(s)Q(s)V,i(3) 

where Ti j ,K ,  are stable transfer matrices. 
problem can be now precisely stated as: 

Hence the 

Problem 1 (Mixed cm/n, control problem:) 
Find the optimal value of the performance measure: 

R e m a r k  3: It is well known (see for instance [15] ) ,  that 
it is possible to perform the parametrization in such a 
way that Ti, is inner and Tal is co-inner. If 2'12 (Tal) 
is not square, it is possible to choose TiaL (Tali) such 
that T11.P [TI ,  TZii-1) is a unitary 
matrix. Since the 11.11x, is invariant under multiplication 
by unitary matrices, it follows that ~ ~ T ~ , w , ~ ~ x ,  can be 
reduced to the form: 

T l l l ]  ( Tal[& [ T2; 

111. Preliminaries 

3.1 Definitions 

Def. 1: Consider the continuous time system (S). 
Its Euler Approximating System (EAS) is defined as the 
following discrete time system: 

1+7-A I 7-Bi 7 - 8 2  7-& [ $ 1 Dll 

D11 D 1 3 )  

Dai Dzz 0 1 3  
( E A S )  

D3i D3a 0 3 3  

where 7- > 0. In the sequel, given any transfer function 
T,,(3) we define as T $ A S ( z , ~ ) k T , j ( + ) .  
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3.2 Propert ies  of t h e  Euler Approximating System 4.1 A Subopt imal  Solution t o  Discrete T ime  MIMO 
4-Blocks I , / &  Control Problems 

In this section we recall some properties of the EAS. 
The main result of this section shows that the ?i, and 
the .P norm of the Euler Approximating system are up- 
per bounds of the corresponding continuous-time norms. 
Moreover, this upper bound is non-increasing with T and 
converges to the exact value as 7 + 0. 

Theorem 1: Given a strictly decreasing sequence ~j -+ 0, 
consider the system: 

(8) 
x = Ax + Bv 
4 = Cx + Dv 

and its corresponding EAS(7,): 

Then: 

and 

Theorem 2: Assume that inf ~~T(fw,(s)/~x- = 70 < 7. 
Consider a strictly decreasing sequence T" > 7, -+ 0, and 
the corresponding EAS(T~). Let 

uenx, 

Then the sequence vi is non-increasing and such that 
vj -i YO. 

IV. Problem Solution 

In this section we present a method for finding sub- 
optimal rational solutions to problem 1, based upon the 
use of an auxiliary discrete-time problem. Note that, 
from Theorem 2, it follows that the (tm/&) problem can 
be solved by solving a sequence of discrete-time ( P / ' H m )  
problems, each one having the form: 

vo = Q,j&T) IIVii + KaQKiIIt- (lm/Xm) 
IlTii +rtzQ%x IIw- ST 

The solution of this problem is discussed next. 

In this section we generalize the results of [7] to general 
MIMO systems. As in the SISO case, the main result 
shows that the mixed lw/?tm problem can be solved by 
solving a finite-dimensional convex optimization problem 
and an unconstrained ?t, problem. This result will be 
established by showing that: i) (lm/'Hm) can be solved 
by considering a sequence of modified problems; ii) a 
solution to each modified problem can be found by solving 
a truncated problem; and iii) this truncated problem can 
be decoupled into a finite-dimensional convex optimization 
and an unconstrained ?t, problem. 

Let 6 < 1, and define the space: 

?t,,ck {Q(z) E ?t,: Q(z) analytic inlzl 2 6) 

equipped with the norm [lQllX-,,k sup F(Q(z)). Then, 

given Kj(z), Tjj(z) E ' R ' H X , , , ,  consider the following modi- 
fied problem: 

1+1 

Problem 2: Find 

subject to: 

IIR+ [ Q(z) 0 0 0]  IIX-,, I7 

Lemma 1: Consider an increasing sequence 6i + 1. Then 
vi6 5 vi,, i 2 j and U;; + y o .  

Lemma 2: Let VC denote the coefficients of the impulse 
response of Tc,,, = Kl + KaQKi. Then, if Q E 'R'Hm.6 

satisfies the constraint llR(z)+ [ Q k )  81 [IX-,' 5 7, it also 

satisfies I I & ( I 1  5 M6k where M is a number independent of 
Q. 

Corollary 1: Let U*& inf ~ ~ K 1 + ~ a Q K i / ~ ~ -  and select 

N 2 ' o ~ " l ~ ; ~ M .  Then, Problem 2 is equivalent to the 
following semi-infinite convex optimization problem: 

Q E R X ,  

Q,E&fN,,,I 11x1 + viaQhiIIi- 

subject to: 

where t~, v and Q are defined as 

LQiv-1 

K1N-1 !I 1 
0 . . .  

Q. ... 8 1 
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and where QL,KJi denote the k'" element of the impulse 
response of Q ( z ) ,  K J ( z )  respectively. 

In the next section we will show that this problem can 
be further decoupled into a finite dimensional constrained 
optimization and an unconstrained %, problem. 

4.2 Handling the Xm Constraint 

In the previous section we showed that the discrete 
time constrained robust control problems can be solved 
by solving a sequence of truncated problems. In this 
section we show that each of these problems can be ezactly 
solved by solving a finite dimensional convex optimization 
problem and an unconstrained %, problem. To establish 
this result we recall first a result from [17] establishing 
a necessary and sufficient condition for the feasibility of 
the ?tm constraint when the first N parameters in the 
expansion Q ( z )  = Qo + Qlz-' + .. . + Qnelz-("-l) +.  . . are 
fixed. Define G~Tll,,Tl~Tlza = R- and assume that it has 
the following state-space realization: 

A I B. Bb 

G = (  2 I 2: k) 
Finally, consider the following Riccati equations: 

x = Ax2 + Y - ~ B . B : +  

Remark 4: This result can be easily extended to the case 

Q E R X , , ~ ,  IIR + [ 8 IIX,,~ i Y by using the change of 

variable z = 62 

Combining Corollary 1 and Theorem 3, recalling that 
a(Q(Q,)) = IIQn+ is a convex function of Qn,  yields the 
main result of this section: 

0 Theorem 4: A solution to the mixed control 
problem is given by Qo = Q; + z-"Q; where Q; = 

Q,z-', 4" = [ Q o , ,  . QN-11 solves the following finite 
N-1 

i = O  

dimensional convex optimization problem: 

and Q E Elp.", solves the approximation problem 

Q$(z)  = argmin l lTii(Z)+Ti,Q~Tai(~)+z-N~iaQ~(z)T,l(z)l l~, ,~ 

where N ( 6 )  is selected according to  Corollary 1 ,  g, and vi, 
are defined in (20), and Q is defined in Theorem 3. 

QnEX,,a 

(22) 

4.3 Proposed Design Method 

From the definition of the EAS it is easily seen that 
the closed-loop transfer function obtained by applying the 
rational controller K ( s )  to (S) is the same as the closed- 
loop transfer function obtained by applying the controller 
K ( 9 )  to the EAS, up to  the complex transformation 
z = T S  + 1. Therefore, if a rational compensator K ( z )  
yielding an lm/?t, cost vd is found for the EAS, then 
K ( T S  + 1) internally stabilizes (S) and yields an Lm/?tm 
cost v, 5 vd. It follows that a rational compensator can be 
synthesized using the EAS with a suitably small 7. These 
observations are formalized in the following lemma: 

( b f C :  + Y - ~ B ~ D ~ ~ )  (I - Y-'D,,Der' - ClXC;)-' (C.22 + T - ~ D , , B : )  

p = p p B ,  + CL...) (I - D:,Dec - B;pB1)-l ( B : + ~  + D:,ca) 

+ 292 + C$. 

where: 
(21) 

B e = [ &  B b ]  c.= [Z] 
De, = [ D.. Dab] D., = [ 211 

From [17], there exist a Q satisfying the st r ic t  ?t, con- 
straint if and only if there exist positive-definite solutions 
X and Y to  these Riccati equations such that p ( X Y )  < 7. 
For ease of notation, let x4X1l1,  yA?lfa. 

Theorem 3: Let Q n ( z )  = EIQ,z-l. Then there exists a 

Q:aj,(z) E 7-1, such that 
i =O 

0 Lemma 3: Consider the mixed IS-/%, problem. A 
suboptimal rational solution can be obtained by solving 
a discrete-time constrained control problem for the corre- 
sponding EAS, with 6 = 1 - T ~ .  Moreover, if K ( z )  denotes 
the controller for the EAS, the suboptimal continuous-time 
controller is given by K ( T S  + 1 ) .  

Finally, we show that by taking T --t 0, the proposed 
design method yields controllers with cost arbitrarily close 
to  the optimal Lm/7i, cost. 
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Theorem 5: Let 7m,,= > T~ -+ 0 be a strictly decreasing 
sequence. Denote by Ki the controller obtained using 
the design procedure of Lemma 4 with T = ~i and by 
TgSw, (s, K,)  the corresponding closed loop transfer function. 
Then the sequence v , % J l T ~ , ~ , ( s ,  Ki)llr- is non-increasing 
and such that lim vi = v o .  

I-., 

V. A Design Example 

Consider the system shown in Figure 2, consisting 
of two unity masses coupled by a spring with constant 
0.5 5 k 5 2 but otherwise unknown. A control force acta on 
body 1 and the position of body 2 is measured, resulting 
in a non-colocated sensor actuator problem. This syrtem 
has been used as a benchmark during the last few years 
at the American Control Conference 119-21) to highlight 
the issues and trade-offs involved in robust control design. 
Assume that it is desired to design an internally stabilizing 
controller subject to the following specifications: i) the 
closed-loop system must be stable for all possible values 
of the uncertain parameter k E [0.5,2]; ii) An impulse 
disturbance w = 6(t)  acting on m2 should be rejected, with 
a control action lu(t)ls 1; and iii) for the same disturbance 
the displacement y of mp should have a settling time of 
about 15 seconds. 

Iy- 
U 

Figure 2: The ACC Robust Control Benchmark Problem. 

In order to fit the problem into the 3t, framework, 
the uncertain spring constant k is modeled as k = k,, + A 
(with k. = 1.25 and llAll< 0.75) and, following a standard 
procedure [15], A is "pulled out" of the system. The 
problem can be stated now as the problem of minimising 
the peak control effort IIullc.. over the set of all internally 
stabilizing controllers, subject to the settling time and 
IIT(.llH, 5 5 constraints. 

Figure 3 (a) shows the control action following an im- 
pulse disturbance on mz, for an & controller, a controller 
designed using p-synthesis and a mixed Lc"/?t, controller, 
all of them satisfying the robustness and settling time 
specifications (the latter were enforced by exponentially 
weighting the output y ) .  Note that the plain n, controller 
requires a clearly unrealist ically large peak control action. 
The time-domain behavior of the closed-loop system can 
be improved by considering a weighted H, design that 
penalizes the control action. Figure 3 (b) shows the control 
action for a controller designed using p-synthesis [22], with 
the control action weighted with a high-pass filter (to avoid 
high frequency control activity). Although this controller 
has substantially better time-domain behavior than the 

plain 31, controller, the control action must be further re- 
duced in order to meet the design specifications. Moreover, 
the problem has been shifted now from designing a con- 
troller to finding appropriate weights. Although a proper 
weight selection will finally yield a controller satisfying the 
specifications (see [23]), this process requires considerably 
design skills and multiple trial and error iterations without 
guarantee of success. Indeed, it is worth stressing that 
the main motivation behind our design framework was to 
introduce some flexibility into ?tHm design by treating a 
time domain  specification exactly, i.e., without resorting 
to approximations or weigh-selection. 

Hid Contrdlw 

-2000 

10 
Tim (Ma) 

Mlxd Conmller 

Mu Controller 

-20 

5 10 
Tim (Mm) 

FRq Rnparu 

-300 

Figure 3. Control Action for X, (a), p (b) 
and mixed Em/%, controllers 

Finally, Figure 3 (c) shows the impulse response cor- 
responding to a controller designed using mixed Cm/H, 
theory, satisfying both the performance and the robustness 
specifications. This controller has order roughly equal to 
2N, where N is determined using Corollary 1. In this 
case, due to the existence of plant zeros on the stability 
boundary, N - 150, thus resulting in a 300 order controller. 
However, using weighted balanced truncations, we were 
able to reduce this controller to 4Lh order, with virtually 
no performance loss. 

VI. Conclusions and Discussion 

In this paper we address the problem of finding inter- 
nally stabilizing controllers that minimise the peak ampli- 
tude of the output due to inputs belonging to a given set 
Dt , subject to robustness constraints given in the form 
of an x, constraint upon the norm of a relevant transfer 
function. This problem is of importance for applications 
where either the control action or some outputs are subject 
to hard bounds. It can be thought as the problem of 
designing a controller capable of guaranteeing an adequate 
robustness level agains dynamic uncertainty while using 
the extra available degrees of freedom to optimize a time- 
domain performance. 

The main result of the paper shows that the resulting 
convex optimization problem can be decoupled into a 
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finite dimensional, albeit non-differentiable, constrained 
optimization and an unconstrained Nehari approximation 
problem. This is a notorious departure from previous 
approaches to solving this types of problems [24-251, where 
several approximations where required in order to obtain a 
tractable mathematical problem. Moreover, some recent 
work [26] shows that these approximations may fail to 
converge to a solution. 

The example of section 4 highlights the strengths of our 
approach, and also suggest future research topics. Namely, 
the method allows for dealing explicitly and exactly with 
time-domain specifications, eliminating multiple (and non 
necessarily convergent) trial and error type iterations. This 
will usually result in an improved and less costly design. 
However, in its present status, the method usually pro- 
duces very complex controllers, necessitating some type of 
model reduction, a disadvantage also shared by some pop- 
ular design methods such as p-synthesis [22] or l1 optimal 
control theory [27]. Application of some well established 
methods in order reduction (noteworthy, weighted bal- 
anced truncation) usually succeed in producing controllers 
of manageable order. Furthermore, consistent numeri- 
cal experience suggests that this order reduction can be 
accomplished with virtually no performance degradation. 
Research is currently under way addressing this issue. 
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