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Abstract

A successful controller design paradigm must take into account both
model uncertainty and performance specifications. Model uncertainty can be
addressed using the X, robust control framework. However, this framework
cannot accommodate the realistic case where in addition to robustness consid-
erations, the system is subject to time—domain performance apecifications. In
this paper we present & design procedure for suboptimal £ /M, controllers.
These controllers allow for minimising the maximum amplitude of the time-
resp due to a specified input, while, at the same time, addressing model
uncertainty through bounds on the Ho, norm of a relevant transfer function.
The main result of the paper shows that suboptimal rational controllers can
be obtained by solving & finite di } convex trained optimisation

rl‘ and a standard u L-;H“ru

1. Introduction

A large number of control problems involve designing a con-
troller capable of achieving acceptable performance under system
uncertainty and design constraints. However, in spite of its
practical importance, this problem remains, to a large extent,
open. During the last decade a large research effort led to
procedures for designing robust controllers, capable of achieving
desirable properties under various classes of plant uncertainties,
while satisfying either time (in the case of I' theory [1]) or
frequency—domain constraints (H. theory [2]). However, these
design procedures cannot accommodate directly the realistic case
where the system must satisfy both time and frequency domain
performance specifications. Recently, some progress has been
made in this direction for the case of discrete~time systems [3-5].
However, these results do not have a counterpart for continuous-
time systems. In principle it is possible to use a discrete-time
controller, designed using the theory developed in [4-5], connected
to the continuous-time plant through sample and hold devices
(see [6-9] and references therein for a thorough discussion of the
properties of sampled-data systems). However, due to intersam-
pling ripple effects, satisfaction of time—-domain constraints in the
discretized system does not necessarily guarantee satisfaction of
these constraints in the actual closed-loop sampled—data system.
Moreover, the use of sample and hold elements usually entails a
performance loss. For example, in {10] a discrete~time controller
was designed for a robust control benchmark problem. Although
this controller meets the performance specifications, comparison
with other designs [11] clearly displays the loss of performance
due to the sampled-data implementation.

In this paper we propose a method to design rational sub-
optimal £*/H, controllers for continuous—time systems. These
controllers minimize the worst—case time-domain response due
to a specified input, while, at the same time, satisfying an %,
constraint on a relevant transfer function. The proposed method
is based upon solving an auxiliary discrete-time I, /M, problem
[5), obtained using the simple transformation z = 1+7s, and then
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transforming back the resulting controller to the s domain. Thus
it only entails solving a finite dimensional convex constrained
optimization problem and an unconstrained Ho, problem. The
main results of the paper show that: i) the performance of the
resulting closed-loop continuous-time system is bounded above
(both in the frequency and time domamu) by the performance
of the auxiliary discrete-time system used in the design; and ii)
optimal performance is recovered as the parameter 7 — 0.

The paper is organized as follows: In section II we introduce
the notation to be used and we give a formal definition to the
mixed £ /Hq control problem. Section III contains the bulk of
the theoretical results. Here we introduce the discrete time Euler
approximating system (EAS) and we show that the peak values of
the time and frequency responses of the EAS are upper bounds of
the corresponding continuous~time quantities. As an immediate
consequence, it follows that suboptimal £~ /%, controllers with
guaranteed cost can be designed by applying l./H. theory to
the EAS. Moreover, we also show that the optimal cost can be
approximated arbitrarily close by taking 7 small enough. In
section IV we present a simple design example and we compare our
controller to the unconstrained optimal #,, controller. Finally, in
section V, we summarize our results and we indicate directions for
future research.

II. Problem Formulation

2.1 Notation

By £o(jR) we denote the Lebesgue space of complex valued
transfer functions which are essentially bounded on the imagi-
nary axis with norm [[T(s)llx. 2 sup [T(jw)l. He(FR) (Hea(FR)")
denotes the set of stable (antistable) complex functions G(s) €
Ls(jR), i.e analytic in ®(s) > 0 (R(s) < 0). Similarly, £o(T)
denotes the Lebesgue space of complex valued transfer functions
which are essentially bounded on the unit circle with norm
IT(2)llr. 2 sup |T'(&“)], and Heo(T) (Hx(T)) denotes the set of
stable (antistable) complex functions G(2) € Lo(T'), i.e analytic
in |z| > 1 (Jz| < 1). £~(R,) denotes the space of measurable
functions f(t) equipped with the norm: ||f|lce = ess. sup FG]

£}(R,) denotes the space of measurable functions f(t) eq\npped

with the norm: ||f|l, = j‘ |f(2)|dt < oo. The prefix R will be used
°

to denote subspaces consisting of rational transfer functions. For

simplicity the distinction between the different spaces £= will be
omitted in instances where it is clear from the context.

lo denotes the space of bounded real sequences h = {h,, hs,...}
equipped with the norm ||hu._?=sup jhal; similarly I denotes the

space of real sequences, equipped with the norm Jj||; = ): lha] <

oo. Given a sequence h € I; (a function h(t) € £) we w:ll denote
its s-transform ( Laplace transform) by H(z) (H(s)). It is well
known that & € I, if and only if H(z) € RM(T) and that f(t) e c
if and only if F(s) € R*(7R). CGiven a sequence & € }y, by a slight
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abuse of notation, we will denote as ||H (z)",_és\:p |hx|. Similarly,

given f(t) € £, I\F(s)llem= e s3.sup (1)

Given two transfer matrices T = ( 11t T“) and Q with

Tnn Tm
appropriate dimensions, the lower linear fractional transformation
is defined as: f,(T,Q)éT;H—TuQ(I— T2Q)*Ts;. For a discrete-
time transfer matrix G(z), we define its conjugate as G*2G'(1),
were ' denotes transpose. Similarly, G(s) = G'(-s). Finally,
throughout the paper we will use packed notation to represent
state—space realizations, i.e.

G(s) = C(sI - AY1B + D2 (4_1_11)

¢c| D

2.2 Statement of the Problem

Consider the system represented by the block diagram 1,
where S represents the system to be controlled; the scalar signals
w,8 and u represent an exogenous disturbance, a known, fized
signal, and the control action respectively; and where {,¢ and y
represent the outputs subject to frequency domain performance
constraints, the output due to the input signal 8, and the mea-
surements respectively. Then, the basic problem that we address
in this paper is the following:

®
e ——
b — S > &
] ———»
u y

Figure 1. The Generalized Plant

o Mixed (£*/H,) Control Problem:

Given the nominal system (S), with frequency-domain speci-
fications of the form:

IW () Tcu()llnen < v (%)

where W(s) is a suitable weighting function, find an internally
stabilizing rational controller u(s) = K(s)y(s) such that the
maximum amplitude of the regulated output {(2) due to 8 is
minimized subject to the specifications ()

2.3 Problem Transformation

In this section we use the Youla parametrization to cast the
problem into a convex optimization form. Assume that the system
S has the following state—space realization (where without loss of
generality we assume that all weighting factors have been absorbed
into the plant):

A ‘ B 1f By B

Cy Dy; Dy Dpa s
C, s e  Dia ( )
C; D3y Dy Dy

where Dy, has full column rank, D;, has full row rank, and
where the pairs (A, B;) and (C;, A) are stabilizable and detectable
respectively. It is well known (see for instance [12]) that the set of
all internally stabilizing rational controllers can be parametrized
in terms of a free parameter Q € RN as:

K = 7(J,Q) n

where J has the following state-space realization:

A+B,F + LC:+LDuF | -L B+ LDy
’ 0 I

©))

F
~(C2 4+ Dy, F) I -Dy

where F and L are selected such that A+ B,F and A+ LC; are
stable. By using this parametrization, the closed-loop transfer
functions T¢., and Ty, can be written as:
Tew = F(T4,Q) = Tus + T12QTny
Teo = 7(Te, @) = T + THQTH
where T}, Tf € RHoo !

2)

Moreover [12], it is possible to select F and L in such a way
that Ty(s) and Ty(s) are inner and co-inner respectively (i.e.
TuTwe=1,TunTyw =1I).

e Remark 1: For the SISO case, equation (2) reduces to:
T(W(") = Tl(s) + T?(")Q(") (4)
Teo(s) = Ti(s) + T3(s)Q(s)

where T, T?, Q are stable transfer functions and where T} is inner.

By using this parametrization the mixed optimization problem
can be now precisely stated as solving:

inf |[E(s)llc—

po= ot (£ /Mw)

subject to:
IT(8)+Ta(8)@(8)lIn = T3 (8)Ta(3)+Qlbreee HNR(3)+@Q()lIrw < ¥
where
E(s) = Tes(s)0(s) = (T{(s) + T$(s)Q(5))O(s)
and where © e R£' ! is a known, fixed signal.

II1. Problem Solution

In this section we present a method for finding suboptimal
rational £* /M, controllers, based upon the use of discrete-
time lo /Mo theory. The main result of this section shows that
suboptimal controllers, with cost arbitrarily close to the optimum,
can be found by solving a finite-dimensional convex constrained
optimization problem and an unconstrained #,, problem.

1 see for instance [5] for a state-space realisation of 7 and Ty.

t this restriction on @ can be relaxed to include steps functions, by
absorbing the pole at s = 0 into the plant, thus forcing a controller with
integral action
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3.1 Definitions

e Def. 1: Consider the continuous time system (S). Its Euler
Approximating System (EAS) is defined as the following discrete
time system:

I + TA { T‘BU ‘I'Bn ' TBz
c Dy Dy Dy EAS
c Dy Du Da (E45)
C, Dyt Dy Dn

where 7 > 0.

o Def. 2: Consider the following system:
z(t) = Az(t) + Bu(t) (5)

where z € R* and v(t) € R ¢ R. A set £ C R is a positively
invariant set (13] of (5) if for any initial condition «, € & and for
any v(t) the corresponding trajectory z(t,z.,v(t)) e S forallt. A
similar definition holds for the case of discrete-time systems.

3.2 Properties of the Euler Approximating System

In this section we introduce some properties of the EAS.
The main result of this section shows that the peak values of
the impulse and frequency responses of the Euler Approximating
system are upper bounds of the corresponding continuous-time
quantities. To establish this result we start by showing that the [,
norm of the impulse response of the EAS is an upper bound of the
£ norm of the impulse response of the continuous-time system
(Theorem 1). Moreover, this upper bound is non-increasing with
7 and converges to the exact value as 7 — 0 (Lemma 2).

o Lemma 1: Consider the system:

¢ = Az + Bv

{=Cz+Dv (©)
If the corresponding EAS:

Try1 = (I + TA):E; + TB‘D; (7)
(e =Cz, + Du,

is asymptotically stable, then (6) is also asymptotically stable.

Conversely, if (6) is asymptotically stable, there exists Tms > 0
such that for all 0 < 7 < 7mae the EAS (7) is asymptotically stable.

Proof: Denote by A the set of eigenvalues of A and define
Tmuéffei,‘“z[:a[(iu]' The proof follows by noting that the eigen-
values of (I + 7A) are inside the unit disk if and only if (6) is
stable and 0 < 7 < Tynas ©.
o Theorem 1: Consider the stable, strictly proper system:
&= Az + Bv
(=Cz ®
and its corresponding EAS:
2y = (I +7A)zs + 7By, ©)
(24 = Ca

Let §(t) denote the impulse response of (8) and {(k,7)54S the
response of (9) to the input {r-1,0,0, ...}, with zero initial condi-
tions. Then we have that:

1€z < IECK, 7)EA%,,, for all0 < 7 < Trmas

Proof: To simplify the expressions, take k = -1 as initial time
for the EAS, so that ¢(k,7)545 = Cz(k,7) and £(2) = Cz(2),
where z(t) and z(k,T) are the free state response of (8) and (9)
respectively, taking the vector B as initial condition. Denote by
n the dimension of A. We assume (without loss of generality)
that (A, B) is a reachable pair. This is both a necessary and
sufficient condition for the EAS to be reachable for all 7 > 0.
The reachability of (I + 7A,7B) implies that the sequence z(k, 1)
spans R*. Denote by £(r) the convex hull of the set of points
+2(3,7). Since 2(i,7),i = 0,1,..., span R*, the set I(7) is
convex and contains the origin in its interior. If T < Tmas,
the EAS is stable, and so there exists k (which depends on 7)
such that 2(i,7) € int[E(r)] and —2(i,7) € int[E(r)], for i > k.
This means that £(7) is generated as a convex combination of
finitely many points, namely is a polytope. By construction, any
vertex v of L(r) is equal to #(¢,7) for some 1 < k, s0 we have
(I +7Alw = [I + 7A}2(3,7) = 2(s + 1,7) € I(7). This implies that
$(7) is a positively invariant set for both the EAS and the system
z = Az [14]. Since z(0) = B = 2(0) € I(7), it follows that the
state impulse response z(t) of (A, B) € E(7). Define the set

P(p)={z e R":[Cal< p,p> 0} (10)

then
N(k, 7)P4%(i., = sup|Cz(k,7)|
£>0

11
=inf{p > 0: 2(k,7) € P(p), for all k> 0} 1)
Therefore, the points +z(¢,7), > 0, are in the convex set
P(|lé(k,7)B45)) and, since X(7) is a polytope, I(r) C
P(\¢(k,7)545)...). On the other hand, z(t) € E(r) ¢
P((|é(k,7)%4%|l...), 2ud then sup [Cz(t) = IlEllce < |IE(K, 7)BAS|),,, .

e Lemma 2: Consider a strictly decreasing sequence 7oy > 73 —
0, and let y; = ||é(k,7:)B45|,.. Then the sequence y; is non—
increasing and such that p; — p°2||f||cw, where £ is the impulse
response of the continuous time system.

Proof: See the Appendix.

Next we show that the |}.|».. norm of the transfer function
of the EAS provides an upper bound of the |.|[», norm of the
transfer function of the continuous-time system.

e Lemma 3: Assume that (6) is asymptotically stable and
consider a strictly decreasing sequence 7. > 7: — 0. Let Ty, (s)
denote the transfer function of (6) and TEAS(z,7:) the transfer
function of the EAS corresponding to 7;. Then:
sup [ Tew ()l = [ Ta ()l < ITEAS (2, WMl = sup ITEAS (7, )| V
TEA (2 )l < TGRS (2050 > 5
lim [TEA5 (5, = [T ()t
(12)

Proof: The proof, omitted for space reasons, follows from using
the Maximum Modulus Theorem.

Combining the results of Theorem 1 and Lemmas 2 and 3
yields the main result of this section:
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e Theorem 2: Assume that Qei%f{— [1Tew(8)I%e = Yo <. Con-

sider a strictly decreasing sequence Tmee > 7 — 0, and the
corresponding EAS(7;). Let

w= ok Ik, TS
WTewling, <7
i 13
po= inf  I€(E)llcm (13)
1Tl oo 7

where £(k, 7:)545,£(t) denote the impulse responses of the closed—
loop EAS and continuous-time systems, respectively. Then the
sequence y; is non-increasing and such that p; — pe.

Proof: Given a controller K(z,7;) that internally stabilizes
EAS(7:), let Sa(K,z,7;) denote the corresponding closed-loop
system, and {(K,k,7) and T(w(K,2,7:) its impulse and fre-
quency rrsponses respectively. Assume that K(z,7;) is such that
1T¢w(K, =, 7:)lin. <. Given any j > %, consider the controller
K(z) obtained from K; using the change of variable z — (1 +
’—(::;‘)) and the corresponding closed-loop system S.(K,z,7;).
Since j > i, it follows from Lemma 1 that S.(K, z,7;) is internally
stable. Moreover, from Lemma 3 we have that:

ITew(K, 2,7 )t < [ Teu( K 2,7l < ¥ (14)
Hence, K is a feasible controller for EAS(r;). From Lemma 2 we

have that: A
HE(K b, )l < NECK, K, )l (15)
It follows then that

#5 = DE1lE(K, kB, 75)lhe < i = inf (K, K, 72 )lhe, for j >4 (16)

Since p; is a non-increasing sequence, bounded below by u,, it
has a limit & > p,. We will show that # = p, by contradiction.
Assume that ji > u, and define €2/ — p,. Since o Eig‘ IITy(s) +
Ta(3)Q(s)llx.. < 7, there exists @, € RHw such that |Ti(s) +
Tu(8)Q1(s)lne =1 <. From the definition of g, it follows that
there exists @, € RH o such that ||Ti(s) + Ta(s)Q.(s)ln. <7 and

€t Mem < po + & Let Q2Qo +n(Q1 - Q.). 1t follows that:

ITE(s) + T ()Q(s)llom < 4 + & +mlITE ()N @s(s) ~ Quls)lc

ITx(8) + Ta(8)Q(Nlrcw < MUT(8) + Ta(8)Qu(8)llron
+ (1 = )ITa(s) + To(3)Qo(8)ln. < 7 -

Hence, by taking 7 small enough we have that the controller

K = 7(J,Q) yields |¢(t)lic= < o + i€ and |Tu(s)lpn < 7. It
follows, from Lemmas 2 and 3, that for 7 small enough we have:

VA2l B 1
#(K)—llf(:’(’,k,r)llz- Shot e 18)
”TCW(K) z, T)”‘M.. <7

Where K(2)2K(s)|s=14-.- Hence u(K) < ji which contradicts the
definition of j o.

3.3 The SISO Mixed !, /. Problem

Theorem 2 shows that the £=/#, problem can be solved
by solving a sequence of discrete-time lo, /Mo problems. In this
section we briefly review the main result of l,/Ha theory {5].
The discrete-time mixed lo /#. problem [5] is defined as: Given
R(z) € RHo™(T),T{(2), T{(2) € RHo(T), find:

w=_inf {E.

T QERMw

(loo/Heo)

subject to:

18(2) + Q(2)lln.. <

E(z) = (T{(2) + TI(2)Q(2))0(2)
and where © € Rl is a known, fixed signal. Problem lo /M
problem can be though of as an optimization problem inside the
origin centered y—-ball. However, the y~!-ball is not compact in
Hew. Thus a minimizing solution may not exists. This difficulty
is circumvented by introducing the following modified problem:

where

Let Moy = {Q(2) € Hoo: Q(2) analytic injz| > §}. Then, given
R(2) € Hoo,s™, and O(2) € Heo,s, find:
pe= min [l (loo/Moo,8)

Q€Hoo,s
subject to: ||R(2) + Q(2)ln., < 7, where § < 1 and
@l sup 1Q(2)!

Next, we recall the main result of [5], showing that if lo,/Heo,s
is feasible, it always admits a minimizing solution. Moreover,
this solution is rational (i.e Q € RHM.), requires comsidering
only a finite number of elements of the sequence {f,.}, and

can be exactly obtained by solving a convex finite-dimensional
optimization problem and a standard #. problem.

e Theorem 3: Let “.éqé}g‘ {1, t Then, Q° = Q% +2-¥Q%,

where Q% = ijxq.»z—", solves the mixed lo/Hw,s problem iff
i=o

q° =(go...qn-1) solves the following finite dimensional convex
optimization problem:

¢ = argmin { max |(t+7g)l} (19)
eRyV "=7°
liQlla <~y

and Q% solves the unconstrained approximation problem

Qa(2) = argmin |R(:) + Q3 + =" Qu(es  (20)

where: A
= (t, tin-s)
t, 0 ... 0
13 5 ... 0
I= :1 %0 : (1)
11V 13,
7% (g an-1)'

t:, denotes the k** element of the impulse response of T¢(2)0(z)
(ie. T#(2)O(2) = §t.—,,z-“); N is selected such that:
o

N < a
(T2 + 1Tt (14 1R N s) IO e
and:
G= R_A Ag bG
cG l de
yA¥z  yA¥-lbe vAgbs  ub
caAg"’z CGAg'zb cgbe  dg+4qo (22)
o= caAg *z cgAN"% . dg+g @
chgz cq.bq de :{-qo qn.—s QNI-:
cez da+ g0 a 9N-3  9N-1
t u*, the trained Il opti , can be found by solving a linear

programming problem [15)

2176



where X > 0 and Y > 0 are the discrete controllability and
observability grammians of G and where z and y are the positive
square roots of X and Y respectively.

Proof: The proof follows from combining Lemma 1 in [5] with
the corollary to Theorem 3 in [4].

e Remark 2: By using the transformation z = §% we have that:

NR(2) + Q3(2) + 2~V QR(2)lnw.. = IR(62) + Q3(62)+
63 ¥ Qa(63)lIn. 2NR(2) + Q3(2) + 27 Qa(2)lIne
= (|E¥(R(2) + Q3(2)) + Qa(2)lIne

where we used the fact that ¥ is inner in #,. It follows that
the approximation problem (20) is equivalent to the following
unconstrained Nehari approximation problem:

0% = argmin F¥(R+ Q%) + Qalin. (23)

QRERNa

Hence, the mixed optimization problem can be solved by using
the following algorithm: i) Use the transformation z = 63 to
map the §-disk to the unit disk; ii) solve the convex finite
dimensional optimization (19); iii) solve the unconstrained Nehari
approximation problem (23); iv) use the transformation £ = §-1z
to obtain the controller and the closed-loop system.

3.4 Proposed Design Method

From the definition of the EAS it is easily seen that the
closed-loop transfer function obtained by applying the rational
controller K(s) to (S) is the same as the closed-loop transfer
function obtained by applying the controller K(251) to the EAS,
up to the complex transformation z = 7s + 1. Therefore, if a
rational compensator K(z) yielding an lo/Hq cost p is found for
the EAS, then K(rs + 1) internally stabilizes (S) and yields an
£ [He cost p. < pa. It follows that a rational compensator can
be synthesized using the EAS with a suitably small 7. These

observations are formalized in the following lemma.:

e Lemma 4: Consider the mixed £®/H, control problem for
SISO continuous time-systems. A suboptimal rational solution
can be obtained by solving a discrete-time mixed le /Heo,s control
problem for the corresponding EAS, with § = 1 — 72. Moreover, if
K(z) denotes the lo, /Mo controller for the EAS, the suboptimal
L [Hq controller is given by K(rs+1).

Proof: Since 8(t) € RC!, it can be modelled as the impulse
response of a stable, strictly proper system, Go(s). Therefore,
without loss of generality, we can assume (by absorbing G, into
(S)) that the input to the system (S) is an impulse. Consider now
the system (S) and its corresponding EAS. From Lemmas 1,2 and
3 it follows that if 8 compensator K(z) yields a lo, /Hy, cost u, for
the EAS, the compensator K(8)|,=14rs internally stabilizes (5)
and yields an £ /Mo cost p. < p. Assume that 7 < 1 and let
§ =1 -7, Since the solution to the modified problem lo /Heo,s is
analytic outside the disk of radius &, it follows from the maximum
modulus theorem [16] that any solution to le/He,s is an upper
bound to lw/Hew. Let K,(2z) be the solution to lo /M s obtained
using Theorem 3 and let p, be the corresponding l. cost. It
follows that ||§(t)ice < pa < for ©-

Finally, we show that by taking 7 — 0, the proposed design
method yields controllers with cost arbitrarily close to the optimal
£ [Ho cost.

e Theorem 4: Let 7mae > 7 — 0 be a strictly decreasing sequence.
Denote by K; the controller obtained using the design procedure

of Lemma 4 with 7 = ;; by Sa(K;) the corresponding closed loop
system; and by §(t) its impulse response. Then the sequence
#:21&(t)llc i8 non-increasing and such that .ll.% i = Lo

Proof: The proof, omitted for space reasons, follows along the
lines of the proof of Theorem 2.

IV. A Simple Example

Consider the problem of minimizing the step response tracking
error for the non—minimum phase plant:

1

6(e)=3=3

subject to the robust stability condition |Tullw < 4, where Ty
denotes the closed—loop complementary sensitivity and y-! is the
desired robustness level. In order to achieve zero steady-state
error, an additional pole at s = 0 is added to the controller. Table
1 shows a comparison of |||z and ||T¢uljn.. for an M, and a
mixed £*/H,, design. Since the plant has a pole at s = 0, Hq,
is not directly applicable. This difficulty was solved by shifting
the jw-axis using a bilinear transformation [17], selected to yield
settling time ¢, ~ 100 seconds, and then designing a controller
with ¥ = 5. This results in a second order controller yielding
an actual ||Tallx. = 4.47 (since, as shown in [17] this procedure
yields an upper bound on the true Hg-norm.) The mixed £ /H,,
design corresponds to the value of 7 = 0.08 (selected to yield
approximately the same settling time). This controller yields a
38% reduction of the peak tracking error at the cost of a 5%
increase in ||T.llw- Although in principle the proposed design
procedure required a controller with order 100, we were able to
reduce it to order 10, with virtually no performance loss.

1 Tew [l llellc=
Heo 447 4.82
£ [Heo 472 3.01

Table 1. ||\T¢w|lx.. v8 |lelli. for the Example

V. Discussion and Conclusions

In this paper we address the problem of finding internally
stabilizing controllers that minimize the peak amplitude of the
output to a fixed given input, subject to robustness constraints
given in the form of an #, constraint upon the norm of a relevant
transfer function. This problem is of importance for example for
tracking applications, or cases where either the control action or
some outputs are subject to hard bounds.

The main result of the paper shows that the resulting convex
optimization problem can be decoupled into a finite dimensional,
albeit non-differentiable, constrained optimization and an uncon-
strained Nehari approximation problem. This is a notorious de-
parture from previous approaches to solving this types of problems
[18-19], where several approximations where required in order to
obtain a tractable mathematical problem.

Although here we considered only the simpler case of a SISO
system, the theoretical results showing that the impulse and
frequency response of the EAS are upper bounds of the corre-
sponding continuous—time quantities are also valid in the MIMO
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case. Hence the proposed design procedure can be applied to
MIMO systems by using an embedding procedure to deal with
the #,, constraint, as proposed in [20].

The example of section 4 highlights the strengths of our
approach, and also suggest future research topics. Namely, the
method allows for dealing ezplicitly and ezactly with time-domain
specifications, eliminating multiple (and non necessarily conver-
gent) trial and error type iterations. This will usually result
in an improved and less costly design. However, in its present
status, the method usually produces very complex controllers,
necessitating some type of model reduction. Application of some
well established methods in order reduction (noteworthy, weighted
balanced truncation) usually succeed in producing controllers of
manageable order. Furthermore, consistent numerical experience
suggests that this order reduction can be accomplished with virtu-
ally no performance degradation. Research is currently under way
addressing this issue and pursuing the extension of the formalism
to allow more control on the shape of the error response.

References

[1]. M. Khammash and J. B. Pearson “Performance Robustness of Discrete~
Time Systems with Structured Uncertainty,” IEEE Trans. Autom.
Ceontr., 36, pp. 398412, April 1991.

[2]. B. Francis and J. Doyle “Linear Control Theory with an H,, Optimality
Criterion,” SIAM Journal in Conirol and Optimization, 25, 4, pp. 815~
844, July 1987.

[3]. J. W. Helton and A. Sideris“Frequency Response Algorithms for Mo,
Optimisation with Time Domain Constraints,” IEEE Trens. Auiom.
Conir., Vol 34, 4, pp. 427-434, April 1989.

[4]. A. Sideris and H. Rotstein “Single Input-Single Output M., Control with
Time Domain Constraints,” Automatica, July 1993, to appear, also in
Proceedings of the 29t IEEE CDC, Hawaii, Dec. 5-7, 1990, pp. 1802-
1807.

[5]. M. Ssnaier “A Mixed I /Ho Approach to Robust Controller Design,”
Proceedings of the 1992 American Control Conference, Chicago, I1., June
24-26, pp. 727-732.

[6]. T. Chen and B. A. Francis“Input-Output Stability of Sampled—-Data
Systems,” IEEE Trans. Autom. Conir., 36, pp. 50-58, January 1991.

[7). G. Dullerud and B. A. Francis“£! Analysis and Design of Sampled-Data
Systems,” IEEE Trans. Autom. Contr., 37, pp. 436446, April 1992,

[8]. A. Linnemann “L-Induced Optimal Performance in Sampled-Data Sys-
tems”, Systems & Conirol Letiers, 18, pp. 265-275, 1992

[9]. B. A. Bamich and J. B. Pearson “A General Framework for Linear
Periodic Systeme with Applications to H,, Sampled-Data Control,”
IEEE Trans. Autom. Conir,, 37, pp. 418-435, April 1992.

[10]. M. Ssnaier “Robust Controller Design for the Benchmark Problem Using
& Mixed log /Hoo Approach,” Proceedings of the 1992 American Conirol
Conference, Chicago, Il., June 24-26, pp. 2059-2060.

[11). D. Bernstein and B. Wie, OrganisersInvited Session on “Benchmark
Problem s for Robust Control Design,” Proceedings 1990, 1991, 1992
American Control Conference.

[12]. K. Zhou and J. Doyle “Notes on MIMO Control Theory,” Lecture Notes,
California Institute of Technology, 1990.

[13]. J. P Lasalle “The Stability and Control of Discrete Processes,” Vol 62
in Applied Mathematics Series, Springer-Verlag, New-York, 1986,

[14]. F. Blanchini “Feedback Control for Linear Systems with State and
Control Bounds in the Presence of Disturbance,” IEEE Trans. Autom.
Contr., Vol AC-31, No 11, pp. 1131-1135, November 1990.

[15]. M. A. Dahleh and J. B. Pearson “Minimization of a Regulated Response
to a Fixed Input,” IEEE Trans. Autom. Contr., Vol AC-33, No 10, pp.
924930, October 1988.

[16). W. Rudin “Real and Complex Analysis,” McGraw-Hill, 1966.

[17]. M. G. Safonov “Imaginary-Axis Zeros in Multivariable Ho, Theory,”
Modeling, Robust; and Sensitivity Reduction in Conirol Sysiems, R.
F. Curtain Editor, Springer-Verlag, New—York, 1987.

[18). E. Polak and S. Salcudean“On the Design of Linear Multivariable Feed-
back Systems Via Constrained Nondifferentiable Optimization in Mo
Spaces”, IEEE Trans. Automatl. Conir., 34, 3, 1989.

[19]). S. Boyd and C. Barrat“Linear Controllers Design - Limits of Perfor-
mance,” Prentice-Hall, Englewood Cliffs, 1990.

[20]. A. Sideris and H. Rotstein“MIMO M, Control with Time Domain

Constraints,” Proc. 31** IEEE CDC, Tucson, Az, December 16-18, 1992,
pp. 2601-2606.

[21]. J. C. Butcher “The Numerical Analysis of Ordinary Differential Equa-
tions,” John Wiley and Sons, Chichester, 1987.

Appendix: Proof of Lemma 2

We first show that if 7y < 7, then:
5(n1) C 8(ma)

This is an immediate consequence of the facts that S('rgz is a positively
invariant set for the EAS, and z(k + 1,7) = [I + 74)z(k,7). Indeed, if
v is a vertex of S‘r,{; then w = [I 4+ npAlv € S(m) and, for 7 < 7y,
the point [I + 7AJv belongs to the interior of the scgment vw. Hence
I + 7AJv € S(r3). It follows [14] that S(r3) is positively invariant for the

AS with such a 7. Thus, for 1 < 73, $(r1) C S(72). From (10) and (11),
it follows that [|(EAS||; < ||¢E4S||;_. Let now é > 0 be given. Since A
is a stable matrix, the free response of # = Az(t), with initial condition
B is such that there exists ¢; such that ||z()|| < 6/2, for t > t;. Take
now m such that 7, = T /m < T and define 7, = 71/h,h > m. Since
the trajectory z(t) is continuously differentiable, the solution of the EAS,
2(k+1,7) = [I+,A]2(k, 70) uniformly converges on the finite horizon {0, ¢,
to the sampled values of z(t) [21]. Hence there exists H > m, such that

Nz(k, ) — z(km)|| < 6/2,k=1,..,h, forall h > H (A1)
Therefore, for any arbitrarv £, there exists 7; and H such that for h > H
llz(hy i)l = 2R, m) ~2(ts)+2(ta)l} < ll2(h, 7a)—2(t2)l|+i=(t2)]] < 6 (42)

Take now u such that “3(7".2: C P(|}€llc=). Since uS(7m) contains the
origin in its interior, we can choose ¢; and H > m such that for h > H,
z(h,m) € uS(rmz. Moreover, since the set S(7,,) is positively invariant
for the system 2(k + 1,7,) = [I + T Alz(k, ), b > 'm, by linearity pS(7m
has the same property. So for k > h,z(k,7) € pS’grm) C P(lj€l[¢c=), an
thus :l;g |Cz(k, )] < ||€|lce. To complete the proof, we have to show that

that for each € > 0, we can take h > H in such a way that the property
l(i':t(h, )| < ||€llc= + €, holds over the finite horizon 0 < k < h. We have
[C(k, ma)[ = |Cz(k, 74) - Ca (k) + C(km)|
< |Ca(k, m) — Ca(kmi)| + [Cz(km)| (43)
< alfz(k, m) - a(kn)l| + ||€llc-
for 0 < k < h, where a is a positive constant depending only on C and on the
particular norm selected for R™. According to (A1), there exists h such that
lls(k, ™) = 2(kna)]| < €/e,1 < k < h. Therefore [Ca(k,m)| < lIE]l +¢,0 <
k < h. This implies that |[¢Z4S||; < ||¢]|z= + €. The proof is completed by
recalling that, from Theorem 1, ||¢F49||,_ is bounded below by ||¢|ic~ and
then [[€llc < [EAS i < flflcom + €, for 0 < 7 < 7 .
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