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Abstract 

A successful controller deign paradigm must take into account both 
model uncertainty and performance specifications. Model uncertainty can be 
addressed uaing the Hm robust control hamework. However, this framework 
cannot accommodate the reditic case where in addition to robwtna consid- 
erations, the system in subject to timedomain performance specifications. In 
this paper we present a deign procedure for suboptimd L m / X ,  controllen. 
Theae controllers allow for minimking the maximum amplitude of the time- 
response due to a apecified input, while, at the same time, a d M i n g  modcl 
uncertainty through bounds on the 71, norm of a relevant trader function. 
The main reault of the paper shows that suboptimal rational controllem can 
be obtained by solving a finite dimensional convex coIutr&cd optimi.rtiOn 
problem and a standard unconstrained 'H, problem. 

I. Introduction 

A large number of control problems involve designing a con- 
troller capable of achieving acceptable performance under system 
uncertainty and design constraints. However, in spite of its 
practical importance, this problem remains, to a large extent, 
open. During the last decade a large research effort led to 
procedures for designing robust controllers, capable of achieving 
desirable properties under various ClMSCS of plant uncertainties, 
while satisfying either time (in the case of I' theory [l]) or 
frequency-domain constraints ('H, theory (21). However, these 
design procedures cannot accommodate directly the realistic c a a  
where the system must satisfy both time and frequency domain 
performance specifications. Recently, some progress has been 
made in this direction for the case of discretetime systems [3-51. 
However, these results do not have a counterpart for continuous- 
time systems. In principle it is possible to use a discretttime 
controller, designed using the theory developed in [4-5], connected 
to the continuous-time plant through sample and hold devices 
(see [69] and references therein for a thorough discussion of the 
properties of sampled-data systems). However, due to intersam- 
pling ripple effects, satisfaction of time-domain constraints in the 
discretized system does not necessarily guarantee satisfaction of 
these constraints in the actual closed-loop sampled-data syatem. 
Moreover, the use of sample and hold elements usually entails a 
performance loss. For example, in [lo] a discrete-time controller 
was designed for a robust control benchmark problem. Although 
this controller meets the performance specifications, comparison 
with other designs [ll] clearly displays the loss of performance 
due to the sampled-data implementation. 

In this paper we propose a method to design rational sub- 
optimal Lm/NH, controllers for continuous-time systems. Thew 
controllers minimize the worst-case time-domain R I I ~ O M G  due 
to a specified input, while, at the same time, satisfying an 71, 
constraint on a relevant transfer function. The proposed method 
is based upon solving an auxiliary discretetime l,/n- problem 
[5], obtained using the simple transformation z = ~ + T s ,  and then 
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transforming back the resulting controller to the s domain. Thus 
it only entail8 solving a finite dimensional convex constrained 
optimieation problem and an unconstrained 'H, problem. The 
main results of the paper show that: i) the performance of the 
resulting closed-loop continuous-time system is bounded above 
(both in the frequency and time domains) by the performance 
of the auxiliary discretttime system used in the design; and ii) 
optimal performance is recovered as the parameter T + 0. 

The paper is organized as follows: In section I1 we introduce 
the notation to be used and we give a formal definition to the 
mixed t - / n ,  control problem. Section I11 contains the bulk of 
the theoretical results. Here we introduce the discrete time Euler 
approximating system (EAS) and we show that the peak values of 
the time and frequency responses of the EAS arc upper bounds of 
the corresponding continuous-time quantities. As an immediate 
consequence, it follows that suboptimal P / X ,  controllers with 
guaranteed cost can be designed by applying 6 / n ,  theory to 
the EAS. Moreow, we also &ow that the optimal cost can be 
approximated arbitrarily clone by taking T small enough. In 
section IV we present a simple design example and we compare our 
controller to the unconstrained optimal n, controller. Finally, in 
section V, we summarize our results and we indicate directions for 
future research. 

11. Problem Formulation 

2.1 Notation 

By L,(jR) we denote the Lebesgue space of complex valued 
transfer functions which are essentially bounded on the imagi- 
nary axis with norm l lT(s)l l~-~ SUP IT(jw)l.  N,( jR)  (Wm@)-) 

denotes the set of stable (antistable) complex functions G(s) E 
t , ( j ~ ) ,  i.e analytic in ~ ( s )  2 O (R(s) 5 0). Similarly, .c,(T) 
denotes the Lebesgue space of complex valued transfer functions 
which are essentially bounded on the unit circle with norm 
IIT(t)llw,~sup lT(du)l, and n,(T) (n:(T)) denotes the set of 
stable (antistable) complex functions G(z) E L,(T), i.e analytic 
in ( z (  2 1 ( I t (  5 1). Lm(R+) denotes the space of measurable 
functions f(t) equipped with the norm: I l f l l ~ -  = e m .  sup If(t)l. 

P(R+) denotes the space of measurable functions f ( t )  equipped 
with the norm: llflll= $If(t)ldt < oo. The prefix R will be used 

to denote subspaces consisting of rational transfer functions. For 
simplicity the distinction between the different spaces I? will be 
omitted in instances where it is clear from the context. 

U 

W 

R+ 

I, denotes the space of bounded real sequences h = tho,  hl, . . .} 
equipped with the norm Ilh(l~,~sup(hb(; similarly 1' denotes the 

space of real sequences, equipped with the norm llhll~ = E ihbi < 
m. Given a sequence h E 11 (a function h(t)  E P) we will denote 
its 5-transform ( Laplace transform) by H ( t )  ( H ( s ) ) .  It ia well 
known that h E ll if and only if H ( z )  E Rn,(T) and that f(t) E ~1 
if and only if F ( s )  E 'RH,(jR). Given a sequence h E 11, by LI slight 

b=O 
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abuse of notation, we will denote as IIH(z)lll-hsupIhrI. Similarly, 

given f ( t )  E 12, 1)F(s))lr-~ess.supIf(t)l. 
k 

R+ 

Given two transfer matrices T = and Q with 
appropriate dimensions, the lower linear fractional transfomation 
is defined as: 7 , ( T ,  Q)g2'11 + TiaQ(I- TmQ)-'Ta1. For a discrete- 
time transfer matrix G(z), we define its conjugate as GSG1(:), 
were denotes transpose. Similarly, G ( s )  = G'(-s). Finally, 
throughout the paper we will use packed notation to represent 
state-space realizations, i.e. 

(Tal Taa) 

G(s) = C(s1- A)-'B + D k  (*) ' 

2.2 Statement of the Problem 

Consider the system represented by the block diagram 1, 
where S represents the system to be controlled; the scalar signals 
w,8 and U represent an exogenous disturbance, a known, fized 
signal, and the control action respectively; and where <,( and y 
represent the outputs subject to frequency domain performance 
constraints, the output due to the input signal 8, and the mea- 
surements respectively. Then, the basic problem that we address 
in this paper is the following: 

Figure 1. The Generalised Plant 

Mixed ( L ~ / ' H , )  Control Problem: 

Given the nominal system (S), with frequency-domain speci- 
fications of the form: 

where W ( s )  is a suitable weighting function, find an internally 
stabilizing rational controller U(.) = K(s)y(s) such that the 
maximum amplitude of the regulated output E(t) due to 0 is 
minimized subject to the specifications (7) 

2.3 Problem Transformation 

In this section we use the Youla parametrization to cast the 
problem into a convex optimization form. Assume that the system 
S has the following state-space realization (where without loss of 
generality we assume that all weighting factors have been absorbed 
into the plant): 

where D f a  has full column rank, Daf has full row rank, and 
where the pairs (A, Ba) and (Ca, A) are stabilizable and detectable 
respectively. It is well known (see for instance [12]) that the set of 
all internally stabilizing rational controllers can be parametrized 
in terms of a free parameter Q E 'R'Hm as: 

K = f i ( J ,  Q) (1) 
where J has the following statespace realization: 

where F and L are selected such that A + BaF and A + LCa are 
stable. By using this parametrization, the closed-loop transfer 
functions TcW and TEE can be written as: 

Moreover [12], it is possible to select F and L in such a way 
that Tia(s) and %l(s) are inner and co-inner respectively (i.e. 
TiaTia = I, TaiTai = I ) .  

Remark 1: For the SISO case, equation (2) reduces to: 

where Ti,  To, Q are stable transfer functions and where Ta is inner. 

By using this parametrization the mixed optimization problem 
can be now precisely stated as solving: 

po = QERU, inf IIZ(S)I)~- (Cm /Rm 

subject to: 

l l ~ i ( ~ ) + ~ ~ ( ~ ) Q ( s ) l l ~ l ,  = tlT~(~)Ta(~)+QII~,~.IIR(s)SQ(~)II~~ 5 7 
where 

Z(S) = T~s(s )O(s)  = (T,S(s) + T,B(s)Q(s))O(s) 
and where 0 E Rr' * is a known, fixed signal. 

111. Problem Solution 

In this section we present a method for finding suboptimal 
rational cm/'Hm controllers, based upon the use of discrete- 
time lm/?tm theory. The main result of this section shows that 
suboptimal controllers, with cost arbitrarily close to the optimum, 
can be found by solving a finite-dimensional convex constrained 
optimization problem and an unconstrained 31, problem. 

t see for instance [5] for a stattspace realisation of TI and To. 
f this restriction on 0 can be relaxed to include s t ep  functions, by 

absorbing the pole at 8 = 0 into the plant, thus forcing a controller with 
integral action 
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3.1 Definitions 

J. 

a Def. 1: Consider the continuous time system (5'). Its Euler 
Approximating System (EAS) is defined as the following discrete 
time system: 

I + T A  I TBif TBit T B ~  

(EASI 

where T > 0. 

Def. 2: Consider the following system: 

k ( t )  = Ax(t)  + Bv(t)  (5) 

where x E R" and v ( t )  E fl c R. A set C c R" is a positively 
invariant set [13] of ( 5 )  if for any initial condition xo E C and for 
any v ( t )  the corresponding trajectory x( t ,xo ,v ( t ) )  E C for all t .  A 
similar definition holds for the case of discretttime systems. 

3.2 Properties of the Euler Approximating System 

In this section we introduce some properties of the EAS. 
The main result of this section shows that the peak values of 
the impulse and frequency responses of the Euler Approximating 
system are upper bound8 of the corresponding continuous-time 
quantities. To establish this result we start by showing that the 1, 
norm of the impulse response of the EAS is an upper bound of the 
L- norm of the impulse response of the continuous-time system 
(Theorem 1). Moreover, this upper bound is non-increasing with 
T and converges to the exact value as T -, 0 (Lemma 2). 

Lemma 1: Consider the system: 

x = A x  + Bv 
( = Cx + Dv 

If the corresponding EAS: 

is asymptotically stable, then (6) is also asymptotically stable. 
Conversely, if (6) is asymptotically stable, there exists > 0 
such that for all 0 < T 5 7,- the EAS (7) is asymptotically stable. 

Proof: Denote by A the set of eigenvalues of A and define 
~,,gmin2[*]. The proof follows by noting that the eigen- 
values of (I + TA) are inside the unit disk if and only if (6) is 
stable and 0 < T < T , , , ~  0. 

AEA 

a Theorem 1: Consider the stable, strictly proper system: 

5 = Ax + Bv 
(.=cx 

and its corresponding EAS: 

Let ( ( t )  denote the impulse response of (8) and [(k,?)"AS the 
response of (9) to the input ++,O,O, ...), with zero initial condi- 
tions. Then we have that: 

ProoE To simplify the expressions, take k = -1 as initial time 
for the EAS, so that ( (k,T)"AS = C z ( k , T )  and ( ( t )  = c s ( t ) ,  
where x( t )  and z ( k , ~ )  are the free state response of (8) and (9) 
respectively, taking the vector B as initial condition. Denote by 
n the dimension of A. We asmme (without loss of generality) 
that ( A , B )  is a reachable pair. This is both a necessary and 
sufficient condition for the EAS to be reachable for all T 2 0. 
The reachability of ( I +  TA,TB) implies that the sequence . ( I C , . )  
spans R". Denote by C(T)  the convex hull of the set of points 
+ z ( ~ , T ) .  Since ~ ( i , ~ ) , i  = 0,1, ..., span R", the set C(T)  is 
convex and contains the origin in its interior. If T < T,~., 

the EAS is stable, and so there exists k (which depends on T )  

such that z ( Z , T )  E i n t [ C ( ~ ) ]  and - . z ( Z , T )  E i n t [ C ( ~ ) ] ,  for a 2 k. 
This means that C(T)  is generated an a convex combination of 
finitely many points, namely i i  a polytope. By construction, any 
vertex v of C(T)  is equal to t ( i , ~ )  for aome a < k, so we have 
[ I  + TA]W = [ I +  ? A ] Z ( ~ , T )  = z(a + 1 , ~ )  E C(T).  This implies that 
C(T)  is a positively invariant set for both the EAS and the system 
x = Ax [14]. Since x ( 0 )  = B = z(0) E E(T), it follows that the 
state impulse response x( t )  of ( A ,  B)  E E(.). Define the set 

P ( p )  = { z  E R "  : ICE1 5 p , p  > 0) (10) 

then 

Therefore, the points j ~ ( i , ~ ) , i  2 0, are in the convex set 
P ( ( ~ ( ( ~ , T ) ~ ~ ~ I I , _ )  and, since C(7) is a polytope, C ( T )  c 
P ( ~ ~ ( ( k , ~ ) " " " l ~ ~ - ) .  On the other hand, x( t )  E C(T)  C_ 
~ ( l l € ( ~ , T ) Y l l - ) ,  and then ;;f: lCx(t)l= IKtlcc- 5 l l € ( ~ , ~ ) ~ A S l l I ~  0. 

Lemma 2: Consider a strictly decreasing sequence T,, > T, -+ 

0, and let = ~ ~ ( ( ~ , T ~ ) ~ ~ ~ ~ ~ I ~ .  Then the sequence pi is non- 
increasing and such that -, p o ~ ~ ~ ( ~ ~ ~ ~ ,  where [ is the impulse 
response of the continuous time system. 

ProoE See the Appendix. 

Next we show that the ll.llxm norm of the transfer function 
of the EAS provides an upper bound of the ll.llxm norm of the 
transfer function of the continuous-time system. 

Lemma 3: Assume that (6)  is asymptotically stable and 
consider a strictly decreasing sequence T- > T~ -+ 0. Let T<.(s) 
denote the transfer function of (6) and T F s ( ~ , ~ i )  the transfer 
function of the EAS corresponding to 7:. Then: 

Proof: The proof, omitted for space reasons, follows from using 
the Maximum Modulus Theorem. 

Combining the results of Theorem 1 and Lemmas 2 and 3 
yields the main result of thir section: 
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Theorem 2: Assume that inf llTe,.,(s)llx, = 7. < 7 .  Con- 
sider a strictly decreasing sequence rma. > 7; + 0, and the 
corresponding EAS(7,). Let 

qcnx, 

/&= OERU.. inf llt(k,~;)~-'~Il~, 

p o  = inf II[(t)IIr- (13) 
YqrHn, ST 

llq"lIw, 57 
OSRn, 

where [ (k ,7;)mAs,  [( t )  denote the impulse responses of the closed- 
loop EAS and continuous-time systems, respectively. Then the 
sequence b is non-increasing and such that b + pa. 

Proof: Given a controller K(z,7i)  that internally stabilizes 
EAS(C), let &(K, Z ,  T,) denote the corresponding closed-loop 
system, and f (K,k , . r i )  and T~, , , (K ,E ,T~)  its impulse and fre- 
quency rrsponses respectively. Assume that K ( z ,  7;) is such that 
l!Ttw(K, :,7.)llx- 5 7 .  Given any j > i, consider the controller 
K ( z )  obtained from Ki using the change of variable z + (1 + v) and the corresponding closed-loop system &(k, z,  7j). 

Since j > i, it follows from Lemma 1 that S , l ( k , z , ~ ~ )  is internally 
stable. Moreover, from Lemma 3 we have that: 

IFcw(k,z,Tj)IIx, 5 IIT<w(K,z,Ti)Ilx- I 7 

Il((2, k t  T1)111, 5 ll((K, k, 7i)lIJ, 

(14) 

Hence, K is a feasible controller for EAS(7,). From Lemma 2 we 
have that: 

It follows then that 
(15) 

3.3 The SISO Mixed l,/%, Problem 

Theorem 2 shows that the Lm/'H, problem can be solved 
by solving a sequence of discrete-time lm/'Hm problems. In this 
section we briefly review the main result of lm/nm theory [5]. 
The discrete-time mixed l,/?t, problem [5] is defined as: Given 
R(z)  E R3im-(T),T!(z),Tt(z) ER'H,(T), fmd: 

subject to: 
IlR(z) + Q(z)llx, 5 7 

where 
Z(2) = (T!(z) + T:(z)Q(z))@(z) 

and where 0 E all is a known, fixed signal. Problem lm/'Hm 
problem can be though of as an optimization problem inside the 
origin centered 7-1-ball. However, the -+ball is not compact in 
?im. Thus a minimizing solution may not exists. This difficulty 
is circumvented by introducing the following modified problem: 
Let %,,r = { Q ( z )  E Nm: Q ( z )  analytic inlzl? 6). Then, given 
R(Z) E Hm,6-,  and @ ( Z )  E Hm,$, find: 

subject to: llR(z) + Q(z)llw,,, 5 7 ,  where 6 < 1 and 

Next, we recall the main result of [5], showing that if lm/'Hm,6 

is feasible, it always admits a minimizing solution. Moreover, 
this solution is rational (i.e Q E R'H,), requires considering 
only a finite number of elements of the sequence {&}, and 
can be exactly obtained by solving a convex finitedimensional 
optimization problem and a standard %, problem. 

Theorem 3: Let p*g inf 11&, t Then, &" = Q; + r N Q ; ,  qmn,  
where Q; = qiz-,, solves the mixed l m / 7 i m , 6  problem iff 

p" = ( 4.. . . qN-1)' solves the following finite dimensional convex 
optimization problem: 

N-1  

i = O  

@ ( q o  ... qN-1)' 
ti, denotes the kth element of the impulse response of z6 ( z )O(z )  
(i.e. z 6 ( z ) @ ( z )  = Ctibz-'); N is selected such that: 

m 

0 

6N 5 P' 

and: 

t p', the unconstrained I ,  optimum, UUI be found by solving a linear 
programming problem [I51 
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where X > 0 and Y > 0 are the discrete controllability and 
observability grammians of G and where x and y are the positive 
square roots of X and Y respectively. 

Proof: The proof follows from combining Lemma 1 in [5] with 
the corollary to Theorem 3 in [4]. 

Remark 2: By using the transformation z = 6% we have that: 

IIWz) + W z )  + z-"SR(~)IIn-., = IIR(6i) + 0%(6i)+ 
6 - N i - N  Q R ( ~ P ) I I . H ~ % & ~ )  + Q%(i) + i-NQ~(i)II~, 
= IliN(k(q + Q%(i)) + QR(i)ll.H, 

where we used the fact that 2" is inner in 71,. It follows that 
the approximation problem (20) is equivalent to the following 
unconstrained Nehari approximation problem: 

%a 

C"m 

Hence, the mixed optimization problem can be solved by using 
the following algorithm: i) Use the transformation z = 6 i  to 
map the &disk to the unit disk; ii) solve the convex finite 
dimensional optimization (19); iii) solve the unconstrained Nehari 
approximation problem (23); iv) use the transformation i = 6-l~ 
to obtain the controller and the closed-loop system. 

11~wl1%, l l ~ l l & -  
4.47 4.82 
4.72 3.01 

3.4 Proposed Design Method 

From the definition of the EAS it is easily seen that the 
closed-loop transfer function obtained by applying the rational 
controller K ( s )  to (S) is the same as the closed-loop transfer 
function obtained by applying the controller K( y) to the EAS, 
up to the complex transformation t = 7 s  + 1. Therefore, if a 
rational compensator K ( t )  yielding an L / n ,  cost p is found for 
the EAS, then K(7s + 1) internally stabilizes (S) and yields an 
&m/?&,, cost ,ue 5 pd.  It follows that a rational compensator can 
be synthesized using the EAS with a suitably amall 7 .  These 
observations are formalized in the following lemma: 

Lemma 4: Consider the mixed &m/'H, control problem for 
SISO continuous time-systems. A suboptimal rational solution 
can be obtained by solving a discrete-time mixed lm/ 'Hm,6  control 
problem for the corresponding EAS, with 6 = 1 - 72. Moreover, if 
K ( z )  denotes the l,/'H, controller for the EAS, the suboptimal 
L-/ 'H,  controller is given by K(TS + 1). 

Proof: Since e(t) E 'RL', it can be modelled as the impulse 
response of a stable, strictly proper system, Go(s). Therefore, 
without loss of generality, we can assume (by absorbing G8 into 
(S)) that the input to the system (S) is an impulse. Consider now 
the system (S) and its Corresponding EAS. From 1,$? and 
3 it follows that if a compensator K ( r )  yields a la/?&, cost for 
the EAS, the compensator K(s)I,=l+,, internally stabilises (S) 
and yields an t W / H ,  cost pe 5 p. Assume that 7 < 1 and let 
6 = 1 - 72. Since the solution to the modified problem l m / 7 i m , 6  is 
analytic outside the disk of radius 6, it follows from the maximum 
modulus theorem [16] that any solution to l , / ? i m , 8  is an upper 
bound to l,/?i,. Let K,(z) be the solution to ~,/'H,J obtained 
using Theorem 3 and let p, be the corresponding 1, cost. It 
follows that Il((t)llr- 5 p d  5 /k 0. 

Finally, we show that by taking 7 -+ 0, the proposed design 
method yields controllers with cost arbitrarily close to the optimal 
L- f31, cost. 

Theorem 4: Let rm.,= > ri --t 0 be a strictly decreasing sequence. 
Denote by Ki the controller obtained using the design procedure 

of Lemma 4 with r = ~ i ;  by S,l(Ki) the corresponding closed loop 
system; and by &(t)  ita impulse response. Then the sequence 
&ll~i(t)ll~- is non-increasing and such that s-m b m k  = p,,. 

Proof: The proof, omitted for space rea",  follows along the 
lines of the proof of Theorem 2. 

IV. A Simple Example 

Consider the problem of minimizing the step response tracking 
error for the non-minimum phase plant: 

G(s) = 
8 - 2  

subject to the robust stability condition IITelllm 5 7 ,  where T,, 
denotes the closed-loop complementary sensitivity and 7-' is the 
desired robustness level. In order to achieve zero steady-atate 
error, an additional pole at s = 0 is added to the controller. Table 
1 shows a comparison of Ilellr- and IIT<&, for an 'H, and a 
mixed . ~ / 7 i ,  design. Since the plant has a pole at s = 0, 'H, 
is not directly applicable. This difficulty was solved by shifting 
the jw-axis using a bilinear trsnsformation [17], selected to yield 
settling time t, - 100 secondr, and then designing a controller 
with -y = 5.  This results in a second order Controller yielding 
an actual IIT&, = 4.47 (since, as shown in [17] this procedure 
yields an upper bound on the true 'H,-norm.) The mixed Lm/'H,  
design corresponds to the value of 7 = 0.08 (selected to yield 
approximately the same settling time). This controller yields a 
38% reduction of the peak tracking error at the cost of a 5% 
increase in IITdllm. Although in principle the proposed design 
procedure required a controller with order 100, we were able to 
reduce it to order 10, with virtually no performance loss. 

V. Discussion and Conclusions 

In this paper we address the problem of finding internally 
stabilizing controllers that minimize the peak amplitude of the 
output to a fixed given input, subject to robustness constraints 
given in the form of an 'H, constraint upon the norm of a relevant 
transfer function. This problem is of importance for example for 
tracking applications, or casea where either the control action or 
some outputs are subject to hard bounds. 

The main result of the paper shows that the resulting convex 
optimization problem can be decoupled into a finite dimensional, 
albeit non-differentiable, constrained Optimization and an uncon- 
strained Nehari approximation problem. This in a notorious d e  
parture from previous approaches to solving this types of problems 
[la-191, where several approximations when required in order to 
obtain a tractable mathematical problem. 

Although here we considered only the simpler caw of a SISO 
system, the theoretical results showing that the impulse and 
frequency response of the EAS are upper bounds of the corre- 
sponding continuous-time quantities are also valid in the MIMO 

2177 



case. Hence the proposed design procedure can be applied to 
MIMO systems by using an embedding procedure to deal with 
the 'H, constraint, as proposed in [20]. 

The example of section 4 highlights the strengths of our 
approach, and also suggest future research topics. Namely, the 
method allows for dealing explicitly and exactly with time-domain 
specifications, eliminating multiple (and non necessarily conver- 
gent) trial and error type iterations. This will usually result 
in an improved and less costly design. However, in its present 
status, the method usually produces very complex controllers, 
necessitating some type of model reduction. Application of some 
well established methods in order reduction (noteworthy, weighted 
balanced truncation) usually succeed in producing controllers of 
manageable order. Furthermore, consistent numerical experience 
suggests that this order reduction can be accomplished with virtu- 
ally no performance degradation. Research is currently under way 
addressing this issue and pursuing the extension of the formalism 
to allow more control on the shape of the error response. 
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Appendix: Proof of Lemma 2 

we first show that if r1 < n, then: 

This is an immediate consequence of the facts that S(T> is a positively 
invariant set for the EAS, and z(6 + 1,r)  = [Z  + T A  z (2 , r ) .  Indeed, if 
U in a vertex of S(r2 then w = [Z  + nA]u E S ( ~ 2 j  and, for T < rZ 
the point [ I  + rA]u belongs to the interior of the segment uw. Henc; 
I + T A ] ~  E S(q). It  follows [14] that S 7 2  is positively invariant for the 

LAS with such a T .  Thus, for TI < Q, S t q ]  S(7a). From (10) and ( l l ) ,  
i t  follow8 that II(EASlt, 5 Let now 6 > 0 be given. Since A 
is a stable matrix, the free response of i: = Az(t), with initial condition 
B is such that there exists tl such that Ilz(t )I < 612, for t > t l .  Take 
now m such that T,,, = q/m < T , , , ~  and dednesh = r1/h, h m. Since 
the trajector z(t) is continuously differentiable, the solution of the EAS 
z(b + 1, T )  = f I +  rj,A]z(b, q, uniformly converges on the finite horison [0, tlj 
to the sampled values of z( t ]  [21]. Hence there exists E 2 m, such that 

I lZ (k ,  7h) - z(k7h)ll I 6/2,6 = 1, ..,h, for all h > H (Al) 

Therefore, for any arbitrev\. C ,  there exists TI and E such that for h 2 H 

lb(h 7h)II = b(h9 7h)-z(t1)+z(ti)l) I I)Z(h, ~ h ) - ~ ( t l ) ~ ~ + ~ ~ ~ ( t l ) ~ ~  5 6 (A2) 

Take now p such that @(r, C P(II(llp).  Since p.5'(rm) contains the 
origin in its interior, we can clo& t l  and H > m such that for h > H 
z(h,n) E pS(7, . Moreover, since the set S~T,,,) is positively invarian; 
for the system z ( l +  1, n) = [Z + nA]z k ,  n), h 2 m, by linearity pS(rm 
hss the -e property. So for b > h,z(L,n)  E pSrm) C P(ll.fllt-) anh 
thus sup ICz(b, 7h)l 5 IICllr-. To complete the pro0 , we have to shod that 

that for each E > 0, we can take h > E in such a way that the property 
l C ~ ( b ,  7h)l I II(llr- + C, holds over d e  finite horison 0 5 k 5 h. We have 
that 

lCz(k, %)I = ICz(b, 71)) - Cz(kn)  + C z ( h ) (  

k z h  

5 ICz(k, a) - C z ( h ) l +  Ic~(h)l 
5 all4k* 7h) - a ( h ) l l +  IMllr- 

(A31 

for 0 5 k 5 h, where a is a positive constant depending only on C and on the 
particular norm &elected for R". According to (Al) ,  there exists h such that 
11z(b, Q) - z(bn)11 5 €/a, 1 I 6 5 h. Therefore ICz(L, n)( 5 Il(II + E, 0 5 
b I h. Thin implien that [ l ( ~ A s l l ~ -  5 Il(llr- +E. The proof is completed by 
recalling that, from Theorem 1, is bounded below by Il(ll~- a d  
then IKIlc- I l I € ~ A s I I ~ ~  I IICllr- +e, for o < 7 < n 0. 
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