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Abstract 

A successful controller design paradigm must take into account both 
model uncertainty and design specifications. Model uncertainty can 
be addressed using either H, or 11 robust control theory, depending 
upon the uncertainty characterisation. However, these frameworks 
cannot accommodate the realistic case where the design specifications 
include both time and frequency domain constraints. In this paper we 
a d b  these problems using a mixed h / H ,  approach. This approach 
allom for minimising the worst-case peak output due to a persistent 
disturbance, while, at the name time, satisfying an '&-norm constraint 
upon some closed-loop transfer function of interest. The main result of 
the paper shows that mixed 11/7im optimal controllers can be obtained 
by solving a sequence of problems, each one consisting of a finite- 
dimensional convex optimisation and a standard, unconstrained H, 
problem. 

I. Introduction 

A large number of control problems involve designing a 
controller capable of stabilizing a given linear time invariant 
system while minimizing the worst case response to some 
exogenous disturbances. This problem is relevant for in- 
stance for disturbance rejection, tracking and robustness to 
model uncertainty (see [ll] and references therein). When 
the exogenous disturbances are modeled as bounded energy 
signals and performance is measured in terms of the energy of 
the output, this problem leads to the well known 'H, theory. 
Since its introduction, the original formulation of Zames [13] 
has been substantially simplified, resulting in efficient com- 
putational schemes for finding solutions. The 'H, framework, 
combined with p-analysis [4] has been successfully applied to 
a number of hard practical control problems (see for instance 
[7]). However, in spite of this success, it is clear that plain 'H, 
control can only address a subset of the common performance 
requirements since, being a frequency domain method, it can 
not address time domain specifications. Recently, method- 
ologies incorporating some classes of time domain constraints 
into the 'H, formalism have been developed [&lo]. However, 
in its present form these techniques allow only for shaping 
the response to a given, fixed input. 

The case where the signals involved are persistent 
bounded signals leads to the I1 optimal control theory, 
formulated and further explored by Vidyasagar [ll-121 and 
solved by Dahleh and Pearson both in the discrete [2] and 
continuous time [3] cases. These methods are attractive since 
they allow for an explicit solution to the robust performance 
problem [6]. However, they cannot accommodate some 
common classes of frequency domain specifications (such as 
'Ha or Hm bounds). 

In this paper we propose a method for designing mixed 
f&, controllers. These controllers allow for minimizing 
the 1, norm of the closed-loop transfer function between 
an input-ouput pair of signals, while at the same time 
satisfying an H, norm constraint upon the transfer function 
between a different pair of signals. Our approach resembles 
that of Boyd et. al. [l] in the sense that we use the 
Youla parametrization to cast the problem into a semi- 
infinite convex optimization form. However, in a significant 
departure from [ 11, where several approximations where used 
in order to obtain a tractable mathematical problem, we use 
the special structure of the problem to find a global solution. 
The main result of the paper shows that this solution can be 
found by solving a sequence of modified problems, each one 
entailing solving of a finate dimensional convex, constrained 
optimization problem and an unconstrained 'H, problem. 
Moreover, the proposed solution method yields, at each 
stage, a feasible controller (in the sense of satisfying the n, 
constraint) that provides an upper bound on the optimal 11 

cost. 

The paper is organized as follows: In section I1 we 
introduce the notation to be used and some preliminary 
results. Section 111 contains the proposed solution method. 
In section IV we present a simple design example. Finally, 
in section V, we summarize our results and we indicate 
directions for future research. 

11. Preliminaries 

2.1 Notation 

f, denotes the space of bounded real sequences q = { q k }  

equipped with the norm IIqlil,ksup(qkl. f1 denotes the space 

of real sequences, equipped with the norm llqlll = lqk l  < 00. 
t, denotes the Lebesgue space of complex valued transfer 
functions which are essentially bounded on the unit circle 
with norm ~~! ! ' ( z )~~& sup lT(z)l. 31, (Hm-) denotes the 

set of stable (antistable) complex functions G(z) E t,, i.e. 
analytic in lzl 1 1 (121 5 1). The prefix 72 denotes real 
rational transfer matrices. Given R E L,, ru(R) denotes its 
maximum Hankel singular value. Given a sequence q E I, we 
will denote its a-transform by Q(z) .  It is a standard result 
that q E f l  iff Q ( z )  E 'RH. Throughout the paper we will use 
packed notation to represent state-space realizations, i.e. 
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Given two transfer matrirrs T = (2; 2') and Q with 

appropriate dimensions, the lower h e a r  fractional transfor- 
mation is defined as: 

&(T,Q)$Tii + TiZQ(I - TzzQ)-lTz~ 

Finally, for a transfer matrix G ( z ) ,  G-kG( ( ; ) ,  where ' de- 
notes transpose. 

2.2 Statement of the Problem 

Consider the system represented by the block diagram 
1, where S represents the system to be controlled; the 
scalar signals wm (a bounded energy signal), w1 (a persistent 
I ,  signal) and U represent exogenous disturbances and the 
control action respectively; and ( m ,  (l and y represent the 
regulated outputs and the measurements respectively. Then, 
the mixed l , / ~ ,  control problem can be stated as: Given the 
nominal system (S), find an internally stabilizing controller 

such that worst case peak amplitude of the performance 
output llClllm due to signals inside the 1,-unity ball is 
mivimized, subject to the constraint llT~=~,Il, 5 7. 

q s Y 

Figure 1. The Plant 

2.3 Problem Transformation 

Assume that the system S has the following state-space 
rea1izati.m (where without loss of generality we assume that 
all weighting factors have been absorbed into the plant): 

where D13 has full column rank, D31 has full row rank, 
and where the pairs ( A ,  B3) and (C3, A )  are stabilizable and 
detectable respectively. It is well known (see for instance 
[14)) that the set of all internally stabilizing controllers can 
be parametrized in terms of a free parameter Q E 'H, as: 

K = &(J ,  Q )  (1) 

where J has the following state-space realization: 

and where F and L are selected such that A t B3F and 
A + LC, are stable. By using this parametrization, the 
scalar closed-loop transfer functions 'Tcww- and T,,,, can 
be written as: 

(2) 
T L ~ ~  (2) = Tim(,) t TF(z)Q(z) 

T ~ w > ( z )  = Ti(z) + T?(z)Q(z)  

where T,, T,,, Q are stable transfer functions. Moreover 
(see [lo, 14]), it is possible to select F and L in such a 
way that Tzm(z) is inner (i.e. Tam-Tzm = I ) .  By using 
this parametrization the mixed ll/?t, problem can be now 
precisely stated as solving: 

m 

subject to: 

where {ti} and { q i }  are the coefficients of the impulse re- 
sponses of T(,,, and Q respectively. 

IITim(z) + TY(z)Q(z)llm 5 7 (3) 

111. Problem Solution 

In this section we show that the mixed 11/%, problem 
can be solved by solving a sequence of problems, each 
one requiring the solution of a finite dimensional convex 
optimization problem and an unconstrained Hm problem. 

3.1 A Modified llJ?tm Problem 

Since all the solutions to a suboptimal Nehari extension 
problem of the form JIR + Qll- 5 7 can be parametrized 
in terms of a free parameter W ( z )  E ZH,,I(W~I, 5 7-l 
problem 11/%, can be thought of as an optimization prob- 
lem inside the origin centered 7-1-ball. However, even 
though the space 31, is complete, it is easily seen that 
the 7-ball is not compact. Thus a minimizing solution 
may not exist. Motivated by this difficulty, we introduce 
the following modified mixed ll/Hm problem. Let ?t,,6 = 
{ Q ( z )  E H , :  Q ( z )  analytic i n l z l ~  6 )  and define the 1 1 / ~ m , 6  
problem as follows: Given Tl(z),  TZ(z), Tlm(z), T2-(z) E 

RHm,s, find 
P; = Qj$,s IITLw,lll (11/xm,6)  

subject to: 

where 6 < 1 and ~ ~ Q ~ ~ , , ~ ~  sup \ & ( z ) l .  

IIT?(z) + 'T?(z)&(z)llm.S 5 7 

1z1=6 

Remark 1: From the maximum modulus theorem, it 
follows that any solution Q to Z1/Hm,6 is an admissible 
solution for ll/?fm. It follows that p; is an upper bound 
for pa. 

Remark 2: Problem 11/%m,6 can be thought as solving 
problem Z1/%, with the additional constraint that all the 
poles of the closed-loop system must be inside the disk of 
radius 6. A parametrization of all achievable closed-loop 
transfer functions, such that T, Tm satisfy this additional 
constraint can be obtained from (1) by simply changing 
the stability region from the unit-disk to the &disk using 
the transformation z = 62 before performing the factor- 
ization. Furthermore, by combining this transformation 
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with the inner-coinner factorization, the resulting Tam(z) 
satisfies Tam(6z)Tam(&) = 1. 

Next we show that a suboptimal solution to l1/'Hm, 
with cost arbitrarily close to the optimum, can be found by 
solving a sequence of truncated problems, each one requiring 
consideration of only a finite number of elements of the 
impulse response of TC,~~. To establish this result we will 
show that: i) ll/'Hm can be solved by considering a sequence 
of modified problems 1 1 / ~ m , 6 .  ii) Given e > 0, a suboptimal 
solution to ll/'Hm,' with cost no greater than pi + e can be 
found by solving a truncated problem. 

Lemma 1: Consider an increasing sequence 6; -+ 1. Let 
po and b denote the solution to problems ll/'Hm and 
11/nm,64 respectively and assume that rH(TaW-Tlm) < 7 .  
Then the sequence b -+ pO. 

Proof: From the maximum modulus theorem it follows 
that the solution Qi to 11/'Hm,6, is a feasible solution 
for 1 1 / ~ m , 6 . + , .  Thus, the sequence p; is non-increasing, 
bounded below by the value of IITclwllll obtained when 
using the optimal I ,  controller. It follows then that it has 
a limit p 2 p". We will show next that p = pa. Assume 
by contradiction that pa < p and select pa < b < p. 
Let ReTamT1m. Since r H ( R )  < 7 ,  it follows that there 
exists Q1 E 'Rn, such that IIR + Q l l l m  = r H ( R )  < 7.  
From the definition of po it follows that, given 9 > 0, 
there exists Q. E 'R'H,, IIR + Qollw 5 7,  such that 
l l~clw,(Qo)l l l  I po + q .  Let QAQ. + e(Ql - Q.). It follows 
that: 

llTcwt(Q)lli L. P" + + elITa(Q1 - Q o ) I I i  

IIR + Qllm I eIIR + Qlllm + (1 - e)IIR + Qollm < 7 

Since 0 E 'R'H, it follows that there exists 6, < 1 
such that Since 
IITp" + TamQ1lm < 7 ,  it follows from continuity that there 
exists 61 < 1 such that llTlm + TamQllm,(, 5 7 .  Therefore, 
by taking e and 9 small enough and 6A max { 6,, 6a} < 1 

Hence for 6i 2 6, b 5 ji. However, this contradicts 
the fact that the sequence p, is non-increasing and that 
ji < p = limp, 0. 

Next we show show that, given E > 0, a suboptimal 
solution to l1/?tms6, with cost pi such that pi I p; I p; + e 
can be found by solving a truncated problem. 

+ TamQ is analytic in IzI 2 &. 

We have that IITim + TamQI(m,6 I 7 and I I T c x w l ( Q ) l l i  < b. 

6<-1 

Lemma 2: Let e > 0 be given. Then, there exists 
N(e,6)  such that if Q E 'Hm,6 satisfies the constraint 
IIR + Q11m.6 5 7 then it also satisfies I t k l  I E, where 
t k  denote the codcients of the impulse response of 
Tc,,, = Ti + TaQ. 

ProoE Since Q E 'Hm,6, Tt,,, is analytic in IzI 2 6 and: 

m 

i=N 

Hence 

(4) 

(5) 

Q"'(qo ... qN-1), 

and where qk, t k i  denote the kth element of the impulse 
response of Q ( z ) , T i ( z )  respectively. Let Q* and T;lwl 
denote the optimal solution and define pi = ~~T~lw,lll. 
Then pi I pi I pi + E 

Proof: pi pi is immediate from the definition of 
pi .  Denote by T[s,l and T,61,, the solution to problems 
ll/'H;*6 and 11/?ims6 respectively and let tf, tf be the 
corresponding impulse responses. Then: 

N-1 W 

= ltfl+ lttl 
i =O i=N 

N-1 m 

By combining the results of Lemmas 1, 2 and 3, the 
following result is now apparent: 

Lemma 4: Consider an increasing sequence 6; -+ 1. 
Let pa and pi4 denote the solution to problems ll/ 'Hm 
and respectively. Then the sequence pii has an 
accumulation point b. such that p* 5 b. I po + E. 

3.2 The 31, Performance Constraint 

In the last section we showed that ll/'Hm can be solved 
by solving a sequence of truncated problems. In principle 
these problems have the form of a semi-infinite optimization 
problem, and can be approximately solved by discretizing 
the unit-circle and applying outer approximation methods 
(see [5]). In this section we show that each problem l l / ~ k , 6  
can be ezactly solved by solving a finite dimensional convex 
optimization problem and an unconstrained 'H, problem. 
Moreover, since the solution to this 'H, approximation prob- 
lem is rational, it follows that the solution to l l /~;,6 is also 
rational. To establish this result, we recall first a result on 
constrained Nehari approximation problems: 
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N-1 . 

,=O 
Theorem 1: Let R E 'R?i& and Q F  = qiz-' be 

given. Then there exist QR E anH,, such that IIR + Q F  + 
z - ~ Q R ~ I ,  I 7, iff llQlln 5 7 where: 

x = Lh 
y = LB 

and where L, and Lo are the discrete controllability and 
observability grammians of G, i.e they satisfy the discrete 
time Lyapunov equations L, = AGL,Ab + bcb" and Lo = 
A',L,Ac   CO. 

Proof: See Theorem 2 in [lo] or the corollary to Theo- 
rem 3 in 181. 

Combining Lemma 3 and Theorem 1 yields the main 
result of this section: 

Theorem 2: A suboptimal solution to l1/%,,s, with 
cost pa 5 pi 5 pa + e  is given by &" = &; + r N & g  where 
QF = ,E qiz-i, 40 = ( q,, . . . Q ~ - ~  )' solves the following 

finite dimensional convex optimization problem: 

N -  1 

,=0 

(9) 

and Qk solves the unconstrained approximation problem 

Q g ( z )  = argminIIR(z) + Q> + Z - N Q R ( Z ) I I m , 6  

(10) 
QItE'H,,* 

Qtl€~n,.r 
= argmin IIR(z) + Q; + z - ~ Q R ( z ) I ( , , ~  

where R = TF-T~D,  _tl,r are defined in (7) and N is 
selected according to Lemma 2. 

Remark 3: By using the transformation z = 62 we have 
that: 

llR(z) + &;(z) z-N&R(z) l l - ,d  

= llR(6i) + Q;(62) + 6 - N i - N Q ~ ( 6 i ) l l m  

'llk(i) + &(%) f i - N Q R ( i ) l l m  

= l\iN(k(i) + &(i)) + QR(S)(lm 

where we used the fact that iN is inner in ?im. It follows 
that the approximation problem (10) is equivalent to the 
following unconstrained Nehari approximation problem: 

3.3 Synthesis Algorithm 

to the optimum, can be found using the following iterative 
algorithm . 
0) Data: An increasing sequence 6, - 1, e > 0, v > 0. 

1) Solve the unconstrained 11 problem (using the standard 
11 theory [21)., Compute llTc,w,llm. If llTc-w~llm I 7 
stop, else set z = 1. 

proceeding as follows: 
2) For each a, find a suboptimal solution to problem ll/?i&, 

2.1) Let z = 6 i i  and consider the system S ( i )  

2.2) Obtain T,(i), Tim(;) using the Youla parametrization 
(1). 

2.3) Compute N from Lemma 2. 

2.4) Find Q(i) using Theorem 2. 

3) Let Q = Q ( f ) , K  = FdJ,Q).  Compute l lTc~w~(z) l lm. If 
IIT<mym(z)llm 2 7 - v stop, else set a = i + 1 and go to 2. 

Remark 4: At each stage the algorithm produces a 
feasible solution to l , / ? i m ,  with cost p, which is an upper 
bound of the optimal cost po. 

IV. A Simple Example 

Consider the plant used in [2]: 

22 
22+2 

P ( 2 )  = ___ 

and assume that the objective is to design a compensator 
K to minimize IlTlll = ( (PK(1  + PK)-llll subject to the 
constraint llSllm = ll(l + PK)-lIlm 5 y*. It is shown in [2] 
that the optimal 1, controller is: IC1 = yielding llTlll = 2 
and 11511, = 3. Table 1 shows a comparison of the optimal 1,, 
optimal n, and a mixed l$+ controller (corresponding to 
7 = 2.4). The corresponding impulse and frequency domain 
response are shown in Figure 2. 

The mixed I1  f?i, design requires a 44th order controller, 
since it can be shown that, for E = 0.001, we need to consider 
only 20 elements of the impulse response. Noteworthy, using 
model reduction techniques, we were able to obtain a second 
order controller, with virtually no performance loss. The 
state-space realization of this non-minimum phase second 
order controller is given by: 

(0.3606 -0.0353 I 1 \ 

' O J  

K ( z ) =  1 0 

-0.8704 0.3119 I -0.014 I 
Combining Theorem 2 and Lemma 4, it follows that 

a suboptimal solution to ll/?im, with cost arbitrarily close 

* The optimal ?i, controller, K ( z )  = e, yields 11511, = 
2. Thus 7 should be 2 2 
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Figure 2. Impulse and Frequency Responses 
for the I , ,  I&,, and n, Controllers 

V. Conclusions 

In this paper we present a method for designing discrete- 
time mixed 11/” controllers. These controllers allow for 
minimizing the worst case output to  persistent bounded 
excitations, while at the same time satisfying a constraint 
upon the H ,  norm of the transfer function between a dif- 
ferent pair of signals. Thus, they can be thought of as 
achieving robust stability subject to a nominal performance 
specification. Although here we considered only the simpler 
case of a SISO system, the proposed design procedure can 
be easily extended to MIMO systems by using an embedding 
procedure to deal with the x, constraint, as proposed in [9]. 

Perhaps the most severe limitation of the proposed 
method is that may result in very large order controllers 
(roughly 2N), necessitating some type of model reduc- 
tion. Note however that this disadvantage is shared by 
some widely used design methods, such as p-synthesis or 
1, optimal control theory, that will also produce controllers 
with no guaranteed complexity bound. Application of some 
well established methods in order reduction (noteworthy, 
weighted balanced truncation) usually succeed in producing 
controllers of manageable order. The example of section 
4 suggests that substantial order reduction can be accom- 
plished without performance degradation. Research is cur- 
rently under way addressing this issue. 
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