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Abstract 

A successful controller design paradigm must take into account both model 
uncertainty and design specifications. Model uncertainty can he addressed 
using the ‘H, or I 1  robust control theory. However, these frameworks cannot 
accommodate the realistic case where the design specifications include both 
time and frequency domain constraints. In this paper we propose an ap- 
proach that takes explicitly into account both mixed tirne/frequency domain 
constraints and model uncertainty. This is achieved by minimizing a set- 
induced operator norm, subject to additional frequency domain performance 
specifications such as bounds on the ‘Hz or ‘H, norm of relevant transfer 
functions. We show that this formulation results in a convex optimization 
problem that can be exactly solved. Thus, the conservatism inherent in some 
previous approaches is eliminated. 

We recently proposed [ 12-13] to approach time-domain COIL- 

strained systems using an operator norm-theoretic approach. In this 
framework, robustness against model uncertainty and satisfaction of 
t imedomain constraints are achieved by minimizing a set induced 
operator norm, subject to additional frequency domain constraints. 
In this paper we generalize the framework of [12-131 by eliminating 
some of the approximations used there and by considering the more 
general case of output feedback controllers. The main result of the 
paper shows that for the case of ‘H2 or ‘H, constraints, the resulting 
optimization problem can be cast into a finite-dimensional convex 
optimization form. This approach eliminates most of the conservatism 
inherent in previously proposed methods. 

2. Preliminaries 
1. Introduction 

2.1 Notation 
A large number of control problems require designing a controller 

capable of achieving acceptable performance under system uncertainty 
and design specifications, usually including both time and frequency 
domain constraints. However, despite its practical importance, this 
problem remains to  a large extent still open, even in the simpler case 
where the system under consideration is linear. 

The problem of controlling linear systems under time domain 
constraints has been solved only in the rather idealized case where the 
dynamics are completely known (see for instance [l-21 and references 
therein). Clearly such an assumption can be too restrictive, resulting 
in controllers that are seldom suitable for real-world applications. 

During the last decade a large research effort has led to  proce- 
dures for designing robust controllers capable of achieving desirable 
properties under various classes of model uncertainty. In particular, 
a powerful framework has been developed, addressing the issues of 
robust stability and robust performance in the presence of norm-bound 
perturbations by minimizing an ‘Hm bound [3]. The ‘H, framework, 
combined with p-analysis [4] (in order to  exploit the structure of 
the uncertainty) has been successfully applied to  a number of hard 
practical control problems (see for instance [SI). However, in spite 
of this success, it is clear that plain 31, control can only address a 
subset of the common performance requirements since, being a fre- 
quency domain method, it can not address time domain specifications. 
Recently some progress has been made in this direction (6-71. However, 
most of the proposed methods rely on a number of approximations, 
and this may preclude finding a solution if the design specifications 
are tight. In [8-91 time-domain constraints over a finite horizon are 
incorporated into an ‘H, optimal control problem which is then exactly 
solved. However, a t  this stage constraints over an infinite horizon can 
be handled only indirectly. 

A different approach to robust control has been pursued in [10-11], 
where robustness and disturbance rejection are approached using the 
11 optimal control theory introduced by Vidyasagar [lo] and developed 
by Pearson and coworkers [ll]. These methods are attractive since 
they allow for an explicit solution to the robust performance problem. 
However, they cannot accommodate some common classes of frequency 
domain specifications (such as ‘HZ or H, bounds). 

M. Sznaier was supported in part by NSF under grant ECS-9211169 and 
by Florida Space Grant  Consortium 

By I1 we denote the space of real sequences {q , } ,  equipped with the 
norm llqlll = lqkl < 00. Given a sequence q E we will denote 

its 2-transform by Q ( z ) .  L, denotes the Lebesgue space of complex 
valued transfer matrices which are essentially bounded on the unit 
circle with norm l l T ( ~ ) 1 1 ~ i  sup umaz(T(z)). H, (‘HG) denotes the 

121=1 

set of stable (antistable) complex matrices G ( z )  E L,, i.e. analytic 
in Iz( 2 1 (1.1 5 1). 312 denotes the space of complex matrices square 
integrable in the unit circle and analytic in IzI > 1, equipped with the 
norm: 

02 

k=O 

llG11; = & jzl=l TraceIG(z)’G(z))zdz 

where ’ indicates transpose conjugate. The prefix denotes real 
rational transfer matrices. Throughout the paper we will use packed 
notation to  represent state-space realizations, i.e. 

Given two transfer matrices T = (2: 2;) and Q with appropriate 

dimensions, the lower linear f ic t ional  transformation is defined as: 

For a transfer matrix G(z), GeG’(t) .  Finally, 
vector quantity. 

indicates that  z is a 

2.2 Definitions and Preliminary Results 

Def. 1: Consider the linear, discrete time, autonomous system 
modeled by the difference equation: 

(S” )  2, = 4kZ,, k = 0, 1 . .  . & = I ,  

subject to the constraint 2 E 9 c R”, where G is a compact, convex, 
balanced set containing the origin. The system (S”)  is Constrained 
Stable if for any point 5 E 9, the trajectory &(%) originating a t  z 
remains in E for all k. 
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Def. 2: Consider the family of linear discrete time systems modeled 
by the difference equation: 

- z k  = 4kA&, k = 091 (Si) 

where 4 k A  belongs to some family P c R"'" described by the param- 
eter A which takes values in a set D. The system (Sa) is Robustly 
Constrained Stable with respect to the family P if every element of P 
is constrained-stable. 

Def. 3: The Minkowsky Functional p of a convex, balanced, set O 
containing the origin in its interior is defined by 

p(x) = inf { r: f E O} 
r>O 

A well known result in functional analysis (see for instance [14]) 
establishes that  p defines a seminorm in R". firthermore, when O is 
compact, this seminorm becomes a norm. In the sequel we will denote 
this norm as Il&jPp(~) and we will use its properties to establish 
some of the key results in the paper. Of particular importance are 
the facts that induced norms are submultiplicative and that dl finite 
dimensional matrix norms are equivalent [15]. The Il.ll~ also provides 
a connection with Lyapunov theory. As we show in the next lemma, 
(Sa) is constrained-stable iff 4 is a contraction in this norm. 

Lemma 1: Consider the system (S"). Let & { $ k }  and denote by 
Il.ll~ the operator norm induced in R"'" by O, i.e. (IA(lo = sup w. 
Finally, let Ilq5ll~ksup llq4kl1~. Then the system (Sa) is constrained 

stable ifl11411G 5 1 

Proof: The proof follows immediately from Def. 1 by noting that: 

lklIci=1 

k 

IldllG 5 1 IldkllO 5 v li 
ll4k%llG 5 1 v k, lkll0 5 1 (2) 

Ikk(g)llO 5 1vg E O &(g) E gv k 

where &(g) denotes the trajectory that originates in 2 0. 

Remark 1: For the special case of systems subject t o  additive 
parametric uncertainty: 

gk+l = ( A t  A)& (3) 

where A is constant, it can be easily shown that the condition Ilq5llg 5 1 
reduces to  [ lA+Al l~  5 1, the necessary and sufficient condition derived 
in [16]. 

Remark 2: The operator norm defined in Lemma 1 can be extended 
to  xnzn as follows: Let @(z)  E 'RxR,'" and let { & ]  = 2-1 {a(%)}. 
Then we can define: 

Il@(z)llOks:P ll4k11G (4) 

Note that since @(z)  E 'RXR,'", {4i)  E IT". Since l l4kl l1  is uniformly 
bounded with respect t o  k, it follows from the equivalence of all finite- 
dimensional matrix norms [15] that Il4kllG is also uniformly bounded, 
hence l l@l lG is finite. 

2.3 The Uncertainty Model 

In this paper we will consider systems subject t o  unstructured 
multiplicative dynamic model uncertainty. Thus, if we denote by @,"(z) 
the z-transform of (Sa), then the family of systems under consideration 
will be modeled as: 

(5) 
P6 = { @(Z): @(Z) = @"(.)(In + A ) ,  A E D a }  
D6 = { A  E 'R.XE": IlAll~,l I 6} 

Note that since A E 'RX",'", {Ai}  E IT". Hence IlAllg,l is finite. 

In section 2.5 we will show that the uncertainty description (5) 
includes as a special case the additive parametric uncertainty (3). 

2.4 The Mixed Performance Robust Control Problem: 

Consider the LTI system represented by the following state-space 
realization: 

zk+l = AEk + BMk B2& ck = ClZk + D1214k (SI 
Z k  = C24k -k D z W k  

subject t o  the constraint: 

where the pairs ( A , B z )  and (A ,Cz )  are stabilizable and detectable 
respectively, D12 has full column rank, Dzl has full row rank, 2 E R" 
represents the state; C E R* represents the variables subject to 
performance specificatiznns; y E RP represents the outputs available 
to  the controller, 3 E R" ;presents the control input; and where 
y E R' contains other external inputs of interest such as disturbances 
or commands. Then, the basic problem that we address in this 
paper is the following: Given the nominal system (S) subject to 
model uncertainty of the form ( 5 ) ,  with additional frequency-domain 
performance specifications of the form: 

where * indicates either 'Hz or X w ,  and W ( z )  is a suitable weighting 
function, find a dynamic output-feedback contmller: 

& E G C R "  

l l ~ ( ~ ) ~ d ~ ) l l *  51 (PI 

such that the resulting closed-loop system is robustly constrained 
stable (i.e. for all members of the family (5) 2, E 4 for any initid 
condition z- E 9) and satisfies the performance specifications (E') 

2.5 Constrained Stability Analysis 

In this section we consider constrained stability in the presence of 
model uncertainty and we introduce a constrained robustness measure. 
We begin by deriving a bound on the 1 1 . 1 1 ~  of the dynamics @ for all 
the elements of the family P6 and showing that this bound is tight. 

Theorem 1: Consider the family of systems P6 (5). Then: 

and there exist a t  least one 4 E P& such that (7) is an equality. 
ll@llG 5 ll@ollG(l + 6, (7) 

Remark 3: The uncertainty description (5) includes as a special case 
systems subject t o  additive parametric uncertainty (3) in the sense that 
if there exist A, lldll~ 5 6 such that  llA + dll~ = 1 then A .  = 4 E D6 
and it can be easily shown that  I ~ @ ( z ) I I G  = Il@"(z)(Z + A , ( z ) ) ~ ~ G  = 1 .  

Corollary: The family of systems described by (5) is constraint stable 
iff 
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This result can be used to  define a quantitative measure of robust- 
ness in terms of the “size” of the smallest destabilizing perturbation 
as follows: 

Def. 4: Consider the system (S“). The constrained stability 
measure, e is defined as: 

e l l  - IPIIG 

From Theorem 1 it follows that the family of systems described by (5) 
is constraint stable iff 6 5 Thus a larger value of e indicates a 
system capable of accommoddng larger model uncertainty. 

2.8 Effect of Disturbances 

In the previous section we defined a measure of stability in terms 
of the smallest destabilizing model perturbation and we showed that 
in order to maximize this measure, 11311~ should be minimized. This 
analysis neglected the effect of the disturbances g on the states c. 
In this section we consider this effect and we show that it can be 
minimized by minimizing 3. It follows then that achieving min II3pllc 
is desirable both in terms of maximizing robustness against model 
uncertainty and minimizing the effects of perturbations. 

Lemma 2: Let ~ ( z )  = Tzb(z)&(z), where &bBlg and E II. Then 

where: 

Proof: The proof is similar to  the proof of Theorem 1 0. 

Lemma 3: Consider the system: 

z k + l  = A z k  + &k ( S W )  

with initial condition z-. Then llTzijllp = IITzzoll~fill@.ll~. 

Proof: The system (Sw)  is equivalent to: 

&:k+l = A f t  t &k + A6k30Lo 
K k  = f k  t 6 k o z . o  

with initial condition 5- = 0. Taking z transforms yields: 

(9) 
A - +)= ( I - - ) - ’ z + , + ( z I - A ) - ’ &  

Hence we have Tz.(z) = $ 3 ( z )  and, by taking inverse z transforms, 
(TzP)k = 4 k - l .  It follows that I ITzOl lG = s:P II(Tzt)kllG = l l @ l l G  *. 

Remark 4: From Lemmas 2 and 3 it follows that by minimizing ((@((Q 
(and hence maximizing the constrained robustness measure), we are 
also minimizing the effects of the disturbances g upon the states. 

3. Robust Constrained Control Synthesis 

From sections 2.5 and 2.6 it follows that a robust controller 
guaranteeing satisfaction of the state constraints in the presence of 
model uncertainty can be obtained by maximizing the constrained 
stability measure. In [16] we showed that for the simpler case of 
static full-state feedback and uncertainty limited to a conic set this 
approach yields well-behaved optimization problems. However, in 
most cases maximizing the robustness measure does not necessarily 
guarantee a design that meets desirable specifications. Moreover, good 
performance and good robustness properties are usually conflicting 
design objectives which must be traded-off. Hence, a better design 
can be achieved by selecting a set of specifications and then using 
thr extra degrees of freedom that may he available in the problem 

to maximize the robustness measure over the set of all controllers 
that satisfy the given specifications for the nominal plant. Thus, 
the design problem will have the general form of a non-differentiable 
constrained minimization problem. In this section we show that: i) 
with an appropriate parametrization of all the achievable closed-loop 
maps, this optimization problem is convex and ii) For the 312 and H m  
cases the structure of the problem can be used to cast it into a finite 
dimensional convex optimization. 

3.1 Problem Transformation 

The system (S) is equivalent to: 

&+I = A& + B I ~  + B~l lk  + A6k.0~0 
ck = %k + 6k,& 

( S o )  i k  = ClZk + C16k,oZo + D1214k 

xk = CZZk + c26k+& f D21Wk 

with initial condition 2, = 0. It can be easily shown (see for instance 
[17]) that if the pairs ( A ,  B z )  and ( A ,  CZ) are stabilizable and detectable 
respectively, then the set of all internally stabilizing controllers and all 
achievable dosed-loop transfer functions can be parametrized in terms 
of a free parameter Q E RHH, respectively as: 

I< = TI( J ,  Q )  

TLJ.)%(*) = F,(Tz,Q) = T A  + T;;QT$I 

Tcw(z) = 3j(T,,Q) = T/l+ T/ZQT,fi 

where J,Tz and TJ have the following state-space realizations: 

A f B z F f L C 2  I -L  Bz 

J = (  -cz F 

where F and L are such that AF and AL are stable. A suitable choice 
for F and L is provided in the next lemma. 

Lemma 4: Let 

F A  - ( R  + B : X B Z ) - ’ ( D ; ~ C I  + B i X A )  

L e  - ( D  z1Bi t C z Y A ’ ) ’ ( S t  CzYC;)-’ 

where ReD’, ,Dlz ,  S’DZID~,  and X and Y are the unique positive 
solutions to the following Riccati equations: 

(11) 

- ( B ; X A  + D:zCi)’(D;ZDiz + B ; X B z ) - ’ ( B ; X A  + D:1C1) 
+ A ’ X A  - X + CiCl = 0 

- (CzYA’ + DziB;)’(DzlD;l  + CzYCi ) - ’ (CzYA’  + DzlB;) 

(12) 

A Y A ’ - Y + B l B I = O  (13) 

Then F stabilizes the pair (A,  B z ) ,  L‘ stabilizes the pair (A’ ,C i )  and 
Tcw = G,B1 - N F G J  t U R i Q R i V ,  where: 
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N =  (-*) 
M = (,e) 

Moreover, the following properties hold: i) U and V are inner and 
co-inner respectively, i.e. V U  = I, V V -  = I ;  ii) GcB1 is orthogonal t o  
N and G I  is orthogonal to M .  

Proof: The proof follows from standard state-space manipulations 
and is omitted for space reasons. 

3.2 R o b u s t  Cons t r a ined  S tab i l i t y  Optimizat ion 

In this section we show that, in the absence of performance 
constraints, maximum constrained robustness is achieved by constant 
state feedback. Thus in this case the optimally robust controller 
can be found by using the simple design procedure proposed in [16]. 
We will use this result t o  show that  solving the mixed performance 
robust control problem requires considering only a finite number of 
inequalities. 

e L e m m a  5: Assume that there exists F such that  I I A F J J ~  < 1. Then: 

min Il+(z)llo = m p  IIA t BzFllo (15) 
K ( z )  stab 

Proof:  From (10) we have that: 

@ ( z )  = Tfi + T,2,QT,Z, (16) 

Assume, by eliminating redundant outputs if necessary, that Cz has 
full row rank and define: 

Since A t  is stable (17) defines a bijection over R'Hm. In terms of Q, 
@ ( z )  is given by: 

@ ( z )  = {In t (.In - AF)-' (AF t &Q)} (18) 

Let Q i  denote the coefficients of the impulse response of the transfer 
matrix &. From (18) we have that: 

6 = In 

Let p = max Il4kllo = Il@(z)llo. Then from (19) we have: 

Hence 

The proof is completed by noting that for F = $' and Q ( z )  = 0 we 
have p = Il&llo = p* since 11.119 is submultiplicative, llA~llc 5 1, and 
d k  = A g o .  

L e m m a  6: If Q ( z )  is such that  its impulse response satisfies 
llqillz 5 C,6', with 6 < 1, then there exists N, independent of Q, 
such that: 

11@(z)11G = 11:$N114kllo 

Proof:  Let p denote the spectral radius of AF. Since AF is stable, 
IpI < 1 and it can be easily shown that  there exist C., 1 > A > 6 such 
that llA$112 5 CJk. Hence 

k-1 

Let pu denote the minimum (over all Q E RX,) of Il@llo, obtained by 
solving the optimization problem (15). Clearly pu 5 11@11~.  FZom the 
equivalence of all finite dimensional matrix norms [15] it  follows that 
there exist c such that 11.119 5 cll.ll2. Hence, by selecting N such that: 

we have that ll&llE 5 pu 5 llollp V ]E 2 N and therefore maxll4kllp is 
achieved for some k < N 4. 

cMAN < p. (23) 

In the sequel we consider the following special cases: i) The 
perturbation g is a bounded power spectral signal and the performance 
variable C is a bounded power signal (or alternatively E 12 and 
C E Zm), Fence the appropriate induced norm is llT~,,,llz; and ii) y and 
C E 1 2 ,  resulting in IITc,llm. The dual interpretation of the disturbances 

11 signals, for the purpose of constrained stability, and as bounded 
spectral power or bounded power, for the purpose of performance, is 
similar t o  the approach used by Bernstein and Haddad [18] t o  address 
the mixed ' H z l H ,  problem. 

3.3 'H, Per fo rmance  Cr i t e r ion  

In this case the mixed performance control problem can be stated 

(71- 1 
as: 

*$& IFl7 + ~hQT&IIP 
subject to: 

 IF^, + TAQTLIIrn 5 7 
Since U is inner and V is co-inner, we can find Ul, V,  such that ( U  U,) 
and ( V  Vl) '  are unitary. Since (pre)post-multiplication by a unitary 
matrix preserves the 00 norm we have that: 

Lr(G,E1- NFG,)V-+ R i g R j  U-(GcB~ - NFG,)Vl- 
= 'I ( UL-(G,EI - NFGj)V-  Ul-(GcE1 - N F G / ) V l -  

Note that, in general we have a &block general distance problem. 
In this aper, for simpiicity, we will limit ourselves to  the special case 
where t i e  system is square and right invertible. In this case U, V ate  
unitary and (24) reduces to: 

(25) 

where R%-(G,B1- N F G f ) V -  and Q e g R i Q R k .  

llT(uIlm = I l r ( G 3 i  - NFG,)V-+ R~OR~lI&IlR+ Qsllm 

Problem (a,) is a convex optimization problem in E",. How- 
ever, even though this space is complete, i t  is not compact. Therefore 
a minimizing solution t o  (H,) may not exists. Motivated by this 
difficulty we introduce the additional constraint that all the poles of 
the closed-loop system must lay in the closed &disk, where 6 < 1 is 
given. Thus, the original problem is modified to: 
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N-1 

i =O 
Theorem 2: Let Q F  = qi t - '  be given. Then, the condition that 

there exist Q R  E 'R1-16 such that IIR+Qlla 5 7, where Q = Q F + Z - ~ Q R  
and R has all its poles outside the disk IzI 5 6, is equivalent to a conuez 
constraint of the form llQll2 5 7 where: 

and where Lo, and LF are the solutions to the following Lyapunov 
equations: 

(27) 
A ~ L : A &  - L; = B ~ B ~  

A & L $ A ~ -  L: = ( A & ) ~ c ~ c R ( A R ) ~  

Proof: Consider first the case where 6 = 1 .  Let G k R  + Q F .  The 
proof follows by noting that, given Q F ,  there exist QR E 7WH, such 
that IIT(,,,llm 5 7 Z f l  the corresponding unconstrained 1 block Nehari 
approximation problem has a solution, i.e. if: 

where r H  indicates the maximum Hankel singular value and where we 
used the facts that z N  is an inner function and that the best stable 
approximation to a given function coincides with the best antistable 
approximation to its conjugate. In order to compute r H  we need to 
compute the observability Lo and controllability Lc grammians of the 
stable part In [13] we showed, through some lengthy 
computations, that these grammians can be computed explicitly. Fur- 
thermore, L ,  is independent of Q F  and Lo is given by: 

of z - ~ G .  

Hence: 

From Nehari Theorem it follows that: 

(29) 

where p indicates the spectral radius. The proof is completed by noting 
that the case 6 < 1 follows by using the transformation z = 62 0. 

By combining the results of Lemma 6 and Theorem 2, it follows 
that for 7im constraints, the mixed performance robust control problem 
can be solved by solving a finite-dimensional convex optimization 
problem and an unconstrained Nehari approximation problem. This 
result is summarized in the following theorem: 

Theorem 3: Q o ( z )  = Q>(z) + r N Q L ( z )  solves problem ('Tim) iff 

Q>(z )  = Q;z-' solves the finite-dimensional convex optimization 

problem: 

N-1 

i = O  

subject to: 

and QL solves the unconstrained Nehari approximation problem: 
IlQllz I7 

where G = R + Q$ and N is selected according to  Lemma 6. 

Proof: Since Q satisfies the constraint [ I Q  + RI16 5 7 then llQ116 5 
IIR116+7%q. Since Q(t )  is analytical inside the closed disk IzI 5 6 we 
have that: 

Q k  = zrj [ Q(z)zk- 'dz  (31) 

(32) 

1 

where r is the circle with radius 6. From (31) it  follows that: 

l l Q A l 2  I l lQl ls6k 5 CqJk 

The proof follows now from Theorem 2 and Lemma 60. 

3.4 1-12 Performance Criterion 

Let pi denote the coefficients of the impulse response of R i Q R i .  
Then, from Lemma 4 it follows that, given 7 2 J(G,BI - NFGf112, 
all stabilizing controllers yielding llT(,,,ll2 5 7 can be parametrized in 
terms of 0, where pi satisfy the following constraint: 

i= m 

IIRiq,RiIIZF I 7' - I I G ~ I  - NFGfII; (32) 
i = O  

where 1 1 . 1 1 ~  denotes the Frobenius norm. This results follows imme- 
diately from (14)  and the orthogonality of G,B1, U, G j ,  V by noting 

As in the 7-1, case, to avoid the difficulties due to the non 
compactness of RH,, the original problem is modified to: 

f i n  I lWZ)IIG = IIGl + T2QT,z,llG (31; 
O E R H r  

subject to: 

Remark 5: The additional constraint puts an upper bound on I I Q l l m ,  
since it forces llQllm 5 &. This additional constraint improves the 
robustness by bounding IITC, , ,~~~.  

Theorem 4: Let Q(t) = Q k r k .  Then the solution to the 

problem ("26) has 

Proof: The proof follows from Lemma 6 by noting that & depends 
only on Q i ,  i 5 k. Since optimization of 1 1 @ 1 1 ~  requires considering 
only r$k, k 5 N ,  terms in the impulse response of Q ( z )  corresponding 
to k > N can only increase the Hz cost while not affecting IlQIlo. 

m 

k=l 
= 0 for k > N .  
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4. Conclusions 

Most realistic control problems involve both some type of time- 
domain constraints and certain degree of model uncertainty. Model 
uncertainty can be successfully addressed through frequency-domain 
constraints combined with 7 i m  techniques. However the standard ‘H, 
formalism cannot handle time-domain constraints. Alternatively, the 
recently developed 21 robust control theory can be used t o  deal with 
model uncertainty. Although this framework can incorporate time 
domain constraints, i t  cannot handle frequency domain specifications. 

In this paper we propose t o  approach model uncertainty and time- 
domain constraints using an operator norm induced by the constraints 
t o  assess the stability properties of a family of systems. The proposed 
controller design method results in a convex optimization problem, 
where additional frequency domain constraints can be imposed. We 
showed that when these additional constraints have the form of an ‘H2 

or ‘Hm bound, the resulting problem can be transformed into a finite 
dimensional optimization and solved exactly. Thus, the conservatism 
inherent in some previous approaches is eliminated. Although here we 
considered only the simpler case of a one-block problem, we anticipate 
that the results will extend naturally t o  the 4-block case. 

Perhaps the most severe limitation of the proposed method is that 
may result in very large order controllers (roughly 2N) necessitating 
some type of model reduction. Preliminary results suggest that  
substantial order reduction can be accomplished without performance 
degradation. Research is currently under way addressing this issue and 
pursuing the extension of the formalism to structured uncertainty. 
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