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During the last few years there has been considerable interest in the use 
of trainable controllers based upon the use of neuron-like elements, with the 
expectation being that these controllers can be trained, with relatively little 
effort, to achieve good performance, even when only minimal knowledge of 
the plant dynamics is available. However, good performance hinges on the 
ability of the neural net to generate a “good” control law even when the input 
does not belong to the training set, and it has been shown that neural-nets 
do not necessarily generalize well. In this paper we address this problem by 
proposing a feedback controller based upon the use of a CMAC neural net. 
We show that the proposed controller has good generalization properties. 
Moreover, by proper choice of the training set the resulting closed-loop system 
is guaranteed to he robustly stable with respect to model uncertainty. 

1. Introduction 

A substantial number of control problems can be summarized as 
the problem of designing a controller capable of achieving acceptable 
performance under design constraints and model uncertainty. However, 
the problem is far from solved, even for linear systems. In most cases 
engineering goals take the form of time-domain constraints reflecting 
both performance and physical considerations, such as the presence 
of “hard” actuator limits or the need to maintain the states of the 
plant confined to a “safe” region of operation. However, although 
there currently exist several computationally-efficient design methods 
capable of handling a wide variety of frequency-domain specifications 
(111 and references therein), there presently exist very few methods 
that allow for systematically dealing with time-domain constraints. 
Moreover, most of these methods assume exact knowledge of the 
dynamics involved (i.e. exact knowledge of the model). Such an 
assumption can be too restrictive, severely limiting the applicability 
of the resulting controllers. 

On the other hand, during the last decade a large research effort 
led t o  procedures for designing robust controllers, capable of achieving 
stability under various classes of plant perturbations while, a t  the 
same time, satisfying frequency-domain constraints. However, most 
of these design procedures cannot accommodate directly time domain 
constraints [I]. 

As an alternative to  analytical controller design methods, during 
the last few years considerable attention has been focused on the use 
of neural-net based controllers, with the expectation being that these 
controllers can be trained to achieve good performance, even when 
only minimal knowledge of the plant is available. As an example, we 
can mention the neuromorphic controller used by Barto et. al. 121 to  
control an inverted pendulum when the control force is restricted to  
have bounded magnitude. 

Although there is a growing body of different control configurations 
using neural-net based controllers (see for instance [3] and references 
therein), the issues involved in using neuromorphic controllers can 
be illustrated with the simple topology shown in figure 1. Here 
the goal is t o  follow, ideally without error, a reference trajectory. 
The controller consist of a feed-forward net trained, using back- 
propagation methods, t o  learn the (approximate) inverse of the plant. 
Therefore, it is expected that when presented with the reference 
trajectory, the controller will produce the (previously learned) control 
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action that minimizes the tracking error. It is important t o  note that 
this configuration resembles an adaptive controller, where the feed- 
forward net provides the parametric structure and where the back- 
propagation training functions as a gradient adaptation mechanism 
[41. 

f 

Plant ih- 
Figure 1. A Simple Neural-Net Based Controller 

The success of the controller depicted in figure 1 hinges on the 
following issues: 1)plant invertibility 2)effective learning and 3)abil- 
ity of the neural net t o  generalize, i.e. to provide an appropriate 
output even when the input is not a member of the training set. 
Plant invertibility has been exhaustively studied in control theory 
and therefore poses no new problems. However, the other two issues 
remain largely ignored in neural net applications to controls. Moreover, 
the combination of feed-forward nets and back-propagation training 
exhibits some undesirable properties which may adversely affect the 
performance of the controller, in particular the stability of the closed- 
loop system. It is well known (see for instance [5]) that the error 
surfaces can have local minima and multitude of areas with shallow 
slopes. Hence the back-propagation algorithm is not guaranteed 
to converge to  a global minimum of the error. Furthermore, even 
when it does, convergence may take a prohibitively large amount of 
time, due to the shallow regions. Concerning generalization, it has 
been shown [6] that feed-forward nets do not necessarily generalize 
well. Therefore, it  follows that the stability properties of the resulting 
closed-loop system are generally unknown. Since most critical control 
applications require “hard”, rather than factual proof of closed-loop 
stability, these difficulties are a major stumbling block preventing 
the use of neuromorphic controllers, in spite of their potential to 
outperform classical controllers. 

In this paper we propose to solve these problems by using a 
neural net (CMAC) with inherent good generalization properties and 
by incorporating a-priori knowledge of the plant dynamics into the 
design and training processes. We show that by using this knowledge, 
the resulting neuromorphic controller is capable of robustly stabilizing 
a family of plants. Furthermore, we give bounds on the mismatch (in 
the sense of a norm) between the nominal plant (used for the initial 
training of the network) and the actual plant such that stability of the 
closed loop system is guaranteed. 

The paper is organized as follows: In section I1 we introduce some 
required concepts and we present a formal definition to our problem. In 
section I11 we briefly describe the CMAC network. Section IV contains 
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the bulk of the theoretical results. The main result of the section shows 
that by incorporating information about the plant dynamics into the 
design and training processes, the resulting controller is guaranteed 
to  stabilize a family of systems. In secl.ion V we present an example 
of application. Finally, in section VI we summarize our results and 
indicate directions for future research. 

2. Problem Formulation and Preliminary Re- 
sults 

2.1 S t a t e m e n t  of t h e  Problem 

Consider the family of discrete-time systems represented by the 
following state-space realization: 

where 2 represents the state, represents the control input, -indicates 
a vector quantity, 9 E Q compact represents uncertainty, and where 
the dynamics satisfy the following conditions: 

A(9)  = A o  + AA(q), B ( q )  = 80 + Ae(9)  (U) 

Then, the basic control problem that we address in this paper is the 
following: 

R o b u s t  Cons t ra ined  C o n t r o l  Synthes is  Problem: Given the 
family ( P )  find a feedback controller such that,  for all q E Q ,  the 
resulting closed-loop system satisfies the following specifications: 

i) The states remain confined to a region E c R”, where 4 is a 
compact, convex balanced set (i.e such that .c E Q 3 A& E 6 for 
1x1 _< 1 )  containing the origin in its interior. 

ii) The control effort is constrained by gk E fl c Rm, where R is a 
compact, convex set containing the origin in its interior. 

iii) Given an open, convex, target set 0 containing the origin in its 
interior, the system is driven to 0, for any initial condition 2, E Q .  
This performance specification is closely related to the concept of 
practical stability (81. 

R e m a r k  1: Note that due to the existence of state and control 
constraints, this control problem does not admit, in general, a closed- 
form solution. Hence it is specially well suited for a training-based 
approach, requiring only knowledge of the appropriate control action 
for a finite given sets of inputs. 

2.2 Definit ions a n d  Pre l iminary  R e s u l t s  

In this subsection we introduce the definitions required to  ana- 
lyze the properties of the closed-loop system obtained when using a 
CMAC-based controller. These ideas, illustrated in figure 2, formalize 
the concept of “quantization” of state-space. 

Def. 1: Consider a closed set 
is called a closed cover of G if Q 2 UC; 

E R“. A family C of closed sets Cj 

t 

$ Since all finite dimensional norms are equivalent [7], it is unnecessary to 
specify the actual norm. We will use this freedom in selecting the norm in 
section IV. 

Figure 2: A Closed Cover Formed by Square Boxes of Size s 

Def. 2: Consider a closed set Q C R” and a closed cover S = {S i } .  
A quantization x of Q is a set x = { z i }  containing exactly one element 
from each set Si. 

Def. 3: Given a quantization x of a set Q, the size of the 
quantization with respect to some norm N defined in Q is defined as: 

s = min{r: Cj B(zj, r )  Vi) 
t 

where B(z i , r )  indicates the N-norm ball centered at  zi and with radius 
T .  

Consider now the case where the sets of the family C that defines a 
quantization x have pairwise disjoint interiors (i.e. int(C,) n int(C3) = 
O , i  # j ) .  In this case, C induces an equivalence relation in G as follows: 

Def. 4: Consider a closed cover C of E with pairwise disjoint interiors, 
and two points cl,z, E F. xl and g2 are equivalent modulo C if 3 i 
such that zl and z, E int(C,). To complete the partition of E into 
equivalence classes, we assign the points that are in C,nC, (i.e. in the 
common boundary) arbitrarily to  either one of the classes. Two points 
equivalent modulo C will be denoted as z1 = zz. 

Def. 5: Consider a quantization x = {z,} of a given set F. It 
follows from Definitions 2 and 4 that for any point 2 E E there exists 
an element 4 E x such that 4 g, We will define the operator that  
assigns 2 - 2 as the quantization operator and we will denote it as: 
4 = x(4. 

Finally, we show that the set F induces a norm in R“. This 
norm will be used to  design a CMAC-based controller, guaranteed 
to  stabilize the family ( P ) .  

Def. 6: [9] The Minkowsky Functional (or gauge) p of a convex set 
4 containing the origin in its interior is defined by 

A well known result in functional analysis (see for instance [9]) es- 
tablishes that p defines a seminorm in R”. Furthermore, when G is 
compact, this seminorm becomes a norm. In the sequel, we will denote 
this norm as llzllcsp(g) 

3. The CMAC Neural Net 

3.1 Descr ip t ion  of CMAC 

In this section we provide a brief description of the Cerebellar 
Model Articulation Controller (CMAC) neural net. The reader is 
referred to  [lo-111 for more details. Originally introduced by Albus 
(lo] for learning to  control a robotic arm, the CMAC network has 
often been overlooked by the Neural Net community, mainly because 
i t  was considered impractical. However, in the last few years i t  has 
become the focus of growing interest, prompted by the disadvantages 
of back-propagation mentioned earlier. In particular CMAC has been 
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successfully used to  learn state-dependent control actions. Among the 
recent applications we can mention as examples the work of Miller and 
coworkers [12-131, Ersu and coworkers [14], and Moody [15]. 

A diagram of CMAC is shown in figure 3. The input space X 
is discretized and mapped into a "conceptual" memory M, in such 
a way that each input g excites exactIy A' association cells in M. 
The mapping S : X + M is such that inputs that are close (in the 
sense of some metric) in input space will have their corresponding 
sets of association cells overlap, with more overlap for closer inputs. 
The output corresponding to a given input 2: is obtained by adding 
the contents of the A' association cells excited. The number A* 
can be thought as the ratio of generalization width to quantization 
width. A larger A' provides for better generalization at  the price 
of larger memory requirements or reduced resolution for individual 
input patterns. Finally, in real implementations, to reduce the memory 
requirement the "conceptual memory" M is mapped, (using hashing) 
into a physical memory M'. 

Memory M 
Association 
Layer 

Figure 3. Diagram of a CMAC Neural Net 

In order t o  complete the description of CMAC, a training rule 
must be provided. Consider, for simplicity the case where the output 
is a scalar U. Let g be the input, ud the desired output and uk the 
output of the net after the kth iteration. Then, the simplest (one-shot 
error correction) CMAC rule evenly distributes the error among the 
contents of the A' association cells excited by the input pattern, i.e.: 

(3) 

where S(g) indicates the set of association cells excited by the input 
i~ and wi is the content of the it" cell. It has recently been shown 
[16] that, in the absence of collisions in the hashing map, this training 
scheme amounts to solving a system of simultaneous equations using 
the Gauss-Seidel iterative procedure. Therefore, the training is guar- 
anteed to  converge, provided that some mild structural restrictions are 
observed. 

It has been argued that the CMAC structure has the potential 
to provide for good generalization properties through the overlapping 
of the sets of association cells. For a new input a; which is close 
to  the learned inputs z1,g2,...gk the association cells S(2) will have 
some ovelap with the sets S(g1),S(g2) ... S(gk)  and therefore a natural 
interpolation will occur. Let U], ... i k  denote the corresponding learned 
outputs. The overlapping of the sets guarantees that the output 
U = CMAC(x) = wi will be close in some sense to  the learned 

outputs ui. However, it  does not necessarily imply that U will belong 
to the convex hull of the points ui as illustrated by the simple 
example shown in figure 4. There we have a situation where the set 
S(2) c S(a,) U S p ) .  7, U&) = 2 which does not belong to  
the segment u(zl u(g2) One can easily envision a situation where 

i €S(d  

the generated control action (which has opposite direction to those 
corresponding to the closest training points (a and E*)) can move 
the system in the wrong direction. It follows that, unless provisions 
are made during training to  ensure that a situation similar to this 
cannot arise, the generalization properties of CMAC are not enough 
to guarantee stability of the closed-loop system. 

Figure 4. Example Illustrating Potential Problems when Using a CMAC 

In this paper, t o  avoid this problem we will make the following 
assumption: There exist a set 8 of inputs such that i) every association 
cell in M is excited by at least one input b E B ii) for h,bj E B, 
S ( b i ) n S ( ~ j )  = 0, i.e, the set of association cells corresponding to the 
elements of 8 are mutually disjoint. The set B will be called a basis for 
CMAC. 

When the training set is limited to the set B,  then the learning 
process (3) becomes trivial, converging in one iteration. It may be 
argued then that in this case the whole CMAC approach becomes 
trivial, since the storage capacity of the network appears to be under- 
utilized. However, note that two of the key features that make CMAC 
attractive, namely robustness to  unit failure (obtained by distributing 
the information among several cells) and speed of computation remain 
intact. Furthermore, as we show in next section, by limiting the train- 
ing set to E, CMAC is guaranteed to produce an appropriate output 
for each possible point of the input space, thus making unnecessary 
the use of training patterns outside B. 

3.2 Designing a C M A C  for Cont ro l  Systems Applicat ions 

From the definitions of section 2.2 and the description above, 
i t  follows that a CMAC architecture is conceptually equivalent to 
considering a quantization x of the input space and mapping all the 
elements of an equivalence class to the same set of association cells. 
Hence, a CMAC design can proceed as follows: 

1) Select a closed cover C for e .  For simplicity, in the sequel we 
consider the case where C is formed by n-dimensional hypercubes, 
with sides of size bz parallel to the coordinate axes. Thus, each 
equivalence class C(z-,g+) is formed by all the vectors g such 
that their components satisfy: zi  E [z;, zt), i = 1,. . . n, where 
2: - 2; = 62. 

2) Form a quantization by selecting one element from each equiva- 
lence class. We will select as representative of the class C(g- ,g+)  
the point &(x; +x:,z; +zt,...,g; +&). Thus, given an 
input vector a;, the corresponding = x(r) can be easily found by 
discretizing each coordinate zi of a; with resolution 6%. 

The operation of the resulting CMAC can be described by the 
composition of the quantization and association maps, i.e: 

A' = Sox(+) 
(4) - U ~ C M A C ( Z )  = wi 

A' 

To complete the description, we need to determine the number of 
association cells excited by each input pattern and the mapping S from 
input-space to  association-cells space. We will choose A' according 
to the following formula: A*%:, were the integer cp is a design 
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parameter. Each input pattern will be mapped to  the cy cells starting 
at  its equivalence class and extending cq units in each direction, as 
shown in figure 5. Finally, we will choose as basis B a subset of {L,) 
with coordinates spaced cq62. Hence, each group of A' association cells 
corresponds to  intervals of dimension 62 along each coordinate axis, 
and contains c; equivalence classes. I t  is easily seen that this choice of 
sets, along with rule (4) guarantees that for each point in input space 
(after discretizing) the output is given by the linear combination of the 
outputs of the corresponding basis points, i.e. if 

2' 

4 = x(g)  = A,b,; A, 2 0; c A, = I 
,=I  

then: 
(5) 

- - 
Figure 5 .  Determining the State Space Regions 
Corresponding to  Each Set of Association Cells 

4. Theoretical Results 

In this section we present the basic theoretical results on solving 
the Robust Constrained Control Problem using CMAC. The main 
result of this section shows that by a proper choice of the parameters 
6s and cgr the design procedure of section 3.2 leads to  a controller 
guaranteed to satisfy the requirements specified in section 2.1. The 
proof proceeds along the following steps: i) obtain a lower bound on 
the amount that the norm of the present state of the system can be 
decreased in one step ii) use this bound to  show that for each element 
of the basis there exist a control law that decreases the norm of the 
present state. iii) show that by proper choice of the basis this is true 
for any state. It follows then that the control law generated by CMAC 
is guaranteed to stabilize the system. These ideas are formalized in 
Lemmas 1, 2 and 3 (proved in the Appendix) and in Theorem 1. 

We will address first the case were no collisions occur during 
hashing and then we will indicate how to  modify our results to  take 
the effects of hashing into account. 

Lemma 1: Consider a target set 0 c E and let 01 be the 
subset formed by the equivalence classes entirely contained in 0, i.e 
014 U C,, C, & 0 (see figure 6). Let: 

where 8E denotes the boundary of the set C. Then: 

Figure 6: The Sets C, 0 and 01 (shadowed) of Lemma I 

Lemma 2: Assume that: 

1 - max { min{/lA,z+ BoglJc + &(z) + A I )  = 6 > 0 (8) 

Then, for each element b, E B ,  bi E G - 0 1  there exist an admissible 
control law gi such that IIA(q)bi + B(q)g11~ < llb,ll~ for all p E Q. 

I I s l I E = ~  ?tER I 

Lemma 3: Assume that condition (8) holds. Then, 6x and cp can 
be selected such that, for any input 2, E G - 0 the control action TL~ 
generated by CMAC is admissible and such that liA(q)z++ B(q)u-,,119 < 
IlZol lG 

Theorem 1: Assume that (8) holds and define the vector 
- 6z&(6r,62,. . .62). If the CMAC design parameters 6x and cq are 
selected such that: 

(9) 
A6 

1162IlG < Cq-)fW 
and the resulting CMAC is trained according to (3), then the resulting 
controller solves the robust constrained control problem. 

Proof: Let z- be an arbitrary initial condition in E. If go E 0 
the theorem is trivial, so consider the case where 2, f 0. Then, 
from Lemma 3 it  follows that, as long as 2, 0, the sequence 
U = {go,ttl.. .} of control actions generated by CMAC is admissible 
and such that: 

Ikl JIG < I l ~ l l F  - I-1 
I132 IIE < IlZl IIE - I-1 

(10) 

llzmm(lo < llfm-1llF - I-1 
where 1-1 = A6 - [cq - 1 t ;( 1 t llA119)] llhllc > 0. It follows then that 
there exists no such that z,, E 0. Furthermore, since 4, E Q then 
llgol)c 5 1. Hence IIzill~ < 1 which implies that Z, E Q for all i. 
Therefore all the requirements specified in section 2.1 are satisfied 0. 

*Corollary 1: The size 62 of the quantization introduced in Theorem 
1 is inversely proportional to  A. Hence, as the size of the target set gets 
smaller, the number of cells increases, while the size of the s ta tespace  
region that they cover decreases. However, note that the target set 0 
is achieved through a sequence of intermediate sets Oi, i = 1,2 . .  . ,n 
with 0 1  E int(Q) and 0, E 0. Since A in (6) can be thought of as a 
lower bound of the ratio of the norm of the next state of the system to  
the norm of the present state, it follows that to  guarantee the practical 
stability of the closed-loop system, it suffices to choose: 

where denotes the closure of 0. 
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.Corollary 2: Consider now the effects of hashing. Assume that there 
is at most one collision per equivalence class. Then, the control action 
& generated in this case satisfies: 

where 
and where: 

is the control action generated in the absence of collisions 

(BU)rnaxg ~2 IIBuIIo 

Hence collisions fit naturally in our formalism as another source of 
uncertainty. I t  follows that in this case stability can be guaranteed by 
selecting: 

A6 - 6u 
c q - f t l y L E  

I l a z l l G  5 

and cq large enough so 6u < A6. 

5. A Simple Example 

Consider the problem of bringing the angular velocity of a spinning 
space station with a single axis of symmetry from an initial condition 
z-,, [$-,I12 = R, t o  a final state such that 112,1)2 5 R f .  This situation 
can model the case where a CMAC-based controller is used to  bring a 
system to some region (for instance a region where the constraints are 
not binding) where some relatively easy to design controller can take 
over. The nominal system can be represented by [17]: 

COST sinT s inT (1 ;;;T)) 
A , =  (-sin* cosT) ( ( cosT-1 )  

From (14) it follows that: 

6 = 1 - max { min{II&z+ B,g110 + l l ~ ~ I 1 z 1 1 ~ 1 1 z  t IlAAllzl } 
IlrllI7=1 SE* 

Rr 
- Q - 11A~11z - IlAAllz - 

(15) 
Since in this case 1 1 . 1 1 ~  is simply the euclidian norm scaled by Rr it 
follows that llAllc = 1. Hence, from (9) we have that: 

A(. - A) 
6s 5 - 

J Z C ,  

Since the norm of the present state of the system can be decreased at  
each stage by A it follows that 6 s  should be selected such that: 

6s 5 Rr-  A& = R r ( 1  - A )  (18) 

I 
- I? lo 5 0 5 10 

X I  

Figure 7: a) The Trained CMAC 
b) Trajectory for the Simple Example with g,, = (0, 10) 

to  guarantee that  the present and next state of the system are in 
different equivalence classes. Hence, the region ll~llz 5 a can be reached 
by designing a CMAC such that: 

(19) 
1 A ( a  - A) ac, 5 & ( I - A )  AS- 

I +  * 
In our case selecting T = 2.5 sec., cq = 3 and R,  = 10 yields 
a = 1.898 A = 0.9615 and 62 = 0.3848 

Figure 7 a )  shows the contents of the association cells for the 
trained CMAC (i.e. the two dimensional control vector), the untrained 
square in the center corresponding to the region 01. Figure 7 b) 
shows a sample trajectory driving the system from the boundary of 
the admissible region to the target set. 

6. Conclusions 

During the last few years, there has been considerable interest 
in the use of trainable controllers based upon the use of neuron like 
elements. These controllers can be trained, for instance by presenting 
several instances of “desirable” input-output pairs, to achieve good 
performance, even in the face of poor or minimal modeling. However, 
the use of neuromorphic controllers has been hampered by the facts 
that good performance hinges on the ability of the neural-net to 
generalize the input-output mapping to  inputs that are not part of 
the training set. Through examples [6], it has been shown that 
neural-nets do not necessarily generalize well. Therefore, it  follows 
that the stability properties of the closed-loop system are unknown. 
Moreover, it is conceivable that poor generalization capabilities may 
result in limit cycles or even in destabilizing control laws. In this 
paper we address these problems by proposing a controller based upon 
a neural-net (CMAC) with good generalization properties. Using 
the similarity of CMAC with quantization of state-space, we develop 
an analytical framework to  investigate the properties of the resulting 
closed-loop system. These theoretical results are used to  show that  by 
incorporating partial a-priori information about the plant in the design 
process, the rcsiilting controller is guaranteed to stabilize a family of 
plants. Perhaps the most valuable contribution of this paper results 
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from the qualitative aspects of equation (9), that identify the factors 
that  affect any controller based upon the quantization of state-space 
(independently of the specific implementation). Most notably, through 
the norm of the operator that  appears in (9), it is possible to formalize 
the idea of “poor” modeling and to  design a “robust” controller capable 
of accommodating modeling errors and disturbances. 

There are several questions that remain open. The proposed design 
process is guaranteed to  yield a stabilizing controller for all possible 
members of the family ( P ) .  However, since it is based upon a “worst- 
case” approach, it may achieve so at  the expense of performance. Since 
one of the main reasons for using neura lhe t  based controllers is their 
ability to yield good performance with imperfect models, the proposed 
off-line training may be combined with an on-line training (such as the 
one proposed in [IS]) with the god  of improving performance. This 
research direction is currently being pursued. 

Finally, the results of Theorem 1 that guarantee stability can be 
overly restrictive in some cases, since they result from a “worst-case” 
type analysis. A relaxed version of these conditions will be highly 
desirable. 
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Appendix. Proofs of Lemmas 1, 2 and 3 

Proof of Lemma 2: From the hypothesis and Lemma 1 it follows that: 

Proof of Lemma 3: From the definition of quantization it follows 
that there exists 5 E x such that go. Write L as C%, A& 
where 0 5 A i  5 1, E h ,  = 1 and where e are the vertices of the 
smallest hypercube containing z . It can he easily shown, for instance 
by induction on n the dimenzon of the space) that if hj # 0 then 
1\40 -allm 5 (c, - 1\62, Hence, for these A, l l& -& l l~  5 (c, - l)ll&IIG, 
where &(Si, 62, . . .6z). Denote by g(+) the control action generated 
by CMAC Then: 

2” 

U(%) = C ( L )  = Xis(&) E 0 
,=I 

since Q is convex. Consider now: 
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