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Abstract 

Moat realistic control problems involve both some type of time-domain 
constraints and model uncertainty. However, there presently exist few design 
methods capable of simultaneously addressing both issues. We recently 
proposed to address this class of problem by using a "constrained robustness 
measure", generated by a constraint-set induced operator norm, to assess 
the stability ptoperties of a family of systems. In this paper we explore 
the properties of this constrained-robwtnm measure and we extend the 
theoretical framework to include control as well as state constraints. These 
results are applied to the problem of designing fixed-order stabilizing feedback 
controllers for system subject to structured parametric model uncertainty 
and time-domain constraints. 

1. Introduction 

A substantial number of control problems can be summarized as 
the problem of designing a controller capable of achieving acceptable 
performance under system uncertainty and design constraints. How- 
ever, this problem is far from solved, even in the simpler case where 
the system under consideration is linear. Several methods have been 
proposed recently t o  deal with constrained control problems under the 
assumption of exact knowledge of the model (see [l] and references 
therein). However, such an assumption can be too restrictive, prevent- 
ing their application in realistic problems. 

On the other hand, during the last decade a considerable amoun- 
t of time has been spent analyzing the question of whether some 
relevant properties of a system (most notably asymptotic stability) 
are preserved under the presence of unknown perturbations. This 
research effort has led to  procedures for designing "robust" controllers, 
capable of achieving desirable properties under various classes of plant 
perturbations while, a t  the same time, satisfying frequency-domain 
constraints. However, most of these design procedures cannot accom- 
modate directly time domain constraints (which precludes their use in 
cases such as when there exist physically motivated "hard" bounds on 
the states or control effort), although some progress has been recently 
made in this direction [2-51. 

In [6-71 we proposed to approach timedomain constrained system- 
s using an operator nom-theoretic approach. We introduced a simple 
robustness measure that indicated how well the family of systems under 
consideration satisfied a given set of time-domain constraints and we 
proposed a design method yielding controllers that maximized this 
robustness measure. In this paper we extend our formalism to  include 
control as well as a more general description of state constraints and we 
explore the properties of the resulting constrained robustness measure. 
These theoretical results are applied to the problem of designing 
stabilizing controllers for systems subject to structured parametric 
model uncertainty and timedomain constraints. We show that in 
cases of practical interest the synthesis problem can be reduced to a 
convex, albeit in general non-differentiable, optimization problem. 

The paper is organized as follows: In section I1 we introduce the 
concepts of constrained stability and robust constrained stability and we 
use these concepts to give a formal definition of the robust constrained 
stability analysis and robust constrained stability design problems. The 
analysis problem is studied in section 111 where we give necessary and 
sufficient conditions for constrained stability. We use these results to  
define a constrained robustness measure and we show that, under mild 
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dynamics of the system. In section IV we apply the results of section 
111 to the design problem and we show that in cases of practical interest 
our approach yields a well behaved optimization problem. Finally, in 
section V, we summarize our results and we indicate directions for 
future research. 

2. Definitions and Background Results 

2.1 Pre l iminary  Definitions 

Def. 
tonomous system modeled by the difference equation: 

I: Consider the linear, time invariant, discrete time, au- 

- z k + l  = A&, k = 0 , l . .  . (S") subject to the constraint: 

~ E G C  R" (1) 

where A E R"'" and where g indicates z is a vector quantity. The 
system (S") is Constrained Stable if for any point z E 9, the trajectory 
- 2&) originating in z remains in G for all k. 

R e m a r k  1: A nonempty subset S c R" is a positively invariant 
set of the system (5'") if for any initial state z-, E S, the trajectory 
- % k ( z o )  E S V k, or equivalently [8] if and only if 4 E S implies Ag E S. 
Therefore, it follows that the system (Sa) is constrained stable iflit 
has the set G as a positively invariant set. 

Def. 2: Consider the family of linear discretetime systems modeled 
by the difference equation: 

z k + l  = ( A  + A ) 4 k  (SI) 

where A belongs to  some perturbation set V R"'". The system 
(S") is Robustly Constmined Stable with respect to the set V if (SI) 
is constrained stable for all perturbation matrices A E D .  

We proceed now to  restrict the class of constraints allowed in 
our problem. The introduction of this restriction, while not affecting 
significantly the number of real-world problems that can be handled 
by our formalism, introduces more structure into the problem. This 
additional structure plays a key role in section I11 where we derive 
necessary and sufficient conditions for constrained stability. 

2.2 Const ra in t  Qualification Hypothes is  

In this paper, we will limit ourselves to constraints of the form: 

Z E G C  R" (2) 

where G is a convex, compact, balanced set (i.e a convex compact set 
such that z. E 0 + Az. E G for 1x1 5 1 [9]) containing the origin in its 
interior . 

Def. 3: [9] The Mitikolusky Functional (or gauge) p of a balanced 
convex set G containing the origin in its interior is defined by 

(3) 

A well known result in functional analysis (see for instance [9]) es- 
tablishes that p defines a seminorm in R". Furthermore, when 8 is 

CH3229-2/92/0000-2888$1 .OO 0 1992 IEEE 2888 

mailto:msznaier@frodo.engr.ucf.edu


compact, this seminorm becomes a norm. In the sequel, we will denote 
this norm as Ilzll$p(g) 

Remark 2: The set Q can be characterized as the unity ball in 11.119 
i.e. Q = {E: 1k119 5 1) .  

2.3 Statement of the Problem 

Consider the LTI system represented by the following state-space 
realization: 

subject to the constraint: 

gk+l = A% + (SI 

z ~ E Q c R "  

where g E R" represents the state and 14 E Rm represents the control 
input. Then, the basic problems that we address in this paper are the 
following: 

Robust Constrained Stability Analysis Problem: Given the 
nominal system (S) and a linear feedback control law g k  = Fgk,  
determine if the resulting closed-loop system is constrainedstable. 
If the nominal closed-loop system is constrained-stable, determine the 
maximum allowable level of model uncertainty (in the sense of some 
previously defined norm) such that the constraints are satisfied for any 
initial condition 2 E Q. 

Linear Robust Constrained Control Synthesis Problem: 
Given the system (S) find a linear controller such that the resulting 
closed-loop system is constrained stable and satisfies some additional 
specifications such as: 

i) maximum robustness against structured model uncertainty of the 
f o r m A = A , + A ,  A E D  

ii) bounds on the control effort of the form gk E R c R", where R is a 
compact, convex balanced set containing the origin in its interior. 

3. Constrained Stability Analysis 

Consider the system (S") and let IJ.(IG denote the operator norm 
induced in R"'" by Q (i.e. llAllgk sup IIAzllo). From definition 

1 it follows that (Sa) is constrained stable i f f l lAl lp  5 1. Moreover, 
(Sa) is robustly constrained stable with respect to  a given set D iff 
IIA + Allp 5 1 for all A E D. This observation can be used to define a 
robustness measure as follows: 

Def. 4: Consider the system (S"). The constmined stability measure 
e$ is defined as: 

II-TIIE =1 

where 1 1 . 1 1 ~  denotes a suitable operator norm defined in D. In the 
special case where the induced operator norm 11.119 is used in the set 
D, we will denote the constrained stability measure as eo. 

Remark 3: Let the set BAN be the intersection of D with the origin 
centered ball of radius pf, i.e: 

BAN = {A E D: IlAll,u 5 e$} 

Then, from definition 4 it follows that the family (Si) is constrained 
stable for all perturbations A E BAN. 

Remark 4: In principle p$ can be a non-continuous function of 
A. In the sequel we will show that under some assumptions that are 

commonly verified in practice, p$ is a continuous, concave function 
of the dynamics matrix A .  

Theorem 1: Assume that the perturbation set 2, is is a closed cone 
with vertex at  the origin [lo], (i.e. A' E D e aA* E 2, tl 0 5 a). 
Then is a continuous, concave function of A. 

Proof: The proof of the theorem is given in Appendix A.  

Remark 5: Note that the class of sets considered in this theorem 
includes as a particular case sets of the form: 

m 

which has been the object of much interest lately ([ll-131 and refer- 
ences therein). 

In the next lemma we introduce a lower bound of the constrained 
stability measure and we show that for unstructured perturbations (i.e. 
the case where D E R"*n) this lower bound is saturated. 

Lemma 1: 
eo 2 1 - IIAIIP (5) 

Furthermore, for the unstructured perturbation case, i.e. 
where 2, E R"'", condition ( 5 )  is saturated. 

Proof: The first part of the lemma can be easily proved from definition 
4 and the triangle inequality. The second part follows by noting that 
for A.4- (5) is saturated 0. 

Remark 6: Note that the results of Lemma 1 can be used to  find 
a lower bound for the constrained robustness measure in the general 
case when an operator norm different from Il.llo is used in the set D .  
Since all finite dimensional matrix norms are equivalent [14], it follows 
that, given any norm N in the set D, there exist a constant c such that 
Il-llo 5 cIl.llnr. Hence eg  5 +. 

the case 

3.1 Quadratic Constraints Case: 

In this section we particularize our theoretical results for the 
special case where the constraint region is an hyperellipsoid. In this 
case, without loss of generality, we have: 

G = ( 4 : z ' P x  5 1 ,  P E R"*n positive definite} 

Hence ll&11; = ~ ' P z  and: 

where L'L = P and A = LAL- ' .  In this case our approach yields a 
generalization of the well known technique of estimating the robustness 
measure by using quadratic based Lyapunov functions, (see [15] and 
references therein). 

Ezample 1: (multilinearly correlated perturbations) In the case 
of quadratic constraints and multilinearly correlated uncertainty, the 
lower bound on e given by (5) can be tightened as follows. Assume 
that the set I) is given by: 

A E R""", U'U = I , ,  L'L = P 
(7) 
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Since the euclidian norm is invariant under multiplications by a 
unitary matrix we have: 

IIA + A ( ~ G  = llL(A + A)L-1112 

= ltd + U (t) It2 = I1 (i;) + (i) 112 

= I t  ("12 A) 112 

(8) 

A well known result on matrix dilations establishes (161 that: 

II (i) 112 I 1 IlAzIla 5 1 

and X = Y ( I -  AkAz)*, llYllz 5 1 

hence it follows that: 

3.2 Polyhedra l  Cons t ra in ts  

Consider now the case where the region Q is polyhedral, i.e. the 
case where: 

where G E R p m ,  rank(G) = n, is! E RP, wi > 0 and the 1.1 should 
br, interpreted on a component by component sense. Although this 
case is of practical importance, up to date a technique to estimate 
the robustness of such systems was unavailable, except perhaps to  fit 
an hyperellipsoidal region within the admissible region and then use 
some of the bounds available for the quadratic case. Such a technique 
is clearly inappropriate since it guarantees robust stability only in a 
certain subregion of the region of interest. In this section we show that 
polyhedral regions fit naturally within our formalism and that in this 
case $ can be efficiently computed as the minimum of the solution of 
p Linear Programming problems. 

E = {z: IGz~ 5 U }  (17) 

IJA + Allp = I w ll(A1 + &)NI12 = 1 (9) T h e o r e m  2: Let e: be the solution of the following optimization 
problem: 

where NC(I-A;Az)'i?. Finally, by defining llAll~S11ANllz and using e: = A€?) min { IlAll~: IIH + AHll(1') 2 1) (18) 
the results of Lemma 1, we get: 

where: 
Q$ = 1 - ItAiN112 (10) W = d i a g { w i } ,  HfiW-'GA(G'G)-'G'W 

A H ~ W - ~ G A ( G ' G ) - ~ G ~ W  
R e m a r k  7: Note that when Az = 0 we recover the results of Lemma 
1, since in this case Q = 1 - ((Ai112 = 1 - IIAIIL~L and where llMll(1') indicates the I1 norm of the it* row of the matrix 

M. Then: 
e$ = l < i s p  min (19) 

Ezample 2: (unstructured perturbation) 

In this case, Theorem 2 yields QQ = 1 - IlAll~ where: Proof:  It is easily shown that: 

Consider now the case where eo > 0. Then, there exists Q positive 
definite such that: 

(12) 

From the definition of H we have that W-'GA = HW-IG. Hence: 

A'PA - P = -Q IIAEIIG = IIW-'GAzII~ = IIHW-'Gzllm 
and: and IIA1Io = llHllm Assume that the lemma is false and that there exist 

@ and d such that: 
a m i n ( Q )  

l l ~ l l i = m a x  Z ( 1 - e  dP,> 5 I--  ' T M n x ( p )  (13) 

llA + 410 = 1; lt4tN = B &# (21) Hence: 

Since IIA + All0 = 1 there exists io such that ( ( H  + AHlf) = 1, 
IIH + AH)llp) I 1, j # io, but this implies (eq. (18)) that p$! 5 8 
which contradicts (21) 0. A common technique in state space robust analysis is to obtain 

robustness bounds from equation ,(12) ([17-181). This case can be 
accommodated by our formalism by recognizing the fact that once P is 

an hyperellipsoidal region. It has been suggested ([17-181) that good 
robustness bounds can be obtained from (12) when P is selected such 
that Q = I. In this case our approach yields: 

the system becomes constrained to within Ezample 4: (unstructured perturbation) Consider the following case: 

1 0  2 0  
A = (-:io8 O.k?83) = ( - ; . 5  2:O) = (15600) (22) 

(15) 
Then, from the definition of H, we have that: 

which coincides with the robustness bound found in [18]. H = ( :,j7::i3 ,9;0,) , IlAllo = 0.7583 (23) 

Ezample 3: 
the case where A IS semisimple, i.e. 

(Unstructured perturbation, A semisimple) Consider and, from Theorem 2, 
I 

I 

(24) I ei = min llAllo:C IH + AIij = 1 i = 1,2 
I l A l l ~  { j=1 

A = L-lAL 

A = diag (( :il zi) 9 ., . , ( :zp z:) , o p + ~ ,  . . . , a n }  
(16) 

Casting the problems (24) into a linear programming form and solving 
we have that: Then, the maximum of the stability measure, eo,  over all possible 

positive definite matrices P, is achieved for P = L'L. pi = 0.2417, pz = 0.2417 and pp = min ej = 0.2417 l<i<2 - -  
Proof: The proof follows by noting that l lA l lp~  = p(A) where p( . )  
denotes the spectral radius, which is a lower bound for any matrix 
norm 114) 0. 

Note that eo = 1 - I lAl l~  = 0.2417 a8 shown in Lemma 1. 
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4. Application to Robust Controllers Design 

Consider the Linear Robust Constrained Control Synthesis Prob- 
lem introduced in section 2.3. Let p n ( u )  be the Minkowsky gauge for 
the set 0 and denote by Il.lln the corresponding norm induced in Rm. 
It follows that, given a feedback control law of the form = F a ,  the 
control bounds are satisfied if and only if: 

Hence a full state feedback matrix F that solves the synthesis problem 
can be found solving the following optimization problem: 

m p { d ( F ) )  (25) 

subject to: 

IIFllo,n I1 

Since from Theorem 1, & ( F )  is a concave function, and since IIFIIP,~ 5 
1 is a convex constraint, it follows that (25) has a global optimum. 
Hence, the problem of finding the mazimally robust controller leads to 
convex, albeit non-di@rentiable, optimization problems, which can be 
solved using a number of techniques ([19]). In the remainder of this 
section, we give several design examples using the proposed technique. 

Ezample 5: Consider the following system: 

A = (0.!05 -0!51) ' = (i) 
G = {a: llallz 5 11 

The open-loop system has poles at  s1 = 0.5 and s2 = -1.01. Assume 
that the perturbation set is such that changes the position of the poles 
while maintaining constant their sum, i. e: 

Note that llEll2 = 1 hence llAll2 = IpI. 

In this case, the solution to the unconstrained maximally robust control 
'problem can be computed by solving a matrix dilation problem [16]. 
Rewrite the dynamics matrix as: 

where zi denote elements that can be modified using state-feedback. 
Since matrix dilations are norm-increasing we have that: 

IIA + PE112 z m u  {II (a1 a2 + P )I121 
= 4- (29) 

D e h e  now: 

po = argmin { lpI,p E W: a: + (a2 + = 1)  
(30) 

= J-- la21 

From (29) and (30) it follows that (IA + p"Ell2 2 1 which implies that 
&(F! 5 p.O for all F. Furthermore, from the definition of po it follows 
that if F IS selected such that 2 1  = 22 = 0, then p z ( F )  = po. Hence, 
this choice of F yields the solution to  the unconstrained problem. In 
this particular example we have: 

F " = ( O  1 ) , & = 0 . 3 5 3 1  (31) 

Consider now a feedback matrix F and let Ad be the corresponding 
closed-loop matrix, i.e: 

The corresponding value of the robustness measure can be computed 
using standard results on matrix dilations [I61 as follows: The set T 
of numbers p such that llAcll12 5 1 can be parametrized as: 

T = { p : p  = -a22 - ya l l z  + (1 - y 2 ) + w ( 1  - z2)f) (33) 

where: 

E %, Iwl 5 1 
From (33) it follow that the constrained stability margin of A,, is given 
by: 

@ ( F )  = la22 + y a l l z  - (1 - y 2 ) t ( l  - z2)3sign(az2 + ya11z)l 

Control Effort 

Fig 1. Robustness vs. Control Effort for Example 5 

Figure 1 shows & ( F )  versus IIFllz, the norm of the solution to 
(25). For llFllz = 1, we recover the unconstrained solution, for 
I)F((2 = 0.1850, we get the minimum controleffort capableof stabilizing 
(in the constrained sense) the nominal system. Note the trade-off 
between control effort and robustness. In particular, there exist a 
region where the curve is flat, i.e. the control effort can be reduced 
while essentially maintaining the same robustness obtained with a 
"maximum robustness" type design. 

Ezample 6: Polyhedral constraints, unstructured perturbation 

Consider the following system: 

(35) 

Since the constraint sets G and R are polyhedral, the synthesis problem 
can be cast in the following format: 

min 6 

subject to: 
IIA + 'Fl lo  I 

IIFIIG*n 5 1 
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which can be transformed into an LP problem and solved using the 
simplex method. Note that a similar design algorithm was proposed 
by Vassilaki et. al. [ZO], although in their case the goal was to  find 
admissible linear controllers for systems under polyhedral constraints, 
without taking into account robustness considerations. Figure 2 shows 
the constrained robustness measure versus 7, the bound on the control 
effort. Note that the minimum control effort required to  stabilize the 
system is 7 = 2.6. 

Control Effort 

Fig 2. Robustness vs. Control Effort for Example 6 

5. Conclusions 

Most realistic control problems involve both some type of time- 
domain constraints and certain degree of model uncertainty. However, 
few of the control design methods currently available focus only on 
one aspect of the problem. Following the spirit of [6-71, in this paper 
we propose to  approach time-domain constraints using an operator 
norm induced by the constraints t o  assess the stability properties 
of a family of systems. Specifically, in section I1 we introduced a 
robustness measure that  indicates how well the family of systems 
under consideration satisfies a given set of constraints. In section 111 
we explored the properties of this robustness measure for the case 
of additive parametric model uncertainty and we showed that our 
formalism provides a generalization of the well known technique of 
estimating robustness bounds from the solution of a Lyapunov equa- 
tion. We then proposed, in section IV, a synthesis procedure for fixed 
order controllers, based upon maximization of the robustness measure 
subject to additional performance constraints such as bounds on the 
control effort. There we showed that the proposed design procedure 
leads to  convex optimization problem. We believe that the results 
presented here will provide a valuable new approach to the problems 
of robust controllers analysis and design for linear systems. Further, 
since our approach is based purely upon time-domain analysis, we 
have reasons to believe the theory could be extended to  encompass 
non-linear systems in a much more direct fashion than other currently 
used techniques. 

Perhaps the more severe limitation of the theory in its present 
form arises from the fact that the incorporation of additional perfor- 
mance constraints of the form of a bound on the norm of a relevant 
transfer function results in non-convex optimization problems. We are 
currently looking into a solution to  this problem by using an observei- 
based parametrization of all stabilizing controllers. I t  is expected 
that this formulation will be able to handle more general performance 
constraints as well as dynamic uncertainty, a t  the price of resulting in 
higher order controllers. 
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Appendix A where: 

Proof of Theorem 1 We begin by introducing two preliminary 
results: 

Lemma 2: Consider the system (S"). Assume that the perturbation 
set D is a closed cone with uertez at the origin [lo], i.e. A0 E 2) 
aAo E 2) V 0 < a and that (Sa) is constraint stable (i.e. llAll~ < 1). 
Let: 

A' = argmin {IlAllx: IIA + A119 = 1) ( A l l  
AED 

and consider a sequence A' -+ A such that IJA'llG < 1. Finally, define 
the sequence A' as: 

Then the sequence Xi has an accumulation point at  1. 

Proof: Since IIA'IIG < 1 and since 2) is a closed cone it follows that A' 
is well defined. Furthermore, from (A2) it follows that: 

Hence from Bolzanno-Weierstrass' theorem [21] it follows that A' has 
an accumulation point x and that there exist a subsequence x i  + A. 
Hence: 

llA' + i i A o l l ~  = 1 

and since A' - A then: 

[ [ A  + XAollg = 1 ('441 

Assume that < 1 and let AeXAo Then [IAIIM < IIAoII~, IIA + AIIc = 
1 and A E 2) (since 2) is a cone) which contradicts (Al) .  Assume now 
that > 1. Then, for i large enough, xi > 1, which together with (A2) 
implies that: 

[(A' + A'll~ < 1 (A51 
and hence: 

IIA + A"0P < 1 

which contradicts ( A l ) .  Therefore X = l o .  

Lemma 3: Let p1 > 0,pz > 0 and 0 5 A 5 1 be given numbers 
and assume that 2) is a cone with vertex at  the origin. Consider the 
following sets: 

p i B A =  t A ~ ~ : l l A I l x < p i )  
p2BA = {A E 2): IlAllnr < p2) ('47) 
PEA = {A E 2):IlAll~ 5 &pi + (1 - X ) P Z }  

Then pBA C XplBA + (1 - X ) p z  BA 

Proof: Consider any Ao E pBA. Then: 

The proof is completed by noting that from (A9) and the hypothesis 
it follows that AI E pl BA and A2 E p2BA o. 

Proof of Theorem 1 

Assume that & is not continuous. Then, given c > 0, for every 6 > 0 
there exist A6 such that  all^ 5 6 and l&(A&) - e f l  > c. Hence 
there exist a sequence A' - A such that & + d. Furthermore, it is 
easily seen that the sequence e;' is bounded and therefore is contains a 
convergent subsequence. It follows that there exist a sequence A' + A 
such that - @ # e$. Let: 

From (A10) it follows that IIAillg 5 1 + llAi[lg. It follows then that 
the sequence A i  is bounded and therefore, since Rnxn with a finite 
dimensional matrix norm is-complete and since 2) is a closed set, it 
has an accumulation point A (Bolzano Weierstrass) and a convergent 
subsequence Ai + A such that IIA + All0 = 1. Furthermore, from the 
definition of Ao it follows that 

ZJ = I I ~ J  > IIAOIIN = ef ( A l l )  

IlA'llN > llAOllN (A121 

Hence, for i large enough, 

Applying Lemma 3, we have that there exist a sequence A' - 1 such 
that: 

A' = A€%+ min {A: I IA'  + X A O ~ ~ ~  = I}  ('413) 

From (A12) and since A' -+ 1 it follows that for i large enough 

and, since 2) is a cone, X*Ao E D, which contradicts (A10). The proof 
is completed by noting that since all finite dimensional matrix norms 
are equivalent [14] then continuity in the 11.11g norm implies continuity 
in any other norm defined over Rnxn o. 

To prove concavity, start by considering a convex linear combination 
A = AA1 + (1 - X)A2, X 5 1 of given matrices AI and A2. Then, from 
Lemma 4 it follows that: 

IIA + Allc 5 I IWI+ A d  + (1 - w 2  + A2llG 
(A15) A z E m B A  

I ,,:;sa P I +  *Ills + (1 - x)AIFzBA IIAz + AZllF 

Consider now the case where pl = &(AI) and pz = #(A:). Then it 
follows from the definition of & that both maximizations in the right 
hand side of (A15) yield 1 and therefore: 

Hence, from the definition of e$: 
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