
T3-1 -4:20 
Procdlngs of the 30th Conference 

on Docldon and Control 
Brighton, England * December 1991 

Heuristically Enhanced Feedback Control  of Constrained Systems: 
T h e  Min imum Time Case 

M. Sznaier t and M. J. Damborg t 

t Electrical Engineering, University of Central Florida, Orlando, F1 32816 

t Electrical Engineering, FT-10, University of Washington, Seattle, WA 98195 

Abs t rac t  

Recent advances in computer technology have spurred new interest 
in the use of feedback controllers based upon the use of on-line 
optimization. Still, the use of computers in the feedback loop has been 
hampered by the limited amount of time available for computations. In 
this paper we propose a feedback controller based upon the use of on- 
line optimization in the feedback loop. We present theoretical results 
showing that this controller yields asymptotically stable systems, 
provided that enough computation power is available to solve on- 
line a constrained optimization problem considerably simpler than 
the original. By making use of the special structure of timeoptimal 
systems, the constrained optimization problem is further simplified, 
resulting in a substantial reduction of its dimensionality. 

I. Introduct ion.  

A substantial number of control problems can be summarized as 
the problem of designing a controller capable of achieving acceptable 
performance under design constraints. This statement looks deceptive- 
ly simple, but even in the case where the system under consideration 
is linear time-invariant, the problem is far from solved. 

During the last decade, substantial progress has been achieved 
in the design of linear controllers. By using a parametrization of all 
internally stabilizing linear controllers in terms of a stable transfer 
matrix Q, the problem of finding the “best” linear controller can 
be formulated as an optimization problem over the set of suitable Q 
[l]. In this formulation, additional specifications can be imposed by 
further constraining the problem. However, although these methods 
are effective in dealing with frequency-domain constraints, they can 
address time-domain constraints only in an extremely conservative 
fashion. Hence, if the constraints are tight this approach may fail to 
find a solution, even if the problem is feasible 

Classically, control engineers have dealt with timedomain con- 
straints by allowing inputs to  saturate, and by using “gain” schedul- 
ing” and dual mode controllers (where high gain feedback is used 
far from the constraints and low gain feedback is used when ap- 
proaching a constraint boundary). Latter, with the appearance of 
the Linear Quadratic formalism, constraints have been embedded in 
the performance index by adjusting the penalty weights. Although 
these methods are relatively simple to  use, they have several serious 
shortcomings, perhaps the most important being their inability to 
handle constraints in a general way. Hence, they require “ad-hoc” 
tuning of several parameters making extensive use of simulations. 

Alternatively, the problem can be stated as an optimization 
problem [2]. Then,-mathematical programming techniques can be used 
to  find a solution. However in most cases the control law generated 
is an open-loop control that has to be recalculated entirely, with a 
considerable computational effort, if the system is disturbed. 

Because of the difficulties with the optimal control approach, 
other design techniques, based upon using a Lyapunov function to 
design a stabilizing controller, have been suggested [3]. However, 
these techniques tend to  be unnecessarily conservative. Moreover, 

several steps of the design procedure involve an extensive trial and 
error process, without guarantee of success (example 5.3 in [3]). 

Recently, several techniques that exploit the concept of maximally 
invariant sets to  obtain static [4-61 and dynamic [7-91 linear feedback 
controllers have been proposed. These controllers are particularly 
attractive due to  their simplicity. However, it is clear that only a 
fraction of the feasible constrained problems admit a linear solution. 
Furthermore, performance considerations usually require the control 
vector to be on a constraint boundary and this clearly necessitates a 
non-linear controller capable of saturating. 

Finally, in the last few years, there has been a renewed interest 
in the use of feedback controllers based upon the use of on-line 
minimization. Although this idea was initially proposed as far back as 
1964 [lo], its implementation has become possible only during the last 
few years, when the advances in computer technology made feasible 
the solution of realistically sized optimization problems in the limited 
time available. In [ll-121 we presented a theoretical framework to  
analyze the effects of using on-line optimization and we proposed a 
controller guaranteed to  yield asymptotically stable systems. 

However, although these theoretical results represent a substantial 
advance over some previously used “ad-hoc” techniques, in some cases 
they are overly conservative, requiring the on-line solution of a large 
optimization problem. Since in most sampled control systems the 
amount of time available between samples is very limited, this may 
preclude the use of the proposed controller in many applications. 

In this paper we present a suboptimal feedback controller for the 
minimum-time control of discrete time constrained systems. Following 
the approach presented in [12], this controller is based upon the 
solution, during the sampling interval, of a sequence of optimization 
problems. We will show that by making use of the special structure of 
timeoptimal systems the proposed algorithm results in a significant 
reduction of the dimensionality of the optimization problem that 
must be solved on-line, hence allowing for the implementation of the 
controller for realistically sized problems. 

The paper is organized as follows: In section I1 we present a formal 
definition to our problem. In section I11 we introduce several concepts 
and we review briefly the theoretical framework presented in [12]. Here 
we present a realistic example illustrating dimensionality problems. 
In section IV we present the proposed feedback controller and the 
supporting theoretical results. Finally, in section V, we summarize 
our results and we indicate directions for future research. 

11. Sta t emen t  of t h e  problem. 

In this paper we consider linear, time invariakt, controllable 
discrete time systems modeled by the difference equation: 

&+I = A Z k + B l k ,  k = 0 , 1 , . . .  (SI 

with initial condition L, and the constraints 

( C )  
l k  E 0. C Rm,& E G E R” 

G = (2: IGzI 5 z} , 0 = (2: IWz1 5 MI 
where 1 E RP,g E R*, ~ i ,  U, > 0, G E RP”,W E Rqm with 
full column rank, 7 indicates z is a vector quantity and where the 
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inequalities (C) should be interpreted in a component by component 
sense. Furthermore, we will assume as usual that A-' exists. The 
objective is t o  find a sequence of admissible feedback controls, u k h ]  , 
that minimizes the transit time to  the origin. Thus the problem has 
the form of the following constrained optimization problem: 

min N 
2a-i 

subject to: 

(PI 
- zk+l = A a  -k B& 

2, E E v k, ZpJ = 0 
Throughout this paper we will assume that problem (P) is well posed 
in the sense of having a solution for any initial condition z-, E E. 

111. Definitions a n d  Background Theoret ical  Results. 

In order to  analyze the proposed controller we need to introduce 
some definitions and background theoretical results. We begin by 
introducing some definitions that deal with the controllability aspects 
of the problem and in particular, with the effect of quantizing the 
control space. 

3.1 Definitions 

Def. 1: The Null Controllable domain of (S) is the set of 
all points 2 E Q Rn that can be steered to the origin by 
applying a sequence of admissible controls & E C R", such 
that a E 4,  k = 0 , l .  . .. The Null Controllable domain of (S) will 
be denoted as C,. The Null Controllable domain in j or fewer 
steps will be denoted as C, & C,. 

Def. 2: Consider a closed set R R". A (uniform) quantization 
R. of R is defined as the set {g E R:u. , - - n, ./ s } where U ;  is 
the ith coordinate of 2, n; is integer and s is a scaling factor. The 
quantity l/s will be called the norm of the quantization. 

Def. 3: Let 0 be a convex open set containing the origin and 
such that for all the optimal trajectories starting out in 0, the 
constraints (C) are not effective, and let J&) be the optimal 
cost-t-o from the state +. A function g: R" - R such that: 

0 5 g ( z )  5 Jo(z) v z E E 
g ( 4 )  = J&) v 4 E 0 

will be called an underestimate relative to the set 0. 

3.2 Background Theoret ical  Results 

In this section we establish the background theoretical framework 
required t o  support the proposed controller. We begin by showing that 
problem (P) can be ezactly solved by solving a sequence of suitable 
approximations. 

Theorem 1: Let 0 be the set introduced in Def. 3 and let 
zz@ be the (unconstrained) optimal trajectory corresponding 
to  the initial condition f E 0. Finally let g ( z ) : R "  + R be an 
underestimate relative to 0. Consider the following optimization 
problems: 

f N \  

subject to  (P), with gk E R c Rm and where U = {&,gl ,... }. 
Then an optimal trajectory, &, k = 1,2.. . m which solves ( 2 ) ,  
extended by defining +$ = +$(&),k = m + 1.. . N ,  is also a 
solution of (1) provided that E 0. 

Proof: The theorem corresponds to  a special case of Theorem 1 
in [12], with Lk(a ,&)  E 1. 

It follows that problem (P) can be solved by using the sampling 
interval to solve a sequence of optimization problems of the form (2) 
until a number m and a trajectory zk such that z, E 0 are obtained. 
However this approach presents the difficulty that the asymptotic 
stability of the resulting closed loop system can not be guaranteed 
when there is not enough time to reach the region 0. This difficulty can 
be solved by imposing an additional constraint, which does not affect 
feasibility, upon (P). To show this, we first introduce a constraint- 
induced norm in the set 0. We then show that there exists at least one 
admissible control sequence such that this norm defines a Lyapunov 
function for the system, hence guaranteeing asymptotic stability. This 
result will be applied to generate a stabilizing controller. 

Lemma 1: Let: 

where r = diag(71 . . . yp). Then 1 1 . 1 ( ~  is a norm in R". 

ProoE  The proof follows by noting that since G has full column 
rank, Ilr-lGg(l, = 0 iff = 0. The additional properties of norms 
follow immediately from the definition. 

Theorem 2: Consider problem (P) and assume that the following 
condition holds: 

(4) min{llAz+ %En B ~ l l ~ l  < 1 V 1kIlg 5 1 

Then, there exists an admissible control sequence U = {s,. . .}, 
gk E R such that: 

( 5 )  l k k + l I l G  < (IZkllG, k = o ? l . . . v z k E E - o  

Proof: satisfies the constraint qualification conditions of [12]. 
Therefore the theorem reduces to a special case of Theorem 2 
therein. 

Corollary: Consider the problem (PI) defined as: 

min N 
YEn 

subject to: 

If (4) holds, then (PI) is feasible. 

3.3 Model Algori thm (Algori thm M) 

Consider now the following control algorithm applied to (PI): 

Begin: 

1 )  Let zk be the current state of the system, k the current time 
instant and T the sampling interval. Then: 

i) 

ii) 

If zk E 0 the solution coincides with that of the unconstrained 
problem. 

If zk $ 0, solve a sequence of optimization problems of the 
form ( 2 ) ,  with the additional constraint (5 ) ,  until a number m 
such that a,,, E 0 is found. Use as next control law, the first 
element of the control sequence corresponding to this solution. 
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iii) If there is no more computation time available for searching 
and the region 0 has not been reached, use the minimum 
partial cost trajectory that has been found. 

2) Repeat step 1 until the origin is reached. 

End. 

From Theorem 2 and its Corollary it follows that the application 
of algorithm M to  problem (P') yields a control law such that I l Z k l l G  is 
monotonically decreasing in Q -0. Hence the system is guaranteed to  
reach the region 0. But, since the solution to  (P) is exactly known in 
this region, it follows that the cost-to-go, g(g), is a Lyapunov function 
for the system in 0. Thus the closed-loop system resulting from the 
application of the feedback control law gk = M ( g k )  is asymptotically 
stable. This result is summarized in the next theorem: 

T h e o r e m  3: [12] The closed loop system resulting from the ap- 
plication of algorithm M to problem (PI)  is asymptotically stable, 
provided that there is enough computational power available to 
solve a problem of the form (2) with m = 1 during the sampling 
interval. 

Note that algorithm M is a "conceptual" algorithm, in the sense 
that it can not be implemented until a finite procedure to  perform the 
optimization required by step 1-ii is specified. In our previous work 
[ll-121 we solved this optimization problem by partitioning the control 
space R into a finite set R,. The attainable domain from the initial 
condition, using controls in R., can be represented now as a tree with 
each node corresponding to one of the attainable states. Hence the 
original optimal control problem is recast as a tree search, with the 
approximation resulting from the control quantization. The resulting 
tree can be scanned efficiently for minimum cost paths using heuristic 
search techniques, based upon an underestimate of the cost-to-go [13]. 

In the remainder of this section, we summarize, for completeness, 
the features of the algorithm (see (121 for a complete description) 
and we illustrate, through the use of a realistic example, potential 
difficulties with this approach. We begin by showing that if (P) is 
feasible, then (PI)  is also feasible, even when the controls are restricted 
to  an appropriate quantization R. of R. 

Theorem 4: [ll] Assume that the system (S) satisfies the 
condition (4). Let: 

where L& denotes the boundary of cj. Finally, let so = min { s  E k]. 
Then the constraint (5) can be satisfied for all E E - 0 with y 
restricted to  any quantization R, of R with s 2 so 

Remark:  Note that condition (4) guarantees that S # 0. More- 
over, S is closed, bounded below. Hence so is well defined. 

From Theorem 4 it follows that (P') can be solved by using 
quantized controls in the region cj - 0 and switching to non-quantized 
controls inside 0. However, selecting the norm of the partition to  
satisfy equation (6) may prove overly conservative leading to  a very 
large tree. This phenomenon is illustrated in the following example: 

3.4 A Realistic Problem. 

Consider the minimum time control of an F-100 jet engine. The 
system at sea level static and PLA = 83O can be represented by: 

0.8907 0.0474 -0.0980 0.2616 0.0689 
0.0237 0.9022 -0.0202 0.1057 0.0311 

A = 0.0233 -0.0149 0.8167 0.2255 0.0295 
[ o . o  0.0 0.0 0.7788 0.0 

-0.0979 0.3532 0.3662 0.6489 0.0295 

0.0213 -0.3704 

( 7) 

0.0527 -3.9068 

The sampling time for this system is 25 msec. In this case, 
condition (6) yields - lo3 points for the quantization R,, which is 
clearly impractical. 

IV. Proposed Control  Algori thm 

As we illustrated with the example of the last section, even though 
the assumptions of Theorem 4 are not very restrictive, selecting the 
size of the quantization from (6) may result in an extremely large 
number of possible control actions to be considered. In this section we 
indicate how the special structure of timeoptimal systems can be used 
to  eliminate most of these candidate control actions. Specifically, we 
use a modification of the Discrete Time Minimum Principle to  show 
that the points that satisfy a necessary condition for optimality are 
the corners of a subset of R. Hence, only these points need to  be 
considered by the optimization algorithm. 

4.1 T h e  Modified Discrete  T i m e  Min imum Principle. 

Theorem 5: Consider the problem (P") defined as: 

subject to: 

where cj and R are the compact, convex polyhedrons defined in 
(C), and where S is Frechet differentiable. Define 

Let the cwstates +k be defined by the difference equation: 

+i = + i + i F k + 1  

Finally, define the Hamiltonian as: 

Then, a necessary condition for optimality is: 
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4.2 Using the Modified Discrete Min imum Principle. 

where 
%(Zk ,k )  = {!4E R:lkk+l l lG 5 (1 -c ) l lzk l lGl  (15) 

where 0 is some neighborhood of 2 and where c > 0 is chosen such 
that RI is not empty. 

Proofi From Theorem 2 it follows that there exist 6 > 0 such that 
0 1  is not empty. From the definition of R1 it follows that for any 
% E Rl(gk, 12) there exist a neighborhood 0 C RI,  not necessarily 
open, where (10) holds. Hence, if g k  E E ,  &+I = f(gk,xk) E 
G Vsk E 0. We complete the proof using induction: 

a:) Let denote a non-optimal feasible trajectory obtained by 
employing the non-optimal control law &N-l at stage k = 
N - 1. Consider a neighborhood 0 R of sj;-l such that the 
state constraints are satisfied for all the trajectories generated 
employing controls in 0. For any such trajectory 2,& we have: 

s(&) 5 s ( z N )  (16) 

(17) 
or 

S @ N )  - S k k )  2 0 
Hence: 

b:) Consider a neighborhood 0 C R of 14; such that all the 
trajectories obtained by replacing 2; by any other control in 
0 satisfy the constraints and assume that (14) does not hold 
for some k < N - 1. Then, there exists at least one trajectory 
&,& such that: 

H ( g ; , & k > $ ; )  < H(d>d?$z) (20) 

Therefore: 

> $ f ( f ( & ? % k )  - f(&,.d)) = $fA&+l (21) 

Hence: 

H ( z k + l  ,$+I > ?-$+I) - H(&+i >$+I 7 $;+I) = 

From (24) it follows that 

against the hypothesis that S(+k) was a local minimum o . 

In this section we indicate how to use the results of Theorem 
5 to generate a set of points that satisfy the necessary conditions 
for optimality. In principle, we could apply the discrete minimum 
principle to  problem (P') by taking S ( Z N )  = Ik~llq and solving a 
sequence of problems, with increasing N, until a trajectory z* and a 
number No such that & = 0 are found. However note that Theorem 
5 does not add any information to  the problem since: 

It follows that $ ~ k  = 0 Vk, and hence the optimal trajectory corresponds 
to  a "singular arc". Therefore, nothing can be inferred a priori about 
the controls. In order to  be able to use the special structure of the 
problem, we would like the co-states, $, to  be non-zero. 

Consider now the special case of problem (P") where S ( ~ N )  = 
$llgN1l; (with fixed terminal time N). Let n be the dimension of the 
system (S) and assume that the initial condition is such that the 
origin can not be reached in N stages. Then, it follows from (12) that: 

It follows (since A was assumed regular) that $; # 0 Vk. Furthermore, 
since (S) is controllable, C, has dimension n [ l l ] .  It follows that, by 
taking N large enough will have g, E C,. Hence and approximate 
solution to (I") can be found by solving (P") for N such that Z N  E C, 
and by using Linear Programming to  find the optimal trajectory from 
- Z, to the origin. This idea is the basis of the proposed algorithm. 

Theorem 6: The optimal control sequence U = {& ...EL-,} 
that solves problem (P") for the case of linear time invariant dy- 
namics and linear inequality constraints, is always in the boundary 
of the set RI. Further, the control sequence can always be selected 
to  be a comer point of such set. 

Proof: Since the constraints are linear and $; # 0, it follows that 
the control g; that solves (14) belongs to the boundary of the set 
Rl(+k,k). Further, except in the case of degeneracies, the control 
t~; must be a corner point of the set. In the case of degeneracies, 
all the points of the boundary parallel to the co-state yield the 
same value of the Hamiltonian and therefore the optimal control 
uk can be selected to  be a corner of 0 1 .  

4.3 Algori thm H M ~ .  

In this section we apply the results of Theorem 6 to  obtain a 
suboptimal stabilizing feedback control law. From Theorem 6 i t  follows 
that problem (P") can be solved by using the following algorithm, a 
modification of the Heuristically Enhanced Control idea proposed in 
[ 1 1-1 21: 

Algori thm H M P  (Heuristically Enhanced Control using the mini- 
mum principle) 

Begin. 

1) Determine t for equation (15). Note that since the constraints are 
assumed to  be linear, the maximum value of c can be determined 
off-line using Linear Programming. Let 0 = C1, null controllabil- 
ity region in 1 step, and determine an underestimate g(.) relative 
to  0. 

2) Let be the current state of the system: 

2.1) IfZ, E C,, null controllability region in n steps, solve problem 
( P )  exactly using Linear Programming. 
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2.2) If 3 # C ,  generate a tree by considering all possible trajec- 
tories starting at zk with controls that lie in the corners of 
the polytope Ol(gk,k) .  Search the tree for a minimum cost 
trajectory to the origin, using heuristic search algorithms and 
g(.) as heuristics. 

2.3) If there is no more computation time available for searching and 
the region 0 has not been reached, use the minimum partial cost 
trajectory that has been found. 

3) Repeat step 2 until the region the origin is reached. 

End. 

Remark:  Note that by solving problem (P") instead of (P) we are 
relinquishing optimality, since the trajectory that brings the system 
closer t o  C, is not necessarily the trajectory that will yield minimum 
transit time to the origin. However, for any "reasonable" problem, 
we would expect both trajectories to be close in the sense of yielding 
approximately equal transit times (in the next section we will provide 
an example where this expectation is met). 

I 
I /:"E 

Fig 1. Using the Discrete Minimum Principle to Limit the Search 

4.4 T h e  Heuris t ic  for Algori thm H M ~ .  

In order to  complete the description of algorithm H M P  we need 
to  provide a suitable underestimate g(g). In principle, an estimate of 
the number of stages necessary to reach the origin can be found based 
upon the singular value decomposition of the matrices A and B ,  using 
the same technique that we used in (121. However, in many cases 
of practical interest such as the F-100 jet engine of section 3.4, the 
limitation in the problem is essentially given by the state constraints 
(i.e. the control authority is large). In this situation, this estimate 
yields an unrealistically low value for the transit time, resulting in 
poor performance. 

The performance of the algorithm can be improved substantially 
by considering an heuristic based upon experimental results. Recall 
that optimality depends on having, at each time interval, an underes- 
timate g(a;) of the cost-to-go. Consider now the Null Controllability 
regions (ck). It is clear that if they can be found and stored, the 
true transit time to  the origin is known. If the regions are not known 
but a supraestimate Ci such that ck C; is available, a suitable 
underestimate g(a ) ,  can be obtained by finding the largest k such that 
- 2 E Ci and 4 $ Ci-l.  However, in general these supraestimates are 
difficult to find and characterize [ll]. Hence, it is desirable to  use 
a different heuristic, which does not require the use of these regions. 
From the convexity of O and B it follows that the regions ck are 
convex. Therefore, a subestimate C#k such that Csk g ck can be 

found by finding points in the region ck and taking c,k as their convex 
hull. Once a subestimate of ck is available, an estimate a(&) of the 
cost-to-go can be found by finding the largest k such that 2 E C#k and 
2 $ C a k - 1 .  Note that this estimate is  not an underestimate in the sense 
of Def. 4. Since c s k  c ck then zk E c k  + zl, E C a k  and therefore 
i j ( & k )  is not necessarily 5 k. Thus, Theorem 1 that guarantees that 
once the set 0 has been reached the true optimal trajectory has been 
found is no longer valid. Nevertheless, we expect that if enough points 
of each region are considered so that the subestimates are close to the 
true Null Controllability regions, then the control law generated by 
algorithm H M P  should be close to  the true optimal control. This idea 
is illustrated in the following section. 

4.5 Application to t h e  Realistic Example.  

In this section we will argue the soundness of the approximation 
introduced in the last section by comparing the results of applying 
algorithm H M P ,  with the heuristic resulting from the use of subesti- 
mates of the controllability regions, against the true optimal controller 
for the problem of section 111. 

Optimol Controller 

70 

Tlme (seconds) 

Suboptimal Controller 

1 ..... yz 

.w .lo .20 .Jo .4a .SO . I O  .70 .BO 
llme (seconds) 

Fig. 2. Optimal Control vs. Algorithm H M P  
for the Example of Section 3.4 

Figure 2 shows a comparison between the trajectories for the 
optimal control law and algorithm H M P .  In this particular case, the 
optimal control law was computed off-line by solving a sequence of 
linear programming problems, while algorithm H l ~ p  was limited to  
computation time compatible with an on-line implementation. The 
value of c was set to  0.01 (using linear programming it was determined 
that the maximum value of e compatible with the constraints is 0.025), 
and each of the regions Csk was found as the convex hull of 32 points, 
using optimal trajectories generated off-line. Note that in spite of 
being limited to running time roughly two orders of magnitude smaller 
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than the computation time used off-line to find the true optimal 
control solution, algorithm H M ~  generates a solution that takes only 
25% more time to  get to  the origin (25 vs. 31 stages). 

60 ’4; ’:, 

50 ” ... 

..... y2 

Fig. 3. Algorithm H M ~  with perfect information 

Figure 3 shows the results of applying algorithm H M ~  when the 
heuristic is perfect (i.e the exact transit time to the origin is known). 
By comparing figures 3 and 4 we see that most of the additional cost 
comes from the approximation made in Theorem 6, while the use of an 
estimate of the cost-to-go based upon the subestimates C,k (rather 
than a “true” underestimate as required by Theorem 1 )  adds only 1 
stage to the total transit time. 

V. Conclusions 

Most realistic control problems involve some types of constraints. 
However, although there presently exist efficient techniques for ad- 
dressing frequency domain constraints, satisfactory techniques for 
systematically handling time-domain constraints have started to ap- 
pear recently. Following the idea presented in [11-121, in this paper 
we propose to  address time-domain constraints by using a feedback 
controller based upon the on-line use of a dynamic-programming 
approach to  solve a constrained optimization problem. Theoretical 
results are presented showing that, with the addition of a rather 
modest condition, this controller yields asymptotically stable systems, 
provided that the solution to  a optimization problem, considerably 
simpler than the original, can be computed in real-time. 

In the first part of the paper we presented arealistic example, illus- 
trating potential difficulties with dynamic- programming approaches. 
These difficulties can be circumvented by applying a suitably modified 
discrete time minimum principle, which allows for checking only the 
vertices of a polytope in control space. The proposed approach results 
in a substantial reduction of the dimensionality of the problem (two 
orders of magnitude for the case of the example presented in section 
3.4). Hence, the proposed algorithm presents a significant advantage 
over previous approaches that use the same idea, specially for cases, 
such as Example 3.4, where the time available for computations is very 
limited . 

In the second part of the paper, we addressed the problem of 
finding an underestimate of the cost, required by the algorithm, for 
the case where the limitations in the problem come essentially from 
the state constraints. We showed that by relinquishing theoretical op- 
timality, an heuristic estimate can be found based upon experimental 
data obtained off-line. Through simulation results we showed that 
even though theoretically we are giving up optimality, the behavior 
of the system is practically unaltered by this choice. Furthermore, 
the closed loop system obtained by combining this estimate with 

the approximation of the first part, presents very good performance 
when compared to the true optimal solution found using an off-line 
procedure. 

We believe that the algorithm presented in this paper shows great 
promise, especially for cases where the dimension of the system is 
not small. Note however, that the algorithm requires the real time 
solution of two non-trivial computational geometry problems in R”: 
determining the inclusion of a point in a convex hull and finding all the 
vertices of a polytope. Recent work on trainable non-linear classifiers 
such as artificial neural nets and decision trees may prove valuable in 
solving the first problem. 

Perhaps the most serious limitation to  the theory in its present 
form arises from the implicit assumption that the model of the 
system is perfectly known. Since most realistic problems involve some 
degree of uncertainty, clearly this assumption limits the domain of 
application of the proposed controller. We are currently working on a 
technique, patterned along the lines of the Norm Based Robust Control 
framework introduced by Sznaier [6], to  guarantee robustness margins 
for the resulting closed-loop system. A future paper is planned to  
report these results. 
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