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Most realistic control problems involve some types of con- 
straints. However, up to  date all the algorithms that deal with 
constrained problems assume that the system is perfectly known. 
On the other hand, during the last decade a considerable amount 
of time has been spent in the robust control problem. However, 
in its present form, the robust control theory can address only 
the idealized situation of completely unconstrained problems. In 
this paper we present a theoretical framework to analyze the 
stability properties of constrained discrete time systems under the 
presence of uncertainty and we show that this formalism provides 
a unifying approach, including as a particular case the well known 
technique of estimating robustness bounds from the solution of a 
Lyapunov equation. These results are applied to the problem 
of designing feedback controllers capable of stabilizing a family of 
systems while at the same time satisfying state-space constraints. 

I. In t roduct ion  

A large class of problems frequently encountered in practice 
involves the control of linear systems with states restricted t o  
closed convex regions of the space. Several methods have been 
proposed recently to  deal with this class of problems (see (11 for 
a thorough discussion and several examples), but as a rule, all of 
these schemas assume exact knowledge of the dynamics involved 
(i.e. exact knowledge of the model). Such an assumption can be 
too restrictive, ruling out cases where good qualitative models 
of the plant are available but the numerical values of various 
parameters are unknow or even change during operation. On 
the other hand, during the last decade a considerable amount 
of time has been spent analyzing the question of whether some 
relevant quantitative properties of a system (most notably asymp- 
totic stabitity) are preserved under the presence of unknown 
perturbations. This research effort has led to procedures for 
designing controllers, termed “robust controllers”, capables of 
achieving desirable properties under various classes of peyturba- 
tions. However, these design procedures cannot accommodate 
directly time domain constraints, although some progress has 
beeu made recently in this direction (2-4;. 

In this paper we present a theoretical framework to  malyze 
the stability properties of constrained discrete time systems under 
the presence of uncertainties and we apply this framework to  the 
problem of designing feedback controllers capable of stabilizing a 
family of systems while at the same time satisfying state space 
constraints. We believe that the results presented here will pro- 
vide a valuable new approach for achieving what has been stated 
as the ultimate objective in control design: “Achieve acceptable 

performance under perhaps substantial system uncertainty aad 
under design constraints imposed either by the technology or by 
the nature of the physical s-ystem.” 

The paper is organized as follows: In section I1 we introduce 
the concepts of constrained stability and robust constrained sta- 
bility and we use these concepts to give a formal definition of 
the robust constrained stability analysis and robust constrained 
stability design problems. The analysis problem is studied in 
section I11 where we give necessary and Sufficient conditions for 
constrained robustness and where we show that our approach 
includes as a special case the well known technique of estimating 
robustness bounds from the solution of a Lyapunov equation. In 
section IV we apply the results of section I11 to the design problem 
and we show that in cases of practical interest our approach 
yields a well behaved optimization problem. Finally, in section 
V, we summarize our results and we indicate directions for future 
research. 

11. Definitions a n d  S t a t e m e n t  of t h e  Problem 

In this section we introduce a formal definition of the robust 
constrained control problem. We begin by introducing the con- 
cept of constrained stability: 

Def. 1: Consider the linear, time invariant, discrete time, 
unforced system modeled by the difference equation: 

subject to  the constraint 

where A E R”’” and where 2 indicates z is a vector quantity. 
The system (S) is Constraint Stable (C-stable) if for any point 
5 E 4, the trajectory ~ ( 2 )  originating in remains in G for 
all k. 

We proceed to introduce now a restriction on the class of 
constraints allowed in our problem. As it will become apparent 
latter, the introduction of this restriction, termed the constraint 
qualification hypothesis, while not affecting significantly the num- 
ber of real-world problems that can be handled by our formalism 
[5], introduces more structure into the problem. This additional 
structure is used in Lemma 1 to show that the constraints 
induce a norm in 9. In turn, this norm will play a key rQle in 
section I11 where we derive necessary and sufficient conditions for 
constrained stability. 
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Constraint  Qualification Hypothesis  

In this paper, we will limit ourselves to  constraints of the 
form: 

g ~ E = { c € R ~ : ( G ( r ) ) , < w , ,  i = l  . . . p }  (2) 
where 
properties: 

E Rp, w, > 0 and where G: R" - Rp has the following 

G(E), 2 0, i = 1 .. . p v g  
G(a)=O U g=O 

(3) 
G(Z+y)i 5 G(c), + G(y)t, i = 1.. .PVC,Y 

G(X2) = XG(a), 0 5 X I 1 

In the next Lemma we show that G(.) induces a norm, and 
we characterize Q in terms of this norm. 

Robust Constrained Stability Analysis Problem: 

Given the family of linear time invariant discrete time sys- 
tems represented by ( S A )  compute the constrained stability 
measure &'. 

Linear Robust Constrained Stability Design Problem: 

Given the family of linear time invariant discrete time systems 
represented by: 

= ( A  + A)& + B a  

find a constant feedback matrix F such that for the closed- 
loop system: 

L e m m a  1: Let: 

where W = dzag(w1,. . .,wp). Then w(.) defines a norm in R" 
and the set 4 can be characterized as: 

G = {e: I k I I G  5 1) (5) 

Proof: The proof of the lemma follows by noting that the 
constraint qualification hypothesis (3) implies that: 

Ikdb = llW-lG(z)lb (6) 
satisfies the conditions for a norm in R". 

Next, we take into account uncertainty in the dynamics by 
extending the concept of constrained stability to a family of 
systems and we define a quantitative way of measuring the "size" 
of the smallest destabilizing perturbation. 

Def. 2: Consider the system (S). Let the perturbed system 
( S A )  be defined as: 

where A belongs to  some perturbation set 2) c R"'". The 
system (S) is Robust Constraint Stable (RC-stable) with 
respect to  the set 'D if ( S A )  is C-stable for all perturbation 
matrices A E 2). 

De€. 3: Let ( I . ( ~ N  be an operator norm defined in the set ?>, 
and define the set BAN as the intersection of 2) and the origin 
centered N-norm unity ball in parameter space, i.e.: 

BAN = {A ED: IlAll~ 5 1) 

The Constrained Stability Measure with respect to  the norms 
1 1 . 1 1 ~  and I&, $, is defined as: 

= max{p: (Sa) is C-stable with respect to pBA'} 

In the particular case that the induced operator norm 11.119 is 
used in the set I), we will denote the Constrained Stability 
Measure as pc and the set BAN as BA. 

With the concepts introduced in this section, we are ready 
now to give a formal definition t o  our problem: 

the constrained stability measure is maximized. 

111. Theoret ical  Resul t s  

In this section we present the basic results that are required to 
solve the analysis problem. These results will be used in section IV 
to solve the design problem. We begin by presenting a necessary 
and sufficient condition for Robust Constrained Stability of a 
family of systems. This result is then used to compute the actual 
value and lower bounds on the constrained stability measure 
introduced in the last section. 

T h e o r e m  1: The system (S) is RC-stable with respect to 
the set 2, iff: 

IIA + AI19 5 1V A E D (7) 

(8) 

where Il.llG denotes the induced operator norm, i.e.: 

I I A  + AllG = 11~:~1 {ll(A + A)dI'J) 

Proof: Assume that ( S A )  is constrained stable. Then, for 
a ry  g E 8, ( A  + A)g E G. Hence, from Lemma 1 we have: 

IIA + AIIO = , , ~ ~ ~ l { ~ ~ ( A  + A)Zl\GI 
(9) = y$ll(A + A)cllol I 1 

Conversely, assume that IIA+AIIG 5 1 and let 2 be an arbitrary 
point in 8 such that l ( ~ ( 1 ~  # 0. Then we have: 

and therefore 
II(A + A)dlG 5 l k l l G  5 1 (11) 

which implies that ( A  + A)b E G. The proof is completed by 
noting th,t if l l r l \ ~  = C then ( A  + A)z = 0 E G 0. 

Remark:  Note that if I1A + Al(o < 1 for all A E 2) then 
(A + A )  is a contraction mapping and the system (Sa) is 
asymptotically stable 161. 
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In the next lemma we introduce a lower bound of the con- 
strained stability measure. In Theorem 2 we show that for 
unstructured perturbations (i.e. the case where 2, 3 R"'") this 
lower bound is saturated. 

Example 1: (unstructured perturbation) 

In this case, Theorem 2 yields p p  = 1 - JlAll~ where: 

llA118 = ll Allb = m,"; (z) xT AT P A 2  (24) 

Consider now the case where p p  > 0. Then, there exists Q 
positive definite such that: 

ATPA- P =  -Q (25) 

0 T h e o r e m  2: For the unstructured perturbation case, i.e. the 
case where 2, t R"'", condition (13) is saturated. 

Proof: Let: 

and define: 
= 1 - IlAllG 

A AA A%- 
IlAllG 

Then: 

and 
IIAOllG = 

AA 
IlA + Aollo = (1.4 + - IlAllP lo 

x 
= IIAllG (1 + m) 
= IIAIIg + = 1 

Hence, from the definition of p~ we have that: 

1 - IlAll~ = lIA"11~ I eo 
but, from Lemma 2 we have that: 

eo 2 1 - IlAll~ 

Hence it follows that pG = 1 - llAll~ o 

3.1 Quadra t ic  Constraints  Case: 

In this subsection we particularize our theoretical results for 
the special case where the constraint region is an hyperellipsoid, 
i.e. the case where: 

G(r)  = (,zTPr)*, P E  R"'" positive definite (23) 

We will show that in this case our approach yields a generalization 
of the well known technique of estimating the robustness measure 
by using quadratic based Lyapunov functions, (see [7] and refer- 
ences therein) by obtaining robustness bounds previously derived 
in this context. Moreover, using our approach we will show that in 
some cases these bounds give the actual value of the constrained 
stability measure. 

Hence: 

A common technique in state space robust analysis is to  
obtain robustness bounds from equation (25) ([8, 91). This 
case can be accommodated by our formalism by recognizing 
the fact that once P is selected, the system becomes effectively 
constrained to  remain within an hyperellipsoidal region. It 
has been suggested ([S, 91) that good robustness bounds can 
be obtained from (25) when P is selected such that Q = I .  In 
this case our approach yields: 

pG = 1 - llAllG = 1 - 1 - - ( cMa:(p)) ' (28) 
which coincides with the robustness bound found by Sezer 
and Siljak [9]. Note however that our derivation shows this 
bound to  be exact. 

Example 2: (Unstructured perturbation, A semisimple) 

Consider the case where A is semisimple, i.e. 
A = L-lhL 

Then, the maximum of the stability measure, eg, over all 
possible positive definite matrices P, is achieved for P = LTL. 

Proof: From (24) and (29) we have: 
xT AT P A g  

IIAID = m p  { -} 

= max IILAL-lgII: 

= I]LAL-'$ = uba,(h) 
llgll a= 1 

From (29) it follows that: 

c M a s ( A )  = m,p IX:l= p(A) (31) 
where At denotes the eigenvalues of A and p( . )  denotes the 
spectral radius. Since the spectral radius is always emdler 
than any other matrix norm [lo] we have that: ' 

IIAllw I AA) = IIAII.m (32) 

(33) 

and therefore: 
e L r L  = 1 - IIAll~rt 

2 pM = 1 - IlAll~ tl A4 E R"'", positive definite0 
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and, from Lemma 4, 

3.2 Polyhedral  Constraints  

In this subsection we consider the case where the region is 
polyhedral, i.e. the w e  where: 

(3x1 = IGA (34) 

where G E R"'" and rank(G) = n, i.e. ( P G )  is non-singular. We 
begin by showing that in this case the induced norm of an operator 
M, IIMIIG, can be expressed in terms of the infinity norm of an 
operator H linearly related to  M. This result is used to  obtain a 
particular expression of condition (12) which in turn allows for the 
computation of the constrained stability measure as the solution 
of a Linear Programming problem. 

The results of Lemma 3 can be used to  efficiently compute 
&' as the minimum of the solution of p Linear Programming 
problems as follows: 

L e m m a  4: Let 6 be the solution of the following optimiza- 
tion problem: 

e;" = gZ{llhllM: I I W - ~ H  + A H ) W I ~  2 1) (38) 

where IlMIlf) indicates the Ll norm of the it* row of the matrix 
M and where H and A H  are defined as in Lemma 3. Then: 

(39) 

Proof: The proof (ommited for space reasons) is based upon 
assuming that (39) is false and showing that this leads to  a 
contradiction. 

Example 3: (unstructured perturbation) 

Consider the following case: 

(40) 
Then, from the definition of H, we have that: 

Casting the problems (42) into a linear programming form 
ar,d solving we have that: 

el = 0.2417, e2 = 0.2417 and pp = min pi = 0.2417 
1sisZ 

Note that in this case e G  = 1 - llAllg = 0.2417 as shown in 
Theorem 2. 

IV. Application t o  Robust Controllers Design 

In this section we apply our formalism t o  solve the linear 
robust constrained stability design problem introduced in section 
11. From Theorem 1 it follows that a full state feedback matrix 
F such that the constrained stability measure, E$', of the closed 
loop system is maximized can be selected by solving the following 
max-min problem: 

(43) 

then (43) is equivalent to  the following optimization problem: 

Note that since the function defined is (44) is in genera) non- 
differentiable, non-smooth optimization techniques must be used 
to solve (45). Moreover, in general nothing can be stated about 
the existenceof local minimaof (44). Hence a general non-smooth 
optimization algorithm could conceivably get trapped at  local 
extrema. However, in the next theorem we show that for a case 
of practical interest, (45) reduces to the well behaved problem of 
finding the maximum of a concave function. 

T h e o r e m  3: Consider the particular case where D is a cone 
; A 2 0). with vertex at the origin, (i.e. A E 'D CJ AA E 

Then d ( F )  is a concave function. 

The proof of the theorem is given in Appendix A. Note that 
the class of sets considered in this theorem includes as a 
particular case sets of the form: 

D = [A: A = 5 p i P ;  pi 2 0, Ei given} (46) 
I 1 J 

which has been the object of much interest lately (111-131 and 
references therein). 

At the present time, we are investigating several methods of 
solving (45), and a future article is planned to  report the results. 
In this paper, we will limit ourselves to  the restricted rase of 
unstructured perturbations. In this case, from Theorem 2 we 
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have that @Q = 1 - llA + BFllo. Hence, (45) reduces to solving the 
following convex minimization problem: 

F = argmax = argmin IIA + BFllo (47) 
F F 

In the remainder of this section, we will indicate how problem 
(47) can be solved for the particular cases of quadratic and polyhe- 
dral constraints. We begin by considering quadratic constraints: 

4.1 Quadrat ic  Constraints  Case 

In this case (47) can be solved using standard results on 
matrix dilations [14]. Let P = LTL and assume that ranE(B) = 
m. Then, since the 2-norm is invariant under orthonormal 
transformations we have that: 

IIA + B F ~ ~ L T L  = IIL(A + BF)L-'II1= IIA + BPI12 (48) 

where A = QLA(QL)-', B = QLB, P = F(QL)-' and where Q 
is an orthonormal matrix such that: 

B = (2) , Bl invertible (49) 

Then: 

F d  it follows that the optimal F is such that AI + Blp = 0, i.e. 
P = -BilAl and that m911A + B F l l L T L  = llAzl12 = u,w,,=(A~). 

Example 4: 

Consider the system: 

= (!084 !:;) = (!) 
p =  (1.0 0.0) y = l  0.0 1.0 

A direct application of (50) yields: 

Fo = (0.4 -1.2), llA + BFoll, = 0.9434, e: = 0.0566 

4.2 Polyhedral Constraints  

When the constraints are polyhedral, (47) can be cast in the 
following format: 

mine (51) 

By using (35), the inequalities (52) can be transformed into: 

IG(A+ BE)(@G)-'PIKS w (53) 

The optimization problem defined by (51) and (53) can be cast 
into a Linear Programming problem and solved using the simplex 
method. 

Example 5: 

Consider the following system: 

A = (-\84 !:;) = (!) 

Using Linear Programming we get: 

F = ( 0.3792 -0.6917 ) 

where A,, denotes the closed-loop matrix, eig(Act) its 
eigenvalues and p(A) its spectral radius. Hence we have: 

ep  = 1 - llAclll~ = 0.2417 

V. Conclusions 

As we mention in the introduction, the ultimate objective 
in control design can perhaps be summarized as [2]: Achieve 
acceptable performance under perhaps substantial system un- 
certainty and under design constraints". This statement looks 
deceptively simple, but up to date design techniques focus either 
only on the uncertainty issue or only on the constraint satisfaction 
issue. In this paper we presented a theoretical framework capable 
of simultaneously addressing both issues. Since most physically 
generated constraints have a natural expression in time domain, 
our analysis focuses in state-space robustness analysis. 

In section 11, we introduced the concept of robust constrained 
stability and we introduced a quantity, the constrained stability 
measure, that measures the "size" of the smallest destabilizing 
perturbation. In section I11 we presented necessary and suffi- 
cient conditions guaranteeing constrained robust stability and we 
showed that our formalism provides a unifying approach, includ- 
ing as a particular case the well-known technique of estimating 
robustness bounds from the solution of a Lyapunov equation. 
Finally, in section IV, we considered the design problem. There, 
we showed that a full state feedback matrix that maximizes the 
stability measure of the closed loop system can be found as the 
solution of a game-like problem. Although the properties of this 
problem are still unknown for the general case, we proved that in 
a specific case that has been the object of much attention lately, 
it leads to the well behaved problem of finding the maximum of 
a concave function. Finally, we considered the particular case of 
unstructured perturbations and we showed that in this case the 
problem reduces to the simpler case of finding the minimum of a 
convex (albeit perhaps non-differentiable) function. 

We believe that the results presented here will provide a valu- 
able new approach to the problems of robust controllers analysis 
and design for linear systems. Further, since our approach is Sased 
purely upon time-domain analysis, we have reasons to  believe 
the theory could be extended to encompass non-linear systems 
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in a much more direct fashion that some of the currently used 
techniques . 
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