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Abstract. 

A suboptimil controller based upon on-line quadratic 
programming is  described. Theoretical results are presented to 
show that such  a  controller is optimal under the assumption that 
there  are no constraints on the Computation time. Finally, an 
implementation of a  suboptimal  controller that takes such 
constraints into  account is described. 

Introduction. 

A large  class of problems frequently encountered in practice 
involves the  control of linear time invariant systems with control 
and state inequality constraints.  Noldus [l] analyzed the 
controllability of such systems using a  Lyapunov approach. 
Gutrnan [2 ,  31 gives an algorlthm to find maximal initial condition 
sets (defined below) and  a time varying feedback control law to 
transfer such systems to the origin. 

Once the problem of transfering such a system from an initial 
condition to the origin is determined to be feasible, a question of 
interest is  how to effect this transfer in a way that is optimal in 
some  sense. Classically this problem has been solved using 
Mathematical  Programming techniques [5] - [7]. These  approaches 
have the disadvantage of yielding open loop  control  laws that have 
to be recalculated entirely if the system is perturbed. A different 
approach is used by Gutman in [4] where a regulator based upon 
the on-line  use of Linear  Programming  for the minimum time 
control of a reservoir is described. 

In this paper we propose an optimal feedback controller for 
discrete  linear time invariant systems with quadratic cost function 
and linear control and state inequality constraints based upon real 
time Quadratic  Programming.  The first part of the paper states the 
basic theorical results. In the second part, we describe a  controller, 
based upon these results and heuristics, that takes into account the 
constraints imposed by the limited amount of time available 
between samples to solve the QP program. By casting the problem 
as an  on-line  optimization  problem, we address the fundamental 
issue that open  loop  control  cannot respond to present  conditions. 
By including constraints on the computation time, we make the 
problem realistx. 

Statement of the Droblem . 
Given the linear, time invariant,  controllable system: 

x(k+l) = AX@) + Bu(k) (1) 

with x(0) = xo, u(k) E Rm, x(k) E Rn and the additional 
constraints: 

u@) E R, x:k) E G (2) 

where R and G are  compact  convex polyhedrons containing the 
origin in thex interior, 

m 

find u(k) to minimize  J(x,u) = O S (  zxT(k)Qx(k) + uT(k).<u@)) 

subject to (1) and (2), with Q positive semidefinite and R positive 
definite. 
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Definitions. 

The initial condition set X E G is the set such that: 

X = { x : if x(0) = x in (l), then there  exist  a sequence u(k) E R 
such that x@) E X for every  k and limk+x(k) = 0 } 

The set X is  called R invariant [2]. 

Given a  constant feedback mamx K, the set XK is defined as: 

YK = { x:  if x(0) = x  in (1) then: 
1)the feedback law u(k) = -Kx(k) generates a control 
u(k) E R for  every  k 

2)the  states x(k) of the closed loop  system  never leave 
the region G 

3)limk+&i(k) = 0 } 

Lemma. Let KO be the optimal feedback gain obtained using the 
standard Linear Quadratic procedure. Then, if the initial condition 
x(0) E XKo, the closed loop  system states x(k) E X,, for every k. 

The proof follows from the fact that the system is time invariant 
and any point of an optimal trajectory, if taken as the initial 
condition, will yield the same trajectory. 

Remarks: 1)If the initial condition x(0) E XK then the solution to 
the constrained  optimization  coincides with tge Linear Quadratic 
solution. 
2) The  lemma establishes that once the system reaches the region 
X K ~ ,  it remains there . 

Theorems. 

The  following theorems provide the required t'leoretical 
background. Their proofs follow from the behavior of linear 
systems, convexity and continuity arguments and Hamilton-Jacobi- 
Bellman theory. 

Theorem I. There  exist  an open ball B(0,r) X K ~ .  

Theorem 11. Let Y G be a convex polyhedron given by its 
vertices yi,  i =l,n. Then Y E iff yi E X K ~ .  

Theorem III. Consider the following optimization problems: 

Min { J(x,u) = O S (  2 xTQx + uTRu)} (3) 
U 0 

n - l  
Min { Jn(x,u) = O S (  xTQx + urRu) + OSxT(n)Sx(n)} (4) 

subject to (1) and (2), with Q positive semi definite and R positive 
definite,  where S is the solution to the Riccati equation derived 
from the unconstrained Linear Quadratic problem*. 

Claim 111-a: An optimal trajectory, xo(k), k=1,2.. which solves (4) 
is also a  solution of (3) provided that xo(n) E X K ~ .  
Claim  III-b: Consider now the optimizatlon problems: 
Min Jn(X,U) (5) 
M n  Jm(x,u) with m >n (6) 
Then  a  solution xo(k) to (5) is  also  a solution to (6) provided that 

U 0 

xO(n) E XKo. 

* We will assume that the initial condition of the system x(0) E X, so there is at 
least one feasible solution to the problem 



Control algorithm. 

From  theorem 111 it follows that the solution to the optimization 
problem (3) can be obtained by solving the sequence of quadratic 
programs of type (4): 

min Jn(x,u)  n=1,2 .... u(k) E Q, x(k) E G 

until a solution such that x(n) E XK is obtained. In addition, claim 
111-b shows that once  such a sohion  is obtained, no  further 
improvement  in the cost will be achieved by increasing n. 

Based upon these results we propose the following real time 
control  algorithm using on-line quadratic programming: 
Consider the discrete linear time invariant system given by (1). Let 
y be the current state of the system, k the current time instant and 
AT the sampling interval. Then: 

If y E X K ~  the solution coincides with that of the unconstrained 
L, Q problem: u(m) =-Kox(m) for m t k. 
If y e X K ~  solve the sequence of quadratic  programs given by: 

min { Jn(x,u) = OS(2 xTQx + umu) + OS*xT(n)Sx(n)} n=1,2., 
n-1 

U 0 

subject to (1) and (2) with x(0) = y until a solution x(k), u(k) 
and a number n such that x(n) E X,, are obtained. If such a 
solution has not been reached during the interval AT available 
for computations  use the solution of the last QP program solved 
as the control law. 

Note that theorem I1 provides an easy way  of constructing a region 
contained  in X K ~  that is  required by the algorithm. 

A simple exarnde: 

Consider the system given by [5]: x&+l) = Ax&) + BUR) with: 

1 1.0 
0.2212 r 0.0288 1 A =  1 B =  ' ~ (7) 

I 0.0 0.7788 L0.2212 1 c 

The objective is to drive the system to the origin with unspecified 
final  time  and with minimum energy, so the matrices Q and R are 
selected to be the identity of appropiate dimensions. 
Assume that the admissible states and control are restricted to: 

1x11 5 1.5, 1x21 2 0.3, I u ~  20.5 (8) 

The unconstrained Linear Quadratic solution is given by: 

u = -KG, KO = [ 0.8831 0.88111 (9) 

It is easily verified that the points (0.5,O); (0,0.3); (-0.5,O); and (0,- 
0.3) belong to the  region X K ~ .  Hence by theorem II the square that 
has these  points as vertices is entirely contained in XK,. This 
square  was  employed as a criteria for stopping the formulation of 
succesive  quadratic programs. 

Figure 1 shows the response of the controller to the initial 
conditions (1.0,0.3). For the on-line quadratic programming we 
employed Wolfe's algorithm [8] and the controller was limited to 
computing only 3 terms of the sequence (n 3).  Note that up to t = 
1 sec.  the  system  is limited by the control constraint. From t = 1.5 s 

to 2.5 s the control is unsaturated and the system is limited by the 
constrains on  the velocity. 

Conclusions. 

In this paper we present a feedback  controller based upon a 
sequence of quadratic programs that are solved at each sampling 
interval. From the results of the theorems presented it is  clear that 
the performance of this controller approaches the performance of 
the true optimal  controller when the sampling interval AT is  large 
enough to allow for the computation of several terms  of  the 
sequence. 

We believe that this controller will be valuable for the  control of 
systems where the classical approaches of computing  and storing a 
family of extremal curves or solving a Hamilton-Jacobi type 
equation in  real time are not applicable. An example of such a 
situation could be a microprocessor controlled robotic system. 

There are many open questions which remain to be resolved. 
Perhaps  most  important, the stability properties of the controller 
are unclear when there  is  not  enough time to compute  the true 
minimum and the last computed control law is used. A related 
question is that of finding maximal regions in the state space 
where  the proposed controller can be proved to be stabilizing. 
Another need  is to find algorithms to construct maximal regions 
contained in XKO. Finaly, a very practical concern is to find time- 
optimal and memory-optimal  quadratic prognmming algorithms 
that will allow for the computation of enough terms of the 
sequence with the limited  resources that one expects to have on a 
microprocessor based system. 
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