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Abstract— In this paper we consider the problem of recov-
ering the 3–dimensional Euclidian structure of a rigid object
from multi-frame point correspondence data in a sequence of
2–D images obtained under perspective projection. The main
idea is to recast the problem as the identification of an LTI
system based on partial data. The main result of the paper
shows that, under mild conditions, the lowest order system
whose projections interpolate the 2-D data, yields (up to a
single scaling constant) the correct 3 dimensional Euclidean
coordinates of the points. Finally, we show that the problem
of finding this system (and hence the associated 3-D data) can
be recast into a rank minimization form that can be efficiently
solved using convex relaxations. In contrast, existing approaches
to the problem, based on iterative matrix factorizations can
recover structure only up to a projective transformation that
does not preserve the Euclidian geometry of the object.

I. INTRODUCTION

The problem of structure from motion (SfM) consists of

recovering the 3D shape (structure) of a rigid object or scene

from a set of correspondences of features in a sequence

of 2D images captured by a camera. This is a central

problem in computer vision with many applications including

image-based modeling for computer graphics and animation,

autonomous navigation, and human computer interfaces. An

extensive review and explanation of SfM methods can be

found in the textbooks [1], [2].

The most popular algorithms for SfM are based on the fac-

torization method for 3D reconstruction under orthographic

projection proposed by Lucas and Kanade in [3]. In this

approach, a measurement matrix consisting of the image

coordinates of the set of point features tracked over the

sequence is factored through a singular value decomposition

(SVD) into a motion matrix with the motion matrices for

each frame stacked on top of each other and a structure

matrix with the 3D coordinates of the tracked scene points.

Since the original formulation of this method, several ad-

ditions and improvements have been proposed to enhance

its performance and expand its application. Morita and

Kanade [4], proposed sequentially updating the factorization

to improve run time, and Fransen et al [5] used system

identification techniques to improve robustness to tracking

errors. Several extensions have been proposed to deal with
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non rigid objects [6]–[8] and to segment multiple moving

objects [9]–[19].

The factorization method was also expanded to handle

paraperspective projection in [20] and perspective projections

in [21], [22]. However, these methods are not longer based

on a simple SVD due to the nonlinearity introduced by

the projection. Instead, the factorization is found after an

iterative procedure to search for the unknown projective

depths. Furthermore, they can only recover 3D structure up

to a projectivity transformation at each frame. That is, if a

set of unknown depths Zij is a solution, then the same set

multiplied by a time and point varying scaling factor λij is

also a solution. Recovering the Euclidian geometry entails

an additional computationally challenging non–linear, non–

convex optimization.

Motivated by these difficulties, in this paper, we present

a convex–optimization based solution to the SfM problem

under perspective projection capable of recovering the Eu-

clidean 3D structure up to a single constant scaling factor

across the entire motion sequence. This is accomplished by

exploiting the dynamical information encoded in the tempo-

ral ordering of the frames. Specifically, the main result of the

paper shows that, under mild conditions, the lowest order

system whose projections interpolate the 2-D data, yields

(up to a single scaling constant) the correct 3 dimensional

Euclidian coordinates of the points. Finally, we show that

the problem of finding this system (and hence the associated

3-D data) can be recast into a rank minimization form that

can be efficiently solved using convex relaxations.

The paper is organized as follows. Section II summarizes

the notation used in the paper, introduces some required

definitions and formally states the structure from motion

problem. Section III presents the main result of the paper,

showing that the 3-D geometry can be recovered, up to an

overall scaling function, by finding a minimum rank operator

that interpolates a set of trajectories constructed from the 2-

D data. These results are illustrated in section IV with an

example. Finally, section V summarizes our conclusions and

point out to directions for future research.

II. PRELIMINARIES

A. Notation and definitions

In this section we summarize the notation used in the paper

and introduce some definitions required to formally state the
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problem under consideration.
‖x‖∞ ∞ norm of the vector x ∈ Rn: ‖x‖∞

.
=

maxi |xi|.
‖x‖2 2 norm of the vector x ∈ Rn: ‖x‖2

2
.
=

∑n

i=1 |xi|
2.

det(M) determinant of the matrix M.

ℓn
∞ extended Banach spaces of vector valued

real sequences {y}∞0 ∈ Rn equipped with

the norm ‖y‖ℓ∞

.
= supi ‖yi‖∞.

Pn
k projection operator from ℓn

∞ to Rn

Pn
k ([xo . . . xk . . . ]) = xk

Hy(k, l) k × l Hankel matrix associated with the

vector sequence y

Hy(k, l)
.
=











y1 y2 · · · yl

y2 y3 · · · yl+1

...
...

. . .
...

yk yk+1 · · · yk+l−1











X(z) z–transform of the sequence {x}k.

X(z)
.
=

∑∞

o xkz−k.

Definition 1: A linear time invariant operator L : xo ∈
Rn → {xk} ∈ ℓn

∞ is said to be pointwise rigid if

det(Pn
k L) = 1 for all k (note that this implies ‖xk‖2 =

‖xo‖2 but rules out operators such as specular symmetry)

In this paper we consider a class of rigid objects defined

as follows:

Definition 2: Np points P1, . . . , PNp
∈ R3 are said to

belong to a rigid body if there exist a point O ∈ R3

(not necessarily in the object) and a linear time invariant,

pointwise rigid operator L : Rn → ℓn
∞ such that for all points

and all time instants, the corresponding trajectories satisfy:

Pki − Ok = {L [Poi − Oo]}k, k = 1, 2, . . .

where Pki and {L[x]}k denote the coordinates of point Pi

and the output of L at time k, respectively. In the sequel we

will refer to O as the center of the motion.

A simple example of the definition above is the case of a

constant rotation R about a moving axis. In this case, Lk,

the Markov parameters (impulse response) of the operator L
are given by Lk = Rk and L(z) = z(zI − R)−1.

B. SfM from Perspective Image Sequences

Given an image sequence of a rigid scene captured by a

camera under perspective projection, the problem of structure

and motion from perspective image sequences seeks to de-

termine the 3D structure of the scene and the relative motion

between the camera and the scene from a set of feature

correspondences established by matching the images of Np

scene points across NF frames. This problem is formalized

below.

Consider a camera Cartesian coordinate system defined

with its origin at the center of projection and its Z axis

along the camera optical axis. Let Np be the number of

tracked points from the scene and let Qij = (Xij , Yij , Zij)
T

be the 3D Cartesian camera coordinates of point Qj , j =
1, . . . , Np, at the time frame i, i = 1, . . . , NF . Then, the

2D homogeneous coordinates of the images of these points

at frame i, q̄ij = (xij , yij , zij)
T and the corresponding

Cartesian image coordinates, qij = (uij , vij)
T , are given

by

q̄ij = PQij =





f 0 0
0 αf 0
0 0 1



Qij (1)

uij =
xij

zij

= f
Xij

Zij

(2)

vij =
yij

zij

= αf
Yij

Zij

(3)

where P is the 3 × 3 projection matrix associated with the

camera, f is the focal length, and α is the pixel aspect ratio.

In this context, the problem of interest here can be precisely

stated as:

Problem 1: Given the above setup, recover the scene struc-

ture Qij and the matrix P, i = 1, . . . , NF , j= 1, . . . , NP ,

from the NP × NF feature correspondences qij .

Classically, the problem above has been solved using the

Strum Triggs Factorization Algorithm [21], based on itera-

tively computing the best rank 4 approximation to a matrix

constructed from the image data, and the associated depths.

Since the problem is not jointly convex, this algorithm is

guaranteed to converge only to a local solution. In addition,

the algorithm as stated above can only recover the 3D

structure up to an arbitrary projectivity.

III. THE ROLE OF DYNAMICS IN STRUCTURE RECOVERY

A. Recovering geometry via Rank Minimization

The proposed method is based on the following result,

showing that for rigid objects, dynamics encapsulates geom-

etry, in the sense that the latter can be recovered from the

simplest dynamical system that explains the available data.

Formally:

Theorem 1: Consider the trajectories Pki, i = 1, 2, 3 of

three points from a rigid moving under some point-wise rigid

LTI motion operator L with center O. Let αki ≥ ǫ > 0, i =
1, 2 be arbitrary constants and define the difference vectors

y
i,αki

k =





Xki − αkiXk3

Yki − αkiYk3

Zki − αkiZk3



 , i = 1, 2 (4)

where Pki = (Xki, Yki, Zki)
T , represents the location at

time k of the 3D point Pi, measured with respect to a

coordinate system attached to a pin hole camera and αki is a

time–varying scaling factor. Denote by L(αti) the pointwise

rigid LTI operator that maps yi,αoi
o to y

i,αti

t . Then, under

mild conditions:

argminαti≥ǫrank{L(αti)} ≡ 1, for all t, i

where for a linear time varying operator L its rank is defined

as rank{L}
.
= supt rank{Wo

t W
c
t}, e.g the supremum of the
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rank of the product of its observability and controllability

Grammians.

Proof: see the Appendix

Corollary 1: Let H(α) =
[

Hy1,αt1 Hy2,αt2

]

, where Hy

denotes the Hankel matrix associated with the vector se-

quence {y}. Then argminαki≥ǫrank{H(αki)} = 1.

Proof: see the Appendix

Corollary 2: Assume now that the measurements of all 3

points are affected by unknown scaling factors, potentially

different in each direction, e.g. only SkiPki are available,

where Ski = diag(αx
ki, α

y
ki, α

z
ki), with αx

k, α
y
k, αz

k > ǫ > 0
Then the rank of the matrix H is minimized by taking Ski =
So. That is, the geometry is recovered up to a (direction

dependent) overall scaling factor. The proof follows imme-

diately by applying the Theorem above to the trajectories

Sk1(Pk1 − S−1
k1 Sk3Pk3) and Sk2(Pk2 − S−1

k2 Sk3Pk3) and

noting that the rank of the observability matrix is invariant

under left multiplication by the full rank matrix S
.
=

blockdiag (Ski). Note also that the proof can be extended

(at the price of a more complicated notation) to any number

of points.

Remark 1: Briefly, Corollary 2 above states that if the 3-

D trajectories of 3 points from a rigid are available up to

unknown scaling factors (possibly different for each point),

then the 3-D geometry can be recovered (up to an overall

scaling factor) by minimizing the rank of the corresponding

Hankel matrix. This result forms the basis of the proposed

method.

B. Finding the unknown depths

Theorem 1 can be applied to solve Problem 1, as follows.

From (1)–(3) it follows that, given the 2-D image coordinates

(uki, vki) of the points Pi, i = 1, . . . , NP , the corresponding

(scaled) 3-D coordinates are given by:

P̃ki
.
=





fXki

αfYki

Zki



 = Zki





uki

vki

1



 (5)

where Zki, f and α are unknown. From Corollary 2, it

follows that the unknown Zki can be found (up to an overall

scaling factor) by using the following algorithm.
Algorithm 1: (CONCEPTUAL) RANK MINIMIZATION

BASED 3D-STRUCTURE RECOVERY

Input: (uij , vij), the 2-D coordinates of NP points in

NF frames.

Output: 3-D depths Zij up to a an overall scaling constant.

1. Form the difference vectors:

yi
k

.
= P̃ki − P̃k,NP

, i = 1, . . . , NP−1

and the corresponding Hankel matrices

Hyi
.
=











yi
1 yi

2 · · · yi
l

yi
2 yi

3 · · · yi
l+1

...
...

. . .
...

yi
k yi

k+1 · · · yi
k+l−1











, i = 1, . . . , NP − 1

2. Solve the following rank minimization problem in Zij

minrank
[

Hy1 . . .HyNp−1

]

C. Computational Complexity and Robustness Considera-

tions.

In principle, Algorithm 1 will recover the unknown Zij

in a single optimization step. Moreover, although it is well

known that rank minimization is generically NP–hard, effi-

cient convex relaxations in the form of a Linear Matrix In-

equality optimization are available [23]. A potential problem

here is the computational complexity entailed in solving for

all Zki at the same time, since the computational complexity

of conventional LMI solvers scales as (number of decision

variables)5. On the other hand, using larger sets of points

minimizes the effects of outliers. To balance these effects we

will pursue a sequential approach, where the coordinates of

4 points are found first. These coordinates are subsequently

used to find the unknown calibration parameters and the

coordinates of the other points, one at a time. Clearly, in the

presence of noisy data, the performance of such an approach

will depend on the choice of the initial 4-tuple. Thus,

robustness can be improved by combining this algorithm with

a Random Sample Consensus (Ransac) type approach [24],

where Ns 4–tuples are randomly selected from the complete

set of points, and the best one (in a sense made precise

below) is chosen. These considerations lead to the following

algorithm:

Algorithm 2: LMI MINIMIZATION BASED

BASED 3D-STRUCTURE RECOVERY

Input: (uij , vij), the 2-D coordinates of NP points in

NF frames.

Output: 3-D depths Zij up to an overall scaling constant,

and camera intrinsic parameters f and α.

0. Select Ns, the number of Ransac iterations, set ǫbest

= ∞, iter = 1,fbest = 0, αbest = 0, Jbest = [0, 0, 0, 0].
1. Randomly select a 4-tuple

J
.
= {j1, j2, j3, j4} ∈ [1, Np]

4.

2. Form the difference vectors:

yi
k

.
= P̃ki − P̃k,j4 , i = j1, j2, j3

and the corresponding Hankel matrices

Hyi
.
=











yi
1 yi

2 · · · yi
l

yi
2 yi

3 · · · yi
l+1

...
...

. . .
...

yi
k yi

k+1 · · · yi
k+l−1











, i = j1, j2, j3

3. Find Zki, i = j1, j2, j3 by (approximately) minimizing

rank[H(Zki)]
.
=

[

Hy1 . . .Hy3

]

by solving the following

convex problem in Zki R, S:

minimize Tr(R) + Tr(S)

subject to

[

R H(Z)

H(Z)
T

S

]

≥ 0

4.- Find the calibration parameters f and α by solving

the following optimization in the variables 1
f2 , α2, ǫ,

for instance via least squares:

min ǫ subject to:

|d(k + 1, i, j) − d(k, i, j)| ≤ ǫ for all k = 1, . . . , NF − 1,

i = 1, . . . , 4; j = 1, . . . , 4, j 6= i

where
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d(k, i, j) =
[

(Zkiuki − Zkiukj)
2+

α2(Zkivki − Zkivkj)
2 + 1

f2 (Zki − Zkj)
2
]

5. If ǫ < ǫbest then

set ǫbest = ǫ, Jbest = J , αbest = α, fbest = f .

6. Set iter = iter + 1. If iter <= Ns go to step 1.

7.- Use Jbest as the initial 4-tuple and find the depth

for the remaining points by solving, for all i ∈ [1 NP ],
i 6∈ Jbest, the following convex problem in Zki, R and S:

minimize Tr(R) + Tr(S)

subject to

[

R H(Z)

H(Z)
T

S

]

≥ 0

where H(Z)]
.
=

[

Hy1 . . .Hy3Hyi

]

IV. ILLUSTRATIVE EXAMPLE

In this section we illustrate the proposed method using

data1 generated by animating an artificially generated object

that is a standard benchmark in the computer graphics

community. The data consists of 10 frames of the trajectories

of 288 points taken from a 32–surface rendering of the

Utah teapot shown in Figure 1, with 9 points selected from

each surface. In this experiment the teapot underwent a

constant velocity rotation around an axis slowly translating

with constant velocity and 2 dimensional data was generated

by projecting the 3-D coordinates of the points using a

pinhole camera model with f = 2 and α = 1. Sample frames

are shown in Figure 1.

Figure 2 (a)–(b) show the results of applying Algorithm

2 to the 2–dimensional trajectories. As expected, the 3-

D structure is recovered up to an overall scaling constant.

Indeed, scaling back the reconstruction to its original size

and computing the total reconstruction error yields e2 =
∑

i ‖Porig − Precons‖
2 = 2.7 × 10−12.

V. CONCLUSIONS

This paper considered the problem of recovering the 3–

dimensional structure of a rigid object from a sequence

of 2–D images obtained under perspective projection. The

main idea is to recast the problem into a dynamical systems

interpolation form: finding a minimal order system that

interpolates the data. As we show in the paper, the lowest

order interpolant (amongst all possible time–varying ones)

is Linear Time Invariant and recovers the 3-D geometry

up to an overall scaling factor. Exploiting the well known

connection between system order and the rank of the asso-

ciated Hankel matrix allows for recasting the reconstruction

problem into a rank minimization form that can be relaxed

to an efficient convex optimization form. In contrast, ex-

isting approaches to the problem exploit only geometrical

constraints, discarding the information encapsulated in the

temporal ordering of the frames (e.g. solutions are invariant

to any arbitrary frame reordering). As a consequence these

techniques can recover structure only up to a projective

transformation that does not preserve the Euclidian geometry

1Additional experiments, omitted for space reasons, can be obtained by
contacting the authors.

of the object. While in principle the 3-D geometry can be

extracted from these solutions, this entails a very challenging

non-linear optimization.

These results were illustrated with an example involving

synthetic trajectories of an object used as a benchmark in

the computer graphics community, showing virtually perfect

reconstruction. Research is currently underway seeking to

extend these results to multiple, not necessarily rigid objects.
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Fig. 1. First (a), fifth (b) and tenth (c) frames of Utah teapot set
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Fig. 2. (a) Original and reconstructed teapot at Frame 1. (b) Scaled reconstruction superimposed on the ground truth.
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APPENDIX

The proof consists of three parts:

(i) Building a pointwise rigid operator L such that its

impulse response interpolates the trajectories of the

differences y
i,αki

k

.
= (Pki − αkiPk3). For reasons that

will become apparent later, we will seek an operator

with two inputs such that its output at time k in

response to an impulse applied at the ith input at time

k = 0, is precisely y
i,αki

k .

(ii) Finding a controllable (but not necessarily minimal)

realization of L and the associated observability Gram-

mian Wo
t .

(iii) Showing that, since the realization above is control-

lable, the rank of L is given by the rank of Wo
t and

that this rank is minimized for αik ≡ 1.

Begin by assuming, without loss of generality2, that the

Markov parameters of the operator L and the trajectory of

Ok, the “center” of the motion associated with L, satisfy an

arma model of the form

Lt =
∑nL

i=1 AL
i Lt−i,

Ot =
∑nO

i=1 AO
i Ot−i, AL

i ,AO
i ∈ R3×3

(6)

Let xi
t

.
= Pti − Ot. From the above, it follows that the

trajectories xi
k also satisfy a model of the form

x
i
t =

nL
∑

j=1

Ajxt−j , (7)

or, in compact form:

ξi
t+1 = ALξi

t,

ωt+1 = AOωt
(8)

where

AL
.
=















AL
1 AL

2 . . . AL
nL−1 AL

nL

I 0 . . . . . . 0
0 I 0 . . . 0
...

...
. . .

. . .
...

0 0 . . . I 0















ξi
t

.
=











xi
t−1

xi
t−2
...

xi
t−nL











and a similar definition holds for ωi, AO, involving AO
i and

the past values Ot−i. Thus, it follows that the trajectories of

2Note that, since we are working over finite horizons, any trajectory Lk

can be interpolated with an arma model of sufficiently high order.
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the vectors yi,α are given by the impulse response of the

following state space system

ζt+1 = Aζt + Bu; u ∈ R2

yt = Ctζt
(9)

where

A =













AL 0 0 0 0 0

0 AL 0 0 0 0

0 0 AO 0 0 0

0 0 0 AL 0 0

0 0 0 0 AL 0

0 0 0 0 0 AO













B =













ξ1

o 0

ξ3

o 0

ωo 0

0 ξ2

o

0 ξ3

o

0 ωo













Ct = [CL −αt1CL (1 − αt1)CO CL −αt2CL (1 − αt2)CO]

CL =
[

I 0 . . . 0
]

, CO =
[

I 0 . . . 0
]

(10)

Note that the system (9) is time–varying, due to the presence

of αti in C. From a PBH argument (see [25], page 366)

it can be shown that the pair (A,B) in (10) is generically

controllable (except possibly in situations where for all i the

vectors Pki−Ok are orthogonal to one eigenvalue of Ak for

k = 0, 1, . . . , nL). Assessing observability of the pair (Ct,A)
requires considering the observability Grammian Wo

t (see for

instance [25], Chapter 9). It can be easily shown that in this

case, Wo
t is given by

W
o
t =

t
∑

j=1

(

A(t−j)
)T

CT
j−1Cj−1A

(t−j) = (Kt)
T
Kt (11)

where

Kt =











Ct−1

Ct−2A
...

CoA
t−1











= (12)

Finally, using the explicit expressions for A and C yields,

for each block-row of Kt:

(Kt)j =
[

(

KL
obs

)

j
−α(t−j)1

(

KL
obs

)

j
(1 − α(t−j)1)

(

KO
obs

)

j

(

KL
obs

)

j
−α(t−j)2

(

KL
obs

)

j
(1 − α(t−j)2)

(

KO
obs

)

j

]

where (M)j denotes the jth block–row of a matrix M, and

KL
obs, K

O
obs denote the observability matrices of the pairs

(CL,AL) and (CO,AO), respectively. Since by construction

both of these realizations are observable, it follows that, if the

motion of the center Ok has at least one mode not contained

in the operator L (the relative motion of the rigid with respect

to O) then:

rank{Kt} =

{

nL if αti = 1
nL + n′, n′ ≥ 1 if 0 < ǫ ≤ αti, αti 6= 1

Hence, the minimum rank solution (over the class of LTV

systems considered here) corresponds to the LTI case where

αti ≡ 1. Further, a simple computation shows that in this

case, CkA
kB = [y1,αk1

k y
2,αk2

k ]. It follows then, that for

αki ≡ 1, the order of a minimal realization of the operator

L is given precisely by the rank of Hy =
[

Hy1 Hy2

]

.

Proof of Corollary 1.

Assume by contradiction that the minimum above is

achieved by some sequence α̃ki. Let L(α̃ki) denote the

associated LTI operator. From the theorem above, it follows

that

rank{H(αki)}|αki≡1 = rank{L(αki)}|αki≡1

< rank{L(α̃ki)} = rank{H(α̃ki)}

which contradicts the hypothesis that α̃ki was the minimizing

solution.
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