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Abstract— This paper analyzes the computational complexity
of set membership identification of a class of nonlinear systems
consisting of the interconnection of a Linear Time Invariant
plant and a static nonlinearity. Its main result shows that, even
in cases where a portion of the plant is known, the problem
is generically NP–hard both in the number of experimental
data points and in the number of inputs or outputs of the
nonlinearity. These results provide new insight into the rea-
sons underlying the high computational complexity of several
recently proposed algorithms and point out to the need for
developing computationally tractable relaxations.

I. INTRODUCTION

Set membership identification of nonlinear systems con-
sisting of the interconnection of a memoryless, static nonlin-
earity and a Linear Time Invariant (LTI) plant has received
considerable attention in the past decade (see for instance [1],
[2], [3], [5], [6], [7], [8], [9], [10], [11], [12], [13], [16], [17],
[21] and references therein). These methods are attractive
since they furnish hard bounds on the values of the unknown
parameters of the plant, in a form that can be directly used
for instance by robust control synthesis techniques. However,
the resulting algorithms typically have high computational
complexity (entailing for instance solving an optimization
over rank one matrices [7], non-convex optimization prob-
lems [6], or a combinatorial number of Linear Programs [2]),
or require assuming both that several intermediate signals are
available for measurement and that portions of the plant are
known [9], [10], [11], [13].

The goal of this paper is to shed some insight into the
reasons underlying this high computational complexity. As
shown here, this is an intrinsic difficulty of the general
framework, rather than a feature of specific approaches.
Our main result shows that, contrary to the case of linear
identification, the problem of set–membership identification
of Lur’e type systems consisting of the interconnection
of a memoryless nonlinearity and a Linear Time Invariant
Plant is generically NP–hard in both the dimension of the
nonlinearity, and in the number of experiments, even when a
portion of the system is known. It follows that nonlinear
identification is an intrinsically difficult problem, even in
cases involving relatively simple structures, such as Wiener
or Hammerstein systems, and partially known elements.
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Hence, the need to develop polynomial time relaxations,
such as the ones in [7], [2], [6], [14], [19] or to assume
the availability of intermediate signals [9], [10], [11]. In
addition, these results also highlight a connection between
high computational complexity and non-invertibility of the
static nonlinearity.

II. PRELIMINARIES

In this section we introduce the notation used in the paper
and precisely state the problem under consideration:

A. Notation
Z,R,C set of integer, real, complex numbers, respec-

tively
σ (A) maximum singular value of the matrix A.
`p extended Banach space of vector valued real

sequences equipped with the norm:

‖x‖p
.=

( ∞∑
i=0

‖xi‖p
) 1

p

,

p ∈ [1,∞) and ‖x‖∞
.= supi ‖xi‖∞.

H∞ space of transfer functions analytic in |z | ≤
1, equipped with the norm ‖G‖∞

.=
ess sup|z|<ρ σ (G(z)).

BH∞(γ) closed γ–ball in H∞: {H ∈ H∞ : ‖H‖∞ ≤
γ}.

B. Problem Statement
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Fig. 1. Lur’e Systems Identification Setup

In this paper we are interested in analyzing the computa-
tional complexity analysis of the problem of set membership
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identification of Lur’e systems using time–domain data.
Specifically, we will consider systems of the form shown in
Figure 1 consisting of the interconnection of a LTI system
L and a memoryless nonlinearity Ψ(.). The corresponding
equations are given by:[

qk
yk

]
= (L ∗

[
r
u

]
)k +

[
νk
ηk

]
rk = Ψ(qk)

(1)

where ∗ denotes convolution and the signals u ∈ Rnu and
y ∈ Rny represent the experimental data: a known finite
input sequence and its corresponding output sequence, cor-
rupted by unknown but norm–bounded measurement noise
η. Note that in general the intermediate signals s ∈ Rnp

(the output of the LTI system), ν (noise at the input to the
nonlinearity) and r, the output of the nonlinearity, are, in
general, not measurable. In this context, the set membership
nonlinear identification problem of interest here can be stated
as:

Problem 1: Given: (i) a priori information consisting of
a set membership description of the admissible plants, non-
linearities and noise, S,NL,N .= Nη×Nν , respectively, and
(ii) a posteriori experimental data {yk,uk}nm−1

k=0 , determine:
1) if the a priori and a posteriori information are

consistent, i.e., the consistency set

T (y, nm,N ) .= {L ∈ S :

yk =
[
Fu(L,Ψ)(

[
ν
u

]
)
]
k

+ ηk,

for some Ψ ∈ NL
and some sequences (νk, ηk) ∈ N ,
k = 0, 1, . . . , nm − 1.}

(2)
is nonempty.

2) If T (y, nm,N ) 6= ∅, find a nominal model {L,Ψ(.)}
that interpolates the experimental data1

In particular, in its simplest form the set description of
the admissible set of linear plants and noise are (see for
instance [14]) S .= BH∞(K), Nη

.= {η : ‖ηk‖p ≤ εη}, and
Nν

.= {ν : ‖νk‖p ≤ εν}, for some known constants K, εη ,
εν .

III. BACKGROUND RESULTS ON COMPUTATIONAL
COMPLEXITY

In order to establish that Problem 1 is NP–hard, we need
the following preliminary results concerning the computa-
tional complexity of two decision problems:

Lemma 1 ([15]): Given a vector a ∈ Zn, the problem of
determining if there exists a vector x, |xi| = 1 such that
aTx = 0 (the knapsack problem) is NP-complete.

Lemma 2 ([4], page 307): For a given vector a ∈ Zn,
there exists a polynomial time computable (2n+1)×(2n+1)
symmetric matrix Aa and a polynomial time computable

1If T = ∅, then the experimental data {y,u} invalidates the a priori as-
sumptions about the class of models and noise, that is, the experimental data
cannot be explained by models in these sets.

number εa ∈ (0, 1) such that max
v1,v2∈D2n+1

|vT
1 Aav2| = 1 if

there exists a solution x ∈ {−1, 1}n to aTx = 0, and is less
than or equal to 1− εa otherwise.

Corollary 1: The problem of checking whether
max

v1,v2∈D2n+1
|vT

1 Aav2| > 1 − εa
2 is NP-hard, since

the knapsack problem can be reduced to it in polynomial
time.
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Fig. 2. Wiener System Structure

The results above can be used to establish the following
results concerning the computational complexity of two
identification problems:

Lemma 3: [20] Consider the Wiener system structure
shown in Figure 2, with a quadratic nonlinearity of the form
ŷ = wTAw, where A is a known, given matrix. Assume
that N .= {η : ‖ηk‖∞ ≤ ε}. Then

(i) The problem of identifying H(.) is NP hard in n
.=

max{number of inputs,number of outputs} to H ,
the linear portion of the plant.

(ii) The problem of identifying H(.) is NP hard in the
number of experimental data pairs (y,u).

Proof: The proof proceeds by showing that the decision
problem of Corollary 1 can be reduced in polynomial time to
a Wiener identification problem with a quadratic nonlinearity
(see [20] for details).
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Fig. 3. Hammerstein System Structure

Lemma 4: [20] Consider a Hammerstein system structure
of the form shown in Figure 3, with H(z) known and N .=
{η : ‖ηk‖∞ ≤ ε}. Then:

(i) For a set description of the nonlinearity of the form

NL = {Ψ : Ψ =
∑n
i=1 xiψi(u), |xi| = 1

where : ψi(u) =
{

1 i− 1 ≤ u < i
0 otherwise

(3)
the problem of identifying Ψ(.) is NP hard in the
number of experimental data pairs (y,u).

(ii) For a set description of the nonlinearity of the form

NL = {Ψ : Ψ = [ψ1(.), . . . , ψn(.)]T ,
ψi = xisign(u), |xi| = 1 (4)

the problem of identifying Ψ(.) is NP hard in the
number of inputs to H(.), the linear portion of the
plant.
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Proof: The proof proceeds by showing that the knap-
sack problem of Lemma 1 can be reduced in polynomial time
to a Hammerstein identification problem with nonlinearities
of the form (3) or (4) (see [20] for details).

IV. COMPUTATIONAL COMPLEXITY ANALYSIS OF SET
MEMBERSHIP IDENTIFICATION OF LUR’E TYPE SYSTEMS

With the results above, we can now establish the main
result of this paper:

Theorem 1: The problem of set membership identification
of Lur’e type systems of the form (1) is generically NP hard
both in the number of experimental data pairs (y,u) and the
number of inputs/outputs of the static nonlinearity Ψ(.), even
in cases where either L(.), the linear portion of the plant, or
Ψ(.), the static nonlinearity, are known.

Proof: For the known nonlinearity case, choose in (1)
a quadratic nonlinearity, εν = 0, and a linear plant L of the
form:

L =
(

0 H
I 0

)
(5)

and apply Lemma 3. For the known linear plant case, select
an unknown nonlinearity of the form (3) or (4), εν = 0, and
L of the form:

L =
(

0 I
H 0

)
(6)

and apply Lemma 4.

V. CONCLUSIONS

This paper shows that the problem of set membership
identification of Lur’e type systems is generically NP–hard,
even in cases where a portion of the plant is known exactly.
These results highlight the fact that, as opposed to the case of
linear identification, these problems are intrinsically difficult,
shedding some insight into the high computational cost of
existing approaches and pointing out to the need to search for
computationally tractable relaxations. An interesting feature
borne out by the analysis presented here is the key role
played by the non-invertibility of the nonlinearity in reducing
the knapsack problem to a Lur’e type identification and
thus establishing that the problems are NP–hard. Thus, the
issue of whether these problem are NP–hard in the case of
invertible nonlinearities is still open.
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