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Abstract— Dynamic vision and imaging systems can sub-
stantially improve our quality of life. However, key issues
that must be addressed in order to realize this potential are
their fragility when used in unstructured environments and
their need to process vast amounts of data in real time.
The realization that most actionable information embedded
in imaging data can be compactly encapsulated in dynamic
models of relatively low order provides a powerful insight to
address these issues. As we show in this paper, system theoretic
tools allows to recast a wide range of dynamic vision problems
into a computationally tractable optimization form. These ideas
are illustrated with several applications including tracking,
segmentation, and texture analysis/synthesis.

I. INTRODUCTION

Dynamic vision and imaging – the confluence of dy-

namics, computer vision, image processing and control – is

uniquely positioned to enhance the quality of life for large

segments of the general public. Aware sensors endowed with

tracking and scene analysis capabilities can prevent crime

and reduce time response to emergency scenes. Enhanced

imaging methods can substantially reduce the amount of

radiation required in medical procedures. Moreover, the

investment required to accomplish these goals is relatively

modest, since a large number of imaging sensors are already

deployed and networked. The challenge now is to develop a

theoretical framework that allows for robustly processing this

vast amount of data, within the constraints imposed by the

need for real time operation in dynamic, partially stochastic

scenarios.

Actionable information buried within imaging data can

often be compactly encapsulated in dynamic models that

have far lower rank than the dimensionality of the original

data. Indeed, the goal of this paper is to illustrate the central

role that dynamic models and their associated predictions

can play in developing a comprehensive, computationally

tractable robust dynamic vision and imaging framework.

Establishing a connection with a rich set of robust systems

theory tools, in particular interpolation tools developed in the

context of robust identification and model (in) validation,

allows for recasting a wide spectrum of problems into a

tractable, finite dimensional convex optimization. Further-

more, in many cases merely postulating an underlying model

leads to efficient solutions that rely in dynamical systems

tools to detect similarities or differences in model properties,

without explicitly finding these models, which is typically
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a far more demanding task. In turn, computer vision and

image processing can provide a rich environment both to

draw inspiration from and to test new developments in

systems theory. For instance, the applications addressed

in this paper point out to the need for further research

into low complexity nonlinear identification methods, worst-

case identification methods for switched systems, and robust

identification/(in)validation of 2-D systems.

II. NOTATION

H∞,ρ space of functions analytic in |z | ≤
ρ, equipped with the norm ‖G‖∞,ρ

.
=

sup|z|<ρ σ (G(z)), where σ (.) denotes

maximum singular value.

BH∞(K)open K–ball in H∞

III. MULTIFRAME TRACKING

A requirement common to most dynamic vision applica-

tions is the ability to track objects in a sequence of frames.

Current approaches integrate correspondences between in-

dividual frames over time, through a combination of some

assumed simple target dynamics (e.g. constant velocity),

empirically learned noise distributions and past position

observations [20], [31]. However, while successful in many

scenarios, these approaches still remain vulnerable to model

uncertainty, occlusion and appearance changes, as illustrated

in Figure 1.

As shown next, this difficulty can be solved by modeling

the motion of the target as the output of a dynamical system,

to be identified from the available data. To this effect, start

by modeling yk, the position of a given target feature as:

y(z) = F(z)e(z) + η(z) (1)

where e and ηk ∈ N represent a suitable input and mea-

surement noise, respectively. Further, we will assume that

the following a priori information is available:

(a) Set membership descriptions ηk ∈ N and ek ∈ E .

These can be used to provide deterministic models of the

stochastic signals e, η.

(b) F admits an expansion of the form F =
Fp

︷ ︸︸ ︷

Np∑

j=1

pjF
j +Fnp. Here Fj are known, given, not neces-

sarily stable operators that contain all the information

available about possible modes of motion of the target.
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Frame 150 Frame 105 Frame 95 Frame 85

Fig. 1. Tracking in the presence of occlusion. Top: Unscented Particle Filter based tracker. Bottom: Combination Identified Dynamics/Kalman Filter.

(c) Fnp ∈ BH∞,ρ(K) for some known ρ ≤ 1, e.g. a bound

on the divergence rate of the approximation error of the

expansion Fp to F is available.

In this context, the next location of the target feature yk can

be predicted by first identifying the relevant dynamics F and

then using it to propagate its past values. In turn, identifying

the dynamics entails finding an operator F(z) ∈ S
.
=

{F(z) : F = Fp + Fnp} such that y−η = Fe, precisely the

class of interpolation problem addressed in [34]. As shown

there, such an operator exists if and only if the following set

of equations in p,h and K is feasible:

MR(h) =

[
R2

ρ TT
h

Th K2R−2
ρ

]

≥ 0 (2)

y − TuPp− Tuh ∈ N (3)

where Tx denotes the Toeplitz matrix associated with a

sequence x = [x1, . . . , xn], Rρ
.
= diag [1 ρ · · · ρn], P

.
=

[f1 f2 · · · fNp ],where f i is a vector containing the first

n Markov parameters of the transfer function F i(z) and h

contains the first n Markov parameters of Fnp(z).

A Simple Tracking Example: Consider again the problem

illustrated in Figure 1. The experimental information consists

of centroid position measurements from the first 20 frames,

where the target is not occluded. The a priori information,

estimated from the non–occluded portion of the trajectory is:

1) 5% noise level

2) E = δ(0), i.e. motion of the target was modelled as

the impulse response of the unknown operator F 1.

3) Fp ∈ span[ 1
z−1 , z

z−a
, z

(z−1)2 , z2

(z−1)2 ,
z2−cos ωz

z2−2 cos ωz+1 , sin ωz2

z2−2 cos ωz+1 ] where a ∈
{0.9, 1, 1.2, 1.3, 2} and ω ∈ {0.2, 0.45}

4) Fnp ∈ BH∞,ρ(K), with ρ = 0.99

As shown in Figure 1, a Kalman filter tracker that uses

the identified dynamics is now able to track the target

past the occlusion. It is worth emphasizing that this com-

bination significantly outperforms a tracker based solely

on an unscented particle filter [20]. Hence, exploiting dy-

namical information through the use of control–motivated

1This is equivalent to lumping together the dynamics of the plant and the
input signal.

tools, leads to both robustness improvement and substan-

tial computational complexity reduction. In addition, the

framework described above furnishes deterministic, worst–

case bounds on the prediction error that can be used to

disambiguate among targets with neighboring tracks. Let

T (y)
.
= {F ∈ S : yk+1 = F(z)e(z) + η(z), ηk ∈ N} be

the consistency set – i.e. the set of all models consistent

with both the a priori information and the experimental data.

Since the identification procedure used here is interpolatory,

the generated model Fid belongs to the consistency set T (y)
and its worst case prediction error is given by:

‖ŷ − y‖∗ ≤ sup
F1,F2∈T (y)

‖F1[y, e]−F2[y, e]‖∗ = D[T (y)]

(4)

where ‖.‖∗ is a suitable norm and D(.) denotes the diameter

of the set T (y). When the sets S and N are convex,

computing this bound reduces to a convex optimization [39,

Lemma 10.3]. Note that these bounds are computed only

once and remain valid as long as the underlying dynamics

do not change.

Fig. 2 compares the actual and upper bound of the error in

a child tracking application. In this experiment the measured

position in frame 12 was propagated forward using the iden-

tified dynamics and the bounds computed by solving a single

Linear Programming problem. If other targets with similar

dynamics or photometric properties are present, trackers can

safely discard candidates falling outside these bounds. In

addition, these bounds provide a mechanism to balance com-

putational requirements and data obsolescence. For instance,

in this example these bounds establish a priori that no new

data is required from Frame 12 until Frame 20, where the

error becomes comparable with the width of the target: 30

pixels.

A. Dynamic Appearance Modeling.

Arguably, one of the hardest challenges in tracking is to

overcome changes to the target appearance due to articula-

tions, illumination changes, etc. In principle, this difficulty

can be solved by using dynamic appearance models obtained

using the same robust identification approaches employed to

identify the motion dynamics [23]. However, moving beyond

a few simple descriptors requires addressing the issues of
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Frame 13 14 15 16 17 18 19 20

Mean–Shift 25.90 35.93 41.32 45.63 54.65 57.53 65.05 64.80

Actual error 8.87 6.14 10.04 13.03 10.31 15.72 19.50 26.04

Worst case bound 13.00 15 17 19 21 23 25 27

Fig. 2. Top: Prediction (black cross) versus Ground Truth (white cross). Bottom: Id error.

high computational costs, due to the poor scaling properties

of LMI based identification algorithms.

w

η

yu -
6

-- -LTI System

H(z)

Static

Nonlinearity

f(.)

d

Fig. 3. Wiener System Structure

This challenge can be addressed through the use of nonlin-

ear dimensionality reduction techniques to map the data to a

lower dimensional manifold where the identification/tracking

is performed. Since the projection onto the lower dimen-

sional manifold can be modeled as a static nonlinearity, this

approach leads naturally to a Wiener system structure of the

form illustrated in Figure 3, consisting of the interconnection

of a LTI system H(z) and a memoryless nonlinearity f(.).
Next, we illustrate the effectiveness of this approach using

the problem of human motion modeling and tracking. The

experimental data, partially shown in Figure 5(a) consists of

the first 20 frames of a human walking, each having 1728

pixels. Thus, modeling pixel evolution become infeasible

even when using just a few frames. On the other hand

using the risk–adjusted approach proposed in [27] and the

following a priori information

1.- ω ∈ R3 (since it represents the coordinates of the

centroid of the target).

2.- The static nonlinearity f(.) has the form2: f(x) =
BΨ(x) where B ∈ R1726×6 is an unknown matrix

and the bases Ψ(x) : R3 → R6 are given by:

Ψ(x) = [exp(−0.8‖x− t1‖
2
2),

exp(−0.8‖x− t2‖
2
2), 1,xT ]T

where

t1 =
[
0.6833 −0.4521 −0.0033

]

t2 =
[
−0.7552 0.4997 0.0036

]

led to a model with a fifth order linear portion that in-

terpolates the data within 10%. In addition, as shown in

Figure 5(b), the temporal evolution of the points on the man-

ifold closely agree with the predictions of the linear dynamic

2This hypothesis is motivated by the bases proposed in [12] to model
human silhouettes.

model. This substantiates the conjecture posed in [29], that

human motion tracking can be decoupled into: (a) a linear

tracking problem in a low dimensional manifold, accounting

for the dynamics of the motion, and (b) a nonlinear, static

mapping that accounts for the changes in appearance of the

target. Fig. 4 illustrates the application of these ideas to

tracking multiple people in an outdoor scene.
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Fig. 5. Learning appearance using a Wiener system. (a) Top: Walking
sequence (from CMU MoBo database), Bottom: impulse response of the
identified Wiener system. (b) Evolution on a 2D projection of the 3D
manifold: predicted (cross) and actual (dot).

B. Receding Horizon Rank Minimization Based Tracking

An implicit assumption in the methods described above

is that the dynamics of interest are linear and do not

change, e.g. the underlying model is linear time invariant

(LTI) which allows to identify first and then propagate the

dynamics using a standard filter. Extending this approach

to the case of slowly varying dynamics requires an on-line

implementation–either re-identifying the plant at each instant

or performing on-line model (in)validation and re-identifying

only when necessary–which could be problematic given the

relatively high computational complexity entailed in both

processes. Moreover, in addition to divergence problems that

could arise from errors in estimating the dynamics, Kalman-

filtered based approaches can fail (e.g. lead to unbounded

error covariance) in the presence of intermittent observations

[40]. This effect can be mitigated by resorting to a Receding

Horizon based approach [46], but this further increases the

computational complexity and does not address divergence

issues due to miss-identified dynamics.

These difficulties can be avoided by using a simple ap-

proach [6] inspired on earlier work on subspace identification
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(a) (b)

Fig. 4. (a) Sample 3 dimensional manifold extracted from the sequence shown in (b) and use of dynamics on this manifold to predict
target position and appearance.

[28], [33], rank-minimization based track matching [8] and

receding horizon based estimation ([24], [22], [15], [1] (and

references therein), where trajectories of piece-wise linear

plants are interpolated/extrapolated without identifying the

dynamics of the plant. Intuitively, the idea is to add new

data to the available measurements in a way such that

the extended or completed trajectory (for example in the

presence of occlusion) can be explained by the same model

explaining the available measurements alone. Recalling that

the rank of the Hankel matrix is an estimate of the order

of the underlying dynamical system, this approach allows

to recast the problem into a rank-minimization form [9]

that estimates unknown data points by minimizing on-line

the rank of a Hankel matrix constructed using the available

data and the unknown new data. While rank minimization

problems are NP hard, the estimates can be obtained by using

a convex relaxation proposed in [14].

More formally, consider (unknown) single input single

output linear shift invariant plants with McMillan degree n:

xk+1 = Axk + Buk

ζk = Cxk

yk = Cxk + vk

(5)

where x ∈ Rn, u, ζ and y represent the states, inputs, outputs

and measurements corrupted by noise v, respectively, and

where the realization (A, B,C) is minimal. Alternatively, it

can also be represented by its transfer function:

ζ(z) = G(z)u(z)

G(z)
.
=

∑n
i=0 biz

−i

1 +
∑n

i=1 aiz−i

(6)

Then, the approach for rank minimization tracking is

summarized in the two algorithms below:

Algorithm 1: RANK MINIMIZATION BASED TRACKING

Input: nf , number of features being tracked; the measu-

rements matrix W ∈ R2nf×Nw , where wi,k = ui
k and

wi+1,k = vi
k are the ith feature position in the kth frame;

length of the observation window, Nw; prediction horizon

Np; noise bound ǫ.

Output: Estimated target location wi,k at time {k ≥ t}

1. While {tracking continues} {
for all i ∈ {1, · · · , 2nf} do

Apply Algorithm 2 on {wi,k}
t−1
k=t−Nw

to compute {w∗
i,k}

t+Np−1
k=t .

end for

2. Locate target around the predicted position and

update {wi,t}, otherwise use the value {w∗
i,t}

instead (target is occluded).

3. t=t+1

}

Algorithm 2: RECEDING HORIZON RANK MINIMIZATION

BASED PREDICTION/INTERPOLATION

Input at time k: Nh: Horizon length; Ia ⊆ [k −Nh, k],
(with card(Ia) ≥ n): set of indices of available

measurements; Ie ⊆ [k −Nh, k + 1]: set of indices of data

to be estimated; with Ia ∪ Ie = I; input/output data

yℓ, ℓ ∈ Ia, uℓ, ℓ ∈ I;

set membership description of the measurement noise

v ∈ N .

Output: Estimates ζ̂ℓ of ζℓ, ∀ℓ ∈ Ie ∪ Ia

1. Let ζ∗ denote the following sequence:

ζ∗i =

{
yi − vi if i ∈ Ia

xi if i ∈ Ie
where v, x are free

variables, and form the matrix

H(x, v)
.
=

[
Hζ

Hu

]

where

Hζ
.
=








ζ∗i1 ζ∗i2 · · · ζ∗in+nu+1

ζ∗i2 ζ∗i3 · · · ζ∗in+nu+2

...
...

. . .
...

ζ∗in+1
ζ∗in+2

· · · ζ∗i2n+nu+1
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Hu
.
=








ui1 ui2 · · · uin+nu+1

ui2 ui3 · · · uin+nu+2

...
...

. . .
...

uinu
uinu+1

· · · uin+2nu+1








2. (approximately) minimize rank[H(x, v)] by solving

the following convex problem in x, v, R, S:

minimize Tr(R) + Tr(S)

subject to

[
R H(x)

H(x)
T

S

]

≥ 0

subject to: {vℓ} ∈ N .

3. Estimate/predict the output ζℓ from the noisy

measurements yℓ by:

ζ̂i =

{
yi − vi if i ∈ Ia (estimation)
xi if i ∈ Ie (interpolation/prediction)

The benefits of this approach are illustrated by the follow-

ing example where tracking using a receding horizon rank

minimization filter (RHRMF) is compared against tracking

results obtained using a Kalman filter and a combination

identification via Caratheodory-Fejer/ Particle Filter (CF-PF)

[2]. In this example, the goal is to track the two individu-

als shown in Figure 6 through occlusion, using video-data

obtained with a moving camera. In this case, as standard in

the field, the Kalman filter used an assumed simple model

of the dynamics, in this case constant velocity, together

with the observed data, to estimate and propagate the states

and estimate the positions during occlusion. The CF-PF

combination used the unoccluded data to identify first the

dynamics of the target, followed by the use of these dynamics

in conjunction with a particle filter [21] to estimate the target

position during occlusion. Finally, the receding horizon rank

minimization filter was implemented using Algorithms 1 and

2 with the values Nw = 35, Np = 6, and ǫ = 2. The results

after processing are shown in the bottom portion of Figure 6.

As shown there, the receding horizon filter yields the lowest

prediction error. This is due to the fact that the simple

model used in the Kalman filter does no completely capture

the target dynamics. These dynamics are captured by the

CF-based identification (since it is interpolatory). However,

this approach leads to high order dynamic (the order of the

central interpolator coincides with the number of data points

used in the identification), necessitating the use of a model

reduction step. The resulting identification error leads to the

position prediction error. On the other hand, this effect is

not present when using the receding horizon filter, since it

automatically identifies the lowest order dynamics consistent

with the experimental data record.

IV. STRUCTURE RECOVERY FROM DYNAMICS

When tracking an unknown number No of moving objects,

it is of interest to identify (i) the number of objects, (ii) the

individual dynamics and, (iii) assign points in the image to

each. To illustrate the issues involved, start by considering

P features from a single rigid object, tracked over F frames

with image coordinates {(up
t , v

p
t )}, p = 1, . . . , P , t =

1, . . . , F . Define the measurement matrix W1:F , by:

W1:F =

[
up

t − ut

vp
t − vt

]

∈ R2P×F (7)

where (ut, vt) denote coordinates of the centroid of the

features. Under the assumptions of affine projection it can

be shown [43] that W1:F has at most rank 3 and can be

decomposed into a rotation R1:F and a “structure” matrix S

W1:F =

[
Ru

1:F

Rv
1:F

]

S = R1:F S (8)

In the case of multiple objects, the number of objects and

the corresponding geometry can be obtained by factoring

W into rank 3 submatrices. This basic idea lies at the core

of factorization based approaches (see for instance [49],

[47]), leading to computationally efficient solutions. How-

ever, these approaches cannot disambiguate objects that par-

tially share motion modes, such as the same–wing propellers

of the airplane shown in Figure 7(a). It can be easily shown

that in this case rank(W) = 6. Hence, as shown in Figure 7

(b)–(c), any motion segmentation approach based solely on

finding linearly independent subspaces of the column space

of W will fail, since it cannot distinguish this case from the

case of two independently moving propellers. Intuitively, the

main difficulty here is that any approach based on properties

of W that are invariant under column permutations, take

into account only geometrical constraints, but not dynamical

ones.
As we show next, robustness can be substantially improved

by exploiting the fact that points on the same rigid share more
modes of motion than points on different objects. Specifi-
cally, begin by associating to the jth object, its centroid O(j)

and an affine basis b(j), centered at O(j), defined by three no

coplanar vectors V
(j)
i . Finally, denote by o(j)(k), v

(j)
i (k) the

coordinates of the image of O(j)(k) and the projections of

V
(j)
i (k) onto the image plane, respectively. Given any point

P
(j)
i belonging to the jth object, the coordinates at time k

of its image p(i)(k) are given by:

p
(j)
i (k) = o

(j)(k) + α
(j)
i v

(j)
1 (k) + β

(j)
i v

(j)
2 k + γ

(j)
i v

(j)
3 (k) (9)

where α
(j)
i , β

(j)
i and γ

(j)
i are the affine invariant coordinates

of P
(j)
i with respect to the basis b(j). Note that, for any two

points P
(j)
r ,P

(j)
s in the same object, the dynamics of o(j)

are unobservable from δr,s(k)
.
= p

(j)
r (k)−p

(j)
s (k). Thus, the

underlying subsystem is rank deficient when compared to a

subsystem describing difference between points on different

objects. Roughly speaking, the relative motion of points in

a given object, carries no information about the motion of

other objects. It follows that points can be clustered in objects

according to the complexity of the model required to explain

their relative motion. In turn, the order of this model can be

estimated by simply computing the rank of the Hankel matrix

constructed from the pair-wise differences δrs(k), leading to

the simple segmentation Algorithm 3, computationally no

more expensive than a sequence of SVDs, given below.
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frame: 106 frame: 118 frame: 148 frame: 169

Fig. 6. Tracking two individuals through occlusion using a moving camere. (a-d) frame 106, 118, 148, and 169. ’Triangle’ denotes the faster person,
’Circle’ denotes the slower person. ’Blue’ denotes the track predicted by a Kalman Filter, ’yellow’ denotes the track predicted by the combination CF-PF,
and ’red’ and ’cyan’ denote the tracks (one for each target) predicted by the RHRMF. Frame 169 compares the final position estimated by each method
against the ground truth.

Algorithm 3: DYNAMICS BASED SEGMENTATION

Input. (i) W: the measurements matrix, where

wi
t =

[
ui

t

vi
t

]

is the ith point

position in the tth frame.

Np: number of features.

NF : number of frames.

(ii) σn: noise standard deviation.

Output. Γ: Sorted coupling matrix.

for all i 6= j ∈ {1, · · · , Np} do

H←










d1 d2 · · · dNF
2

d2 d3 · · ·
...

...
...

. . .
...

dNF
2

· · · · · · dNF










where dt =
[

wi
t −w

j
t

]

Compute H = UDVT using SVD.

Γij ← number of singular values ≥ σn .

end for

reorder Γ using the approach in [5]

The effectiveness of this approach is illustrated in Figure

7(d), showing that it correctly identified the presence of

four independently moving objects. For comparison, methods

relying solely on factorizations of W [49], [47] fail to

correctly segment the objects as seen in Figure 7(b) and (c).

An interesting property of this algorithm is that it allows

for a hierarchical motion segmentation of non-rigid objects

according to the complexity of the dynamics needed to

explain the motions – i.e. features can be grouped together

in clusters of increasing size if higher order dynamics are

tolerated. This is illustrated in Figure 8 where the palms, fin-

gers and hands are hierarchically segmented using dynamics

of increasing complexity, without merging features from the

two hands, even though they come close to each other in

several frames.

V. VIDEO INPAINTING AS A RANK MINIMIZATION

PROBLEM

Video inpainting, that is the process of seamlessly restor-

ing or altering portions of a video clip, has been the subject

(a) (b)

(c) (d)

Fig. 7. (a) Propeller tracks. (b) Costeira-Kanade motion segmentation.
(c) Zelnik-Manor-Irani motion segmentation using six eigenvectors. (d)
Dynamics based segmentation.

Fig. 8. Hierarchical dynamics-based segmentation of two nonrigid objects.

of considerable attention in the past few years (see for

instance [35] and references therein), but the problem is far

from solved. Existing algorithms are limited in the types of

sequences that can handle and have relatively high compu-

tational complexity. Next, we briefly outline how the use of

system theoretic ideas can lead to simple, computationally

efficient algorithms that exploit (global) spatio–temporal

information. The main idea is to (i) find a set of descriptors

that encapsulate the information necessary to reconstruct a

frame, (ii) find an optimal estimate of the value of these

descriptors for the missing/corrupted frames, and (iii) use

the estimated values to reconstruct the frames. In turn,

the optimal descriptor estimates can be efficiently obtained
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postulating that the correct values of the missing descriptors

are such that the resulting inpainted sequence is described by

the simplest possible (eg. lowest order) dynamical model3.

Since the order of the underlying model can be estimated

from the Hankel matrix of the data, this idea leads again to

a rank minimization problem, which in turn can be relaxed to

an LMI optimization, solved in Algorithm 2. In this case ζ∗i
denotes either the observed data yi, if the i frame is present,

or the unknown value xi, if the frame needs to be inpainted.

The potential of this approach is illustrated in Fig. 9, where

it was used to restore the occluded person. In this particular

example, the positions of the 6 feature points indicated in

the figure were chosen as descriptors. The video has 36

frames, and occlusion occurs in frames 17 through 19. Using

the algorithm outlined above implemented in MATLAB to

inpaint the missing descriptors required approximately 20

seconds on a P-III 1.2G PC.

VI. CHANGE DETECTION USING SEQUENTIAL

SPARSIFICATION

Change detection is a very general concept that is encoun-

tered in many areas of computer vision. From edge detection

to video segmentation or image segmentation, a variety of

computer vision tasks can be considered as change detection

problems with different interpretations of change. Hence, a

general purpose change detection method with only a few

adjustable parameters is very valuable.

Under the assumption that there exists an underlying

piecewise affine model for the data (e.g. vectors are clustered

in different subspaces), the main objective is to find when the

model changes from one mode to another and, at the same

time, learn the parameters of the model. Hybrid piecewise

affine models [45], [19] and mixture models [3], [42], [38]

have been the object of considerable attention in the past few

years. Although some of the work (for instance [3]) assumes

a fixed number of models, one of the main problems when

working with hybrid models is that the number of models

is usually unknown. [45] provides a closed form algebraic

solution for the noise free case, but the estimation of the

number of models usually fails when the data is noisy. More

recently, [30] provides an approach exploiting recent results

on signal sparsification that is more robust to noise.

Change detection using sequential sparsification [30] seeks

to find the minimum number of clusters – i.e. the simplest

model representing the data – while exploiting the sequential

nature of the data. For example, neighboring pixels in an

image or consecutive frames in a video sequence are more

likely to be within the same segment, and thus imposing

continuity of the clusters leads to improved robustness.

The main idea is to robustly search for models that

explain the observed data with the lowest possible number

of switches (e.g. looking for segmentations that maximize

the length of subsequences). This, in turn, is equivalent to

searching for descriptions that maximize the sparsity of the

3It can be shown that this is indeed the case for periodic sequences, but
empirical results show that this hypothesis works well also for non–periodic
textures.

vector of first order temporal parameter differences, since

each non-zero element of this vector corresponds to a switch.

Maximizing sparsity is a combinatorial problem and it is

generally NP-Hard. However, recent developments show that

l1-norm minimization provides a very good approximation

for sparse signal recovery. Moreover, as shown in [10] and

[44], this relaxation is indeed exact in the case where the

constraints form an underdetermined linear system.

To formalize the problem, consider an affine parametric

hybrid model with unknown parameters of the form:

H : f
(

pσ(t), {x(k)}t+j
k=t−i

)

= 0 (10)

where f is an affine function4 of the parameter vector pσ(t)

which takes values from a finite unknown set according to a

piecewise constant function σ(t). Here i and j are positive

integers that account for the memory of the model (e.g. j = 0
corresponds to a causal model, or i = j = 0 corresponds to

a memoryless model) and we say that there exists a change

at time t if σ(t) 6= σ(t + 1).

Then, segmentation of a given sequence
{
x(t) ∈ R

d
}T

t=1
generated by a hybrid parametric model H of the form

(10) into subsequences is equivalent to finding how many

times and when these changes occur. To accomplish this one

can consider the sequence of first order differences of the

parameters p(t), given by

g(t) = p(t)− p(t + 1) (11)

Clearly, since a non-zero element of this sequence corre-

sponds to a change, the sequence should be sparse having

only N − 1 non-zero elements out of T . Furthermore, noise

can be taken into account by introducing a noise term η(t),
satisfying ‖η‖∗ ≤ ǫ, where ‖.‖∗ denotes a norm relevant to

the specific problem under consideration and ǫ is an upper

bound on the noise level. In this context, change detection

can be recast as an optimization problem as follows5:

minimizep(t),η(t) ‖{g}‖l0
subject to f

(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖∗ ≤ ǫ
(12)

Here l0 is a quasinorm that counts non-zero elements (i.e.

minimizing l0 norm is the same as maximizing sparsity) and

can be approximated by the l1 norm, leading to a linear cost

function. When f is an affine function of p(t), (12) has

a convex feasibility set F . Thus, using the l1 norm leads

to a convex, computationally tractable relaxation. Further,

Fazel et al. proposed an iterative procedure in [13] and [25]

to improve the solution obtained by the l1-norm relaxation

where, at each iteration, it solves the following weighted l1-

norm minimization on the convex feasible set F :

4That is: f
“

pσ(t), {x(k)}t+j
k=t−i

”

= A(x)pσ(t) + b(x)
5If f(0, ·) is the zero function, (12) has a trivial solution p(t) = 0 for

all t. This problem can be overcome by working with models where f(0, ·)
is not the zero function.
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Fig. 9. Top: original sequence. Middle: observed and estimated descriptors. Bottom: inpainted sequence.

minimizez,g,p,η

∑T−1
t=1 w

(k)
t zt

subject to ‖g(t)‖∞ ≤ zt ∀t

f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖∗ ≤ ǫ
(13)

where w
(k)
i = (z

(k)
i + δ)−1 are weights with z

(k)
i being the

arguments of the optimal solution at the kth iteration and

z(0) = [1, 1, .., 1]T ; and where δ is a (small) regularization

constant that determines what should be considered zero.

The choice of ∗, the norm characterizing the noise, is

application dependent. For instance the l∞-norm performs

well in finding anomalies, since in this case the change de-

tection algorithm looks for local errors, highlighting outliers.

On the other hand, when a bound on the l1 or l2-norm of

the noise is used, the change detection algorithm is more

robust to outliers and it favors the continuity of the segments

(i.e. longer subsequences). In addition, when using these

norms, the optimization problem automatically adjusts the

noise distribution among the segments, better handling the

case where the noise level is different in different segments.

A. Video Segmentation

Segmenting and indexing video sequences have drawn

a significant attention due to the increasing amounts of

data in digital video databases. Systems that are capable of

segmenting video and extracting key frames that summarize

the video content can substantially simplify browsing these

databases over a network and retrieving important content.

An analysis of the performances of early shot change detec-

tion algorithms is given in [17]. The methods analyzed in

[17] can be categorized into two major groups: i) methods

based on histogram distances, and ii) methods based on

variations of MPEG coefficients. A comprehensive study is

given in [48] where a formal framework for evaluation is

also developed. Other methods include those where scene

segmentation is based on image mosaicking [32], [36] or

frames are segmented according to underlying subspace

structure [26].

Given a video sequence of frames
{
I(t) ∈ R

D
}T

t=1
, the

video segmentation problem can be solved by applying the

sparsification algorithm to the projection of the data into

a lower dimensional space PCA (to exploit the fact that

the number of pixels D is usually much larger than the

dimension of the subspace where the frames are embedded):

I(t) 7−→ x(t) ∈ R
d.

Assuming that each x(t) within the same segment lies on

the same hyperplane not passing through the origin6 leads to

the following hybrid model:

H1 : f
(
pσ(t),x(t)

)
= pT

σ(t)x(t)− 1 = 0 (14)

Thus, in this context algorithm (13) can be directly used

to robustly segment the video sequence. It is also worth

stressing that as a by-product this method also performs

key frame extraction by selecting I(t) corresponding to the

minimum ‖η(t)‖ value in a segment (e.g. the frame with the

smallest fitting error) as a good representative of the entire

segment.

The content of a video sequence usually changes in a

variety ways: For instance: the camera can switch between

different scenes (e.g. shots); the activity within the scene

can change over time; objects or people can enter or exit the

scene, etc. There is a hierarchy in the level of segmentation

one would require. The noise level ǫ can be used as a tuning

knob in this sense.

Figure 10 shows the results of applying this approach to

four video sequences (roadtrip.avi, mountain.avi,

drama.avi and family.avi) available from

http://www.open-video.org. The original mpeg

files were decompressed, converted to grayscale and title

frames were removed. Each sequence shows a different

characteristic on the transition from one shot to the other.

The camera is mostly non-stationary, either shaking or

moving. For comparison, results using GPCA, a histogram

6Note that this always can be assumed without loss of generality due to
the presence of noise in the data.
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Fig. 10. Video Segmentation Results. Left Column: Ground truth segmentation. Right Column: Changes detected with different methods. Value 0
corresponds to frames within a segment and value 1 corresponds to the frames in transitions.
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Roadtrip Mountain Drama Family

Sparsification 0.9373 0.9629 0.9802 0.9638
MPEG 1 0.9816 0.9133 0.9480
GPCA 0.6965 0.9263 0.7968 0.8220

Histogram 0.9615 0.5690 0.8809 0.9078

TABLE I

RAND INDICES

based method and an MPEG method for segmenting the

sequences with optimal parameters (found by trial and

error) are also shown. Table I shows the Rand indices

[37] corresponding to the clustering results obtained using

the different methods, providing a quantitative criteria for

comparison. Since the Rand index does not handle dual

memberships, the frames corresponding to transitions were

neglected while calculating the indices. These results show

that indeed the sparcity method does well, with the worst

relative performance being against MPEG and B2B in the

sequence Roadtrip. This is mostly due to the fact that the

parameters in both of these methods were adjusted by a

lengthy trial and error process to yield optimal performance

in this sequence. Indeed, in the case of MPEG based

segmentation, the two parameters governing cut detection

were adjusted to give optimal performance in the Roadtrip

sequence, while the five gradual transition parameters were

optimized for the Mountain sequence.

B. Segmentation of Dynamic Textures

Modeling, recognition, synthesis and segmentation of dy-

namic textures have drawn a significant attention in recent

years [11], [3], [4], [18]). In the case of segmentation tasks,

the most commonly used models are mixture models, which

are consistent with the hybrid model framework.

In the sequential sparsification framework, the problem

of temporal segmentation of dynamic textures reduces to

the same mathematical problem as the video segmentation

problem, with the difference that now the underlying hybrid

model should take the dynamics into account. First, dimen-

sionality reduction is performed via PCA (I(t) 7−→ y(t) ∈
R

d) and then the reduced-order data is assumed to satisfy a

simple causal autoregressive model similar to the one in [4].

Specifically, in this case the hybrid model is given by:

H2 : f
(

pσ(t), {y(k)}tk=t−n

)

= pT
σ(t)






y(t− n)
...

y(t)




− 1 = 0

(15)

where n is the regressor order. This model, which can be

considered as a step driven ARX model, was found to be

effective experimentally7. The power of this approach is

7The independent term 1 here accounts for an exogenous driving signal.
Normalizing the value of this signal to 1, essentially amounts to absorbing
its dynamics into the coefficients p of the model. This allows for detecting
both changes in the coefficients of the model and in the statistics of the
driving signal.
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Fig. 11. Results for detecting change in dynamics only. Top: Smoke
sequence concatenated with transposed dynamics. Bottom: River sequence
concatenated with reversed dynamics.

illustrated in figure 11 where two very challenging sequences

were segmented. The first sequence consists of a patch

of dynamic texture (smoke) appended in time to another

patch from the same texture but transposed. Thus, the two

subsequences have the same photometric properties but differ

in the main motion direction. The second sequence was

generated using another dynamic texture (river) by sliding

a window both in space and time (by going forward in time

in the first half and by going backward in the second), thus

reversing the dynamics due to the river flow.

VII. TEXTURED IMAGE PROCESSING

Texture has been the subject of research in image pro-

cessing for over three decades, with applications ranging

from medical diagnosis to entertainment to human computer

interfaces. During the past few years, significant advances

have been made in addressing multiple aspects of the prob-

lem, ranging from inpainting and synthesis to classification.

However, at present, each sub-problem is addressed using a

specific set of tailored tools [16]. As we illustrate next, sys-

tem theoretic tools can lead to a unified framework capable

of exploiting the synergism between different aspects of the

problem to improve robustness and reduce the computational

burden.
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A. Texture Modeling and Synthesis

Compact models of textured images can be obtained by

treating the intensity values I(k, l) at the (k, l) pixel of the

image as the as the output of a two-dimensional, discrete

linear shift-invariant system driven by white noise, reducing

the problem to an identification one: obtaining a model G
from image data, possibly corrupted by noise. Note that this

requires considering two–dimensional, non–causal systems,

since the intensity value at a pixel is likely to depend on

the values of all pixels in its neighborhood, not just on

those preceding it in some ordering of the image pixels. This

difficulty can be circumvented by considering a given n×m
image as one period of an infinite 2D signal with period

(n, m). Thus, at any given location (i, j) in the image, the

intensity values I(r, s) at other pixels are available also at

position (r − qn, s − qm), and the integer q can always be

chosen so that r−qn < i, s−qm < j. From this observation,

it follows that the unknown system G admits a state space

representation of form:

x′(i, j) = Ax(i, j) + Bu(i, j)

I(i, j) = Cx(i, j) + Du(i, j) (16)

where

x′(i, j) =

[
xv(i + 1, j)
xh(i, j + 1)

]

, x(i, j) =

[
xv(i, j)
xh(i, j)

]

A =

[
A1 A2

A3 A4

]

, B =

[
B1

B2

]

, C =
[

C1 C2

]

subject to an additional constraint of the form

g(i + N, j) = g(i, j)
g(i, j + M) = g(i, j)

for some finite N, M > 0

where g(., .) denotes the impulse response of G. With these

assumptions, the problem becomes one of identifying a state–

space realization from experimental data, subject to a period-

icity constraint, precisely the type of problems solved in [7].

The potential of this approach is illustrated in Fig. 12, where

it was used to expand partial images by first identifying the

underlying model and then simply computing its impulse

response.

Fig. 12. Using 2-D Models to Expand Images

B. Texture Classification

In this section we show how the models obtained above

can be used for texture classification. Proceeding as in [41],

we will recast the problem into a robust semi-blind model

(in)validation form. To this effect, we will postulate that all

images corresponding to realizations of a given texture T
can be obtained as the output of a 2-D operator S to an

T-e(i, j) -
h(i, j)

- ∆

?j+ -
y(i, j)

Fig. 13. Texture Recognition Set-up

unknown input signal e with unit spectral density, applied

in (−∞, 0] × (−∞, 0]. This leads to the set-up shown in

Figure 13, where T (z1, z2) represents a nominal model of

a particular texture, h(i, j) and y(i, j) denote the intensity

value of the ideal and actual images, respectively, and where

the (unknown) operator ∆(z1, z2) describes the mismatch

between these two images.

In this context, given a set of texture families, each

represented by a model Ti, an unknown specimen can

be classified by (i) performing a sequence of invalidation

models to find the lowest uncertainty value ‖∆i‖ required

to explain the specimen in terms of the model Ti, and (ii)

assigning the unknown texture to the family corresponding to

smallest uncertainty norm. By identifying first a (separable)

model of the nominal texture, the corresponding 2-D model

invalidation problem can be reduced to two decoupled 1-D

semi–blind validation problems that can be solved using the

LMI–based technique developed in [41].
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Fig. 14. Top: Sample Textures. Bottom: Optimal γ

Figure 14 shows the results of applying the technique

outlined above to classify several images. Here I1,j
f and I1,j

g

denote the results obtained when comparing the decompo-

sitions corresponding to the first image against the models

obtained from the jth texture. As shown there, this approach

correctly indicates that the first three images belong to the

same family8.

VIII. CONCLUSIONS

Dynamic vision and imaging is arguably one of the few

areas where both further advances and widespread field

deployment are being held up not by the lack of a supporting

infrastructure, but the lack of supporting theory. In this paper

paper we illustrated the central role that systems theory can

play in developing a comprehensive framework leading to

provably robust dynamic vision and imaging systems. In turn,

as noted in the introduction, these fields can provide a rich

8The higher values of I
1,3
f

and I
1,3
v are due to the use of a lower quality

image for the third texture.
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environment both to draw inspiration from and to test new

developments in systems theory.
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