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Abstract— This paper addresses the problem of identifica-
tion of a class of nonlinear systems from a set–membership
standpoint. Specifically we consider structures consisting of the
interconnection of a Linear Time Invariant plant and a sector
bound static nonlinearity. This structure includes as special
cases Hammerstein, Wiener and Hammerstein-Wiener systems.
Our main result shows that, by pursuing a risk–adjusted
approach, the problem can be reduced to a convex LMI
optimization form that can be efficiently solved. In addition
we provide a convergence analysis that points to an intrinsic
limitation of any interpolatory algorithm. These results are
illustrated with a simple example.

I. INTRODUCTION

The identification of nonlinear systems has long been seen

as an important problem. Different approaches have been

taken which rely on different assumptions/approximations of

the system to be identified. Many of the previous results rely

on a parametric approach where a linear combination of the

elements of a basis is used to represent the nonlinear system.

Examples of the basis used in the literature include Volterra

kernel expansions, neural networks, radial basis function

expansions and Fourier series; e.g., see [5], [6], [17], [28],

[11], [12], [20]. Also, unstructured methods have been used

to tackle the problem on nonlinear system identification; e.g.,

see [24], [31], [35]. In parallel with these, several authors

have studied the problem of identifying nonlinear system in

the presence of uncertainty; e.g., [8], [9], [14], [16], [15],

[18], [19], [21], [23], [26], [29], [36]. This is the the body

of work to which this paper is more closely related to. In

particular, the starting point of this paper is the same as [8],

[14], [16], [15], [36]; i.e., it is assumed that the nonlinear

plant can be represented as a linear plant with a static

feedback nonlinearity as an LFT. However, in this previous

work, it is assumed that the linear part of the plant is known

(apart from a feedback uncertainty bounded in the H∞ norm)

and several of the “internal” signals can be measured. This

greatly limits the applicability of the proposed algorithms in

a practical setting.

In this paper, we propose an algorithm for time–domain

based identification that avoids these difficulties by pursuing

a risk-adjusted approach. Here, in return for an (arbitrarily)

small risk of not being able to establish consistency of

the data, the problem is reduced to a convex optimization

problem. In the second part of the paper we analyze the con-

vergence properties of any interpolatory algorithm, including
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as a special case the one proposed here, and show that

generically there is an intrinsic non–zero identification error.

This error reflects the intuitive fact that in general there exists

more than one interconnection consistent with the a priori

information that can explain the observed experimental data.

The paper concludes with a simple example illustrating the

algorithm and pointing out to directions for future research.

II. PRELIMINARIES

For ease of reference, next we summarize the notation

used in the paper.
σ (A) maximum singular value of A.

A > (≥)0 A is positive(semi) definite.

I,0 the identity and zero matrices.

BX (γ) open γ-ball in a normed space X :

BX (γ) = {x ∈ X : ‖x‖X < γ}.

BX (γ) closure of BX (γ).
ℓp Banach space of vector valued real

sequences equipped with the norm:

‖x‖p
.
=

(

∞
∑

i=0

‖xi‖
p
p

)
1

p

,

p ∈ [1,∞] and ‖x‖∞
.
=

supi ‖xi‖∞.

Pn : ℓp → Rn Truncation operator: Pn(x)
.
=

{x0, . . . , xn−1}
< .,> inner product in ℓ2.

H∞ Space of functions with bounded

analytic continuation inside the unit

disk, equipped with the norm:

‖G‖∞
.
= ess sup|z|<1 σ (G(z)).

H∞,ρ space of transfer functions analytic

in |z | ≤ ρ,equipped with the norm

‖G‖∞,ρ
.
= ess sup|z|<ρ σ (G(z)).

Fu(M,∆) Upper LFT of the operators M , ∆:

Fu(M,∆)
.
= M22 + M21∆(I −

M11∆)−1M12

Tx lower triangular block Toeplitz ma-

trix associated with any finite se-

quence {xk, k = 0, 1, · · · , n− 1}:

Tx =













x0 0 . . . 0

x1 x0
. . . 0

...
. . .

. . . 0
xn−1 xn−2 . . . x0












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Next we recall, for ease of reference, a well known

interpolation result given a necessary and sufficient condition

for the existence of an LTI operator H ∈ BH∞,ρ whose

first n Markov parameters (or equivalently, its derivatives at

z = 0) interpolate a given sequence {hi}
n−1
i=0 . This result

has been used both in the context of model (in)validation

and robust identification to recast the problem into a convex

optimization form (see for instance [7].).

Lemma 1 (Carathéodory-Fejér): Given K > 0 and a ma-

trix valued sequence {hi}
n−1
i=0 , there exists a causal, discrete-

time, LTI operator H(z) ∈ BH∞,ρ(K) such that

H(z) = h0 + hz + h2z
2 + . . .hn−1z

n−1 + . . .

if and only if

(RTnm
h R−1)T (RTnm

h R−1) ≤ K2I.

where R
.
= diag{1, ρ, . . . , ρn−1}

Proof: See for instance [25].

III. PROBLEM STATEMENT

-
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Fig. 1. Nonlinear Identification Setup

Consider the system shown in Figure 1 consisting of the

interconnection of a LTI system H and a memoryless, sector

bounded nonlinearity NL(.). The corresponding equations

are given by:
[

qk

yk

]

= (H ∗

[

r
u

]

)k +

[

νk

ηk

]

rk = NL(qk)

(1)

where ∗ denotes convolution and the signals u ∈ Rnu and

y ∈ Rny represent the experimental data: a known finite

input sequence and its corresponding output sequence, cor-

rupted by unknown but norm–bounded measurement noise

η. Note that in general the intermediate signals s ∈ Rnp

(the output of the LTI system), ν (noise at the input to the

nonlinearity) and r, the output of the nonlinearity, are not

measurable. Note also that in principle one could also add a

third noise source at the output of the nonlinearity. However,

doing so would lead to generically hard bilinear problems

involving the product of the unknown signal r and the

impulse response of H . Thus, if necessary, noise at the output

of the nonlinearity will be handled by incorporating it in the

signal ν. Our goal is to, given experimental data consisting of

nm measurements of the input/output pair {u,y} and some

a priori information about the plant and noise, establish

whether they are consistent, and if so, find a model that

interpolates the experimental data within the measurement

error level.

In the sequel, we will make the following standard as-

sumptions about the a priori information:

A1.- A set membership characterization of the linear portion

of the plant is available:

H(z) ∈ S ⊆ BH∞,ρ(K) (2)

that is, we consider exponentially stable plants with

a stability margin of (ρ − 1) and a peak response to

complex exponential inputs bounded by some known

K. The set S encapsulates any additional a-priori in-

formation available about the structure of the problem.

For instance, in the special case of Wiener systems

identification, S has the form:

Swiener =

{

H(z) ∈ BH∞,ρ(K) : H(z) =

(

0 H12(z)
I 0

)}

A2.- A bound on the gain of the static nonlinearity is known,

e.g.

NL(.)
.
= diag

{

NLi(.) : , [ri − γqi]
T
qi < 0

}

for some known γ. We will further assume that H11,

the (1, 1) block of the linear system H , satisfies

γ‖H11‖∞ ≤ Kγ < 1 1

A3.- The measurement noise satisfies:

η ∈ Nη
.
= {η : ‖η‖2 ≤ ǫη}

ν ∈ Nν
.
= {ν : ‖ν‖2 ≤ ǫν}

With these assumptions, the problem under consideration can

be precisely stated as:

Problem 1: Given the a priori information S,N
.
=

Nη ×Nν , γ and the a posteriori experimental data {y,u},

determine:

1) if the a priori and a posteriori information are

consistent, i.e., the consistency set

T (y, nm,N )
.
=

{H ∈ BH∞,ρ(K) : yk =

[

Fu(H,NL)(

[

ν
u

]

)

]

k

+ ηk,

for some NL and some sequences

(νk, ηk) ∈ N , k = 0, 1, . . . , nm − 1.}
(3)

is nonempty.

2) If T 6= ∅, find a nominal model {H,NL(.)} that

interpolates the experimental data2

1This condition can be relaxed to the existence of some X > 0 such that
the following LMI is feasible:

H∗(ejω)XH(ejω) − γX < 0

.
2If T = ∅, then the experimental data {y,u} invalidates the a priori as-

sumptions about the class of models and noise, that is, the experimental data
cannot be explained by models in these sets.
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IV. RISK-ADJUSTED ANALYSIS: CONSISTENCY AND

IDENTIFICATION

Note that Problem 1 is generically non convex, even in

the case where the feedback term is a linear operator, due to

bilinear terms involving the product of ν and H . Motivated

by the earlier work in [32] and [22], in the sequel we will

pursue a risk–adjusted convex relaxation to (approximately)

check consistency between the a priori assumptions and

the experimental data. To this effect, begin by noting that

T (y, nm,N ) 6= ∅ if and only if there exists a pair of signals

(r,q) ∈ ℓ2, (ri−γqi)
T qi < 0 such that (1) holds. Moreover,

from assumptions [A1] and [A2], it follows (see Figure 1)

that

‖q‖2 ≤
1

(1 −Kγ)
(‖ν‖2 +K‖u‖2)

.
= Kq (4)

The main idea of the proposed algorithm is to establish con-

sistency and identify the linear portion of the interconnection

by suitably sampling the set of admissible signals {r,q}.

Once consistency is established, the static nonlinearity can

be recovered from its graph, using for instance a least-squares

fit.

Algorithm 1:

1.- Generate Ns samples, {qi}i=Ns
i=1 , of the set Q

.
=

{q : ‖Pn(q)‖2 ≤ Kq}. Set i=1.

2.- Generate a sequence {ri
k} by sampling the convex set

‖ri
k‖ ≤ γ‖qi

k‖, k = 1, . . . , nm. Use Lemma 1 to

establish whether there exists a candidate plant H ∈ S
such that (1) holds with q = qi and r = ri by solving

the convex (in h) problem:

(RTnm
h R−1)T (RTnm

h R−1) < K2I

γ2
(

Tnm
h11

)T
Tnm

h11
< K2

γI

(

[

q

y

]

− Tnm
h

[

r

u

]

) ∈ N ,

(5)

where {ho, h1, . . . , hn−1} are the first n Markov pa-

rameters of the linear system H(z) and where Thn
11

is

the submatrix associated with the impulse response of

its (1, 1) block.

3.- If there exists at least one feasible h, stop. Otherwise,

set i=i+1 and if i ≤ Ns go to step 2.

The algorithm finishes, either by finding h, the first nm

Markov parameters of the the linear portion of the system

and one admissible pair of signals (r, q), or after Ns steps.

In the latter case, we conclude that –within a given risk–

the experimental data invalidates the a priori assumptions.

On the other hand, if a feasible h has been found then a

model H(z) interpolating the data can be constructed now

using the explicit formulas given for instance in [25] or

[7], Chapter 2. The identification can be completed now by

reconstructing the nonlinearity from its graph (ri
k, q

i
k) using

for instance the dispersion function method described in

[15], or any other of a number of widely available algorithms

for multidimensional data interpolation and curve fitting.

Remark 1: In many cases of interest, the a priori informa-

tion includes a set of bases known to span the nonlinearity,

that is: NL(q) = BΨ(q), where Ψ(q) ∈ Rnψ×nq is a known

matrix function and B ∈ Rnr×nψ denotes the unknown

coefficients. This case can be easily handled by our algorithm

by simple modifying step 2 above to sample B instead of r.

Similarly, any structural information available about H (e.g.

the special cases of Hammerstein or Wiener systems) can

be incorporated as additional constraints when solving the

LMI (5).

A. Generating Samples of q

The algorithm above leads to the following question:

Which distribution should be used to sample the vector

q ∈ Q? Note that simply using a uniform distribution

would result in most of the generated samples being close

to the boundary of Q, as the dimension of q increases. It

follows that, since the bound Kq used to define the set

Q might be conservative, uniform sampling might lead to

misleading results. This effect can be avoided by selecting

a probability density function for q that leads to a desirable

distribution of ‖q‖2, for instance uniform. Such a distribution

can be obtained by using the following algorithm to generate

samples of q: Using a normal distribution with zero mean

and whose covariance is the identity matrix, generate a

sample ζ with the same dimension of q. Generate also a

sample η uniformly distributed in the interval [0,Kq]. Then

compute the sample of q as follows

q =
η

‖ζ‖2
ζ.

It is easily seen that the procedure above leads to samples

with both uniformly distributed direction and magnitude.

B. Bound on the Number of Samples

Following ([33], [32]) if the number of samples is large

enough the risk of missing a consistent triple (h, r, q) can be

made arbitrarily small, as stated next.

Lemma 2: Let (υ, δ) be two positive constants in (0, 1).
If

Ns ≥
ln(1/δ)

ln(1/(1 − υ))
,

then the probability of missing a consistent triple (h, r, q) is

smaller than υ, and this event occurs with probability greater

than (1 − δ), i.e.:

Prob
{

Prob{S(y) 6= ∅} ≤ υ
}

≥ (1 − δ).
Proof: Represent 5 as

F (h,q, r) < 0

Now, given q and r let α(q, r) be the solution of

min
α,h

α

subject to

F (h,q, r) < αI.

Note that, given q and r, the identification problem is feasible

if and only if α(q, r) < 0. Moreover, α(q, r) is a measurable
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function of q and r. Hence, the feasibility problem can be

reformulated as finding q∗ and r∗ such that

α(q∗, r∗) < 0.

The result in the lemma above follows from application of

the results in [33] to the function α(·).

V. CONVERGENCE ANALYSIS

In this section we briefly analyze the convergence proper-

ties of the proposed algorithm as the information is com-

pleted, that is η, ν → 0 and nm → ∞. First, note that

the proposed algorithm is interpolatory, in the sense that

the true plant go .
= Fu(Ho,NLo) ∈ T (y, nm,N ). Recall

that for any interpolatory algorithm AI , the local and global

worst-case identification errors, denoted by eid(y,AI) and

eid(AI):

eid(y,AI)
.
= sup

g∈T (y,n,N )

‖go −AI(y, n,N )‖

eid(AI)
.
= sup

y∈Y(n,N )

eid(y,AI),

can be bounded above by the local and global diameter of

information, D(y, I) and D(I):

eid(y,AI) ≤ d (T (y, n,N ))
.
= D(y, I)

eid(AI) ≤ sup
y∈Y(n,N )

D(y, I)
.
= D(I) (6)

where Y(n,N ) stands for the set of all possible experiments

compatible with the a priori assumptions:

Y(n,N )
.
=

{

y :

[

q

y

]

= H ∗

(

r

u

)

+

[

νk

ηk

]

for some H ∈ S and some sequences
(ν, η) ∈ N , (qk, rk) [rki − γqki ]T qki < 0

}

and the norm of interest is ‖ · ‖2 (see [34], Chapter 4).

Finally, let T ∗(y) denote the consistency set in case of

complete and uncorrupted experimental information, i.e.

T ∗(y)
.
=

{

h ∈ S :

[

q

y

]

= H ∗

(

r

u

)

for some sequences (qk, rk)
[rki − γqki ]T qki < 0

}

and define:

e∗(y)
.
= d(T ∗(y)).

As we show next, e∗(y) can be seen as an intrinsic local

worst-case error, in the sense that this is the best that can

be achieved by any interpolatory algorithm as the local

information is completed.

Theorem 1: Assume that Nη
.
= Bℓ2(ǫ) and Nν

.
= Bℓ2(ǫ).

Then as the information is completed:

lim
n→∞,ǫ→0

d [T (y, n, ǫ)] = e∗(y).

Proof: The proof proceeds by showing that

the sequence of consistency sets indexed by (nk, ǫk),
{T (y, nk, ǫk)}, converges to T ∗(y). In the sequel, we as-

sume for the sake of notational simplicity that all the signals

involved are scalar, but the proof generalizes trivially to the

vector case. Begin by noting that if {nk ↑, ǫk ↓}, then the

sequence of corresponding consistency sets satisfies:

T (y, nk+1, ǫk+1) ⊆ T (y, nk, ǫk+1) ⊆ T (y, nk, ǫk) (7)

Therefore its limit limk→∞ T (y, nk, ǫk) exists and equals

∩k>0T (y, nk, ǫk) ([1], page 19).

If the identification problem is well posed, i.e. T ∗(y) 6= ∅,

and given that h ∈ T ∗(y) ⇔ h ∈ T (y, nk, 0)∀k, then:

∩k>0T (y, nk, ǫk) ⊇ ∩k>0T (y, nk, 0) = T ∗(y).

where we have used the fact that 0 ∈ N . In order to show

the equality, assume that

∃ some H̃ ∈ ∩k>0T (y, nk, ǫk), but H̃ /∈ T ∗(y). (8)

Since H̃ ∈ ∩k>0T (y, nk, ǫk), it follows that for each k
there exists at least one pair of signals (rk, qk) and some

admissible noise sequences (νk, ηk) such that |rk
i | ≤ γ|qi

k|,
i = 1, . . . , nk and

[

qk
j

yk
j

]

=

(

H̃

[

rk

u

])

j

+

[

νk
j

ηk
j

]

j = 0, 1, . . . , nk

Since
[

qk rk
]T

∈ Bℓ2
(

(1 + γ2)0.5Kq

)

, from Banach-

Alaoglu Theorem it follows that the sequence
[

qk rk
]T

contains a convergent subsequence in the weak∗ topology,

that is, there exist some q̃ ∈ Bℓ2(Kq), r̃ ∈ Bℓ2(γKq) and a

subsequence
[

qki rki
]T

such that

< s1, q
ki >→< s1, q̃ >

< s2, r
ki >→< s2, r̃ >

for all s1, s2 ∈ ℓ2 (9)

Since H̃ ∈ T (y, nk, ǫk)∀k, (and hence in H∞), it follows

that H̃ ∗

[

r̃
u

]

∈ ℓ2 and therefore, given any ǫ > 0, there exists

some N such that:

‖y−
[

H̃21 H̃22

]

∗

[

r̃
u

]

‖2 ≤ ‖PN (y−
[

H̃21 H̃22

]

∗

[

r̃
u

]

)‖2+
ǫ

3
(10)

From equation (9) it follows that, for ki large enough,

‖PN (y −
[

H̃21 H̃22

]

∗

[

r̃
u

]

)‖2 ≤

‖PN (y −
[

H̃21 H̃22

]

∗

[

rki

u

]

)‖2 +
ǫ

3

≤
2ǫ

3

(11)

Combining (10) and (11) we have that, for any ǫ > 0, the

signals (q̃, r̃) satisfy:

‖

[

q̃
y

]

− H̃ ∗

[

r̃
u

]

‖2 ≤ ǫ

which contradicts the assumption that H̃ 6∈ T ∗(y).
Finally, let Y∗ denote the set of all complete and uncor-

rupted experiments compatible with the a priori assumptions

(S,U):

Y∗ .
=
{

y : y = h ∗ u, h ∈ S, u ∈ U
}

,
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and:
eid(N, ǫ)

.
= sup

y∈Y(N,ǫ)

d(T (y,N, ǫ))

e∗
.
= sup

y∈Y∗

d(T ∗(y)),
(12)

where e∗ represents an intrinsic global worst-case identifi-

cation errors. The following Theorem extends the notion of

convergence introduced above to the global case.

Theorem 2: If S and U are sequentially compact and N
.
=

Bℓ∞(ǫ), then:

lim
N→∞,ǫ→0

eid(N, ǫ) = e∗.

Proof: Select (Nk ↑, ǫk ↓). From (7) combined with

the fact that

Y(Nk+1, ǫk+1) ⊆ Y(Nk, ǫk) (13)

it follows that the sequence {eid(Nk, ǫk)} is non–increasing,

bounded below by 0. Thus, it contains a convergent

subsequence([30]. Let ẽ denote its limit, and, by contradic-

tion, assume that:

ẽ
.
= lim

Nk→∞,ǫk→0
sup

y∈Y(N,ǫ)

d(T (y,N, ǫ)) > sup
y∈Y∗

d(T ∗(y)).

Define ν
.
= 0.5(ẽ− e∗). From (12), it follows that, for each

k, there exist an experiment yk, and two triplets (hk, uk
h, η

k
h),

(gk, uk
g , η

k
g ) ∈ S × U ×N such that:

yk = Tgkugk + ηgk = Thkuhk + ηhk

‖gk − hk‖ ≥ eid(Nk, ǫk) − ν.
(14)

Since the sets S and U are sequentially compact, the

sequences {hk}, {gk}, {uk
h} and {uk

g} all contain sub-

sequences that converge to some limits ho, go, uo
h, uo

g

satisfying:

ho ∗ uo
h = go ∗ uo

g

.
= yo, for some yo

‖ho − go‖ ≥ ẽ− ν > e∗.
(15)

Since by construction yo ∈ Y∗ and ho, go ∈ T ∗(yo), this

contradicts the definition of e∗.

VI. NUMERICAL EXAMPLE

Consider a nonlinear plant of the form (1) consisting of

the interconnection of the linear system

H(z) =

[

0.2z − 0.1 1
0.3 z + 0.5

]

z2 − 0.05z − 0.765

and the following static nonlinear feedback term

r =

{

0.5q
2

3 q ≥ 1

0.5q
3

2 0 ≤ q ≤ 1

The a priori information available for identification purposes

is the following: The linear part of the plant belongs to

BH∞,ρ(K) with ρ = 1.1 and K = 8.20. The nonlinear static

feedback is a sector nonlinearity with γ = 0.5. Finally, the

bounds on the measurement noise and the noise at the input

of the nonlinearity are ǫη = 0.24 and ǫν = 0.16 respectively.

These correspond to a noise level of about 10% of the real

y

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2
Historical Data y

Model Output y - Identification Range

Model Output y - Prediction Range

Time k

Fig. 2. Simulation Results

values of the signals s and ψ. The a posteriori information

consists of the first n = 15 samples y of the impulse response

of the plant.

Using the proposed algorithm leads and selecting the

central interpolant for the linear portion of the plant leads

to the following model:

Hid(z) =

[

0.77 −1.34z + 0.21
−0.05 −6.12z + 5.78

]

z − 0.80

The corresponding nonlinear feedback was estimated from

the sampled values of q and r by using a one dimensional

interpolation algorithm. Figure 2 shows that the resulting

interconnection can indeed predict the output of the plant

(beyond the identification horizon) with an ℓ2 error no larger

than 0.60. It is also worth noting that the plant obtained is

not exactly the one which generated the data since, without

additional assumptions, there are many plants which are

compatible with the available information. However, this

example clearly shows that the algorithm presented is able

to provide a plant which closely matches the behavior of the

real plant.

VII. CONCLUSION

In this paper we propose an algorithm for deterministic

set membership identification of a class of nonlinear system

that contains, as special cases, both Hammerstein and Wiener

systems, using time–domain data. As shown in the paper,

in principle this formulation leads to a non-convex, com-

putationally hard to solve optimization problem. However,

by pursuing a risk–adjusted approach, the problem can be

relaxed to a convex optimization, at the price of an arbitrarily

small probability of mis-identifying the plant. In addition,

the convergence results presented in the paper point out to

an intrinsic limitation of any interpolatory algorithm when

dealing with the interconnection structures considered here:

as the information is completed, the consistency set does

not, in general, reduce to a singleton. Intuitively, this is due

to the fact that the same input/output data can be generated
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by more than one admissible interconnection. Thus, in the

absence of additional a-priori information, these systems are

indistinguishable.

Efforts are currently underway to generalize the techniques

proposed here to cases where both the linear dynamics and

the nonlinearity are slowly time varying.
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