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Abstract— This paper considers the problem of robust, set
membership identification of parametric LTI plants, using
frequency domain data. We consider the case of noisy data, and
provide tractable, LMI-based conditions for computing inner
and outer approximations to the set of parameters so that the
resulting plant is consistent with a given a priori information
and interpolate the experimental data. The results presented
here are useful for model (in)validation, robust control synthesis
and fault diagnosis.

I. INTRODUCTION

Many problems of practical interest lead to uncertainty
structures involving unknown but bounded parameters. Ex-
amples include model (in)validation and control synthesis for
plants where the structure of the model is known, for instance
from first principles, up to the value of some parameters.
In these cases, covering the uncertainty structure with dy-
namic (non—parametric) uncertainty may lead to (potentially
very) conservative results, since it allows for not physically
realizable situations. For example, in the case of electric
circuits, components always have some tolerance that can be
represented by a given interval. However, if such uncertainty
is modeled as non—parametric, then additional uncertainty
with no-physical meaning is introduced, i.e. a real interval
is covered by a complex ball.

Analysis/Synthesis with parametric uncertainty has been
a long standing problem in the control community, see for
instance ([1], [2]). Unfortunately, while in many cases of
practical importance the analysis problem is tractable, it is
well known that robust control synthesis for parametric un-
certainty leads to generically NP-hard problems. Neverthe-
less, in the past few years, there has been a renewed interest
in the subject, motivated by the emergence of a risk—adjusted
approach to robust control [3], [4], [5], [6]. Here, in return
for an arbitrarily small probability of performance violation,
one obtains tractable problems whose complexity grows
only polynomialy with the size of the uncertainty. Clearly,
pursuing this approach requires availability of identification
methods capable of producing the required plant/uncertainty
description with minimal conservatism.

Control oriented identification has been extensively stud-
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ied since the early 1990’s and is by now a relatively well
understood subject (see for instance the textbook [7] or
Chap. 10 in [8]). Further, the initial results dealing with
purely time or frequency domain measurements and non—
parametric plants have been extended in a number of ways
including combinations of time and frequency domain mea-
surements ([9]) as well as parametric and non—parametric
models ([10]). Nevertheless, in spite of its success, this
framework can provide only a dynamic uncertainty descrip-
tion', and thus leads to excessive conservatism in cases
where the uncertainty is known to be purely parametric.

Set-membership identification of purely parametric plants
has been addressed in a number of papers. Milanese and
co—workers [11], have pursued an approach that yields a
set of parameters whose response belongs to the set of
experimental evidence (usually time-domain). The exact set
is approximated using the best adjusted inner and outer
box or ellipsoid, by formulating a optimization problem.
However, in the case of models that are non-linear in the
parameters (as in parametric LTI models using frequency or
time domain data), the associated optimization problem is
generally non-convex. Alternatively, and also for this case,
the approach in [12] can be used. It computes a tight ap-
proximation of the consistent set of parameters, by using set
inversion via interval analysis (branch & bound). However,
in the non-linear parameter case either, bounding the set
of consistent parameters using optimization or set-inversion
leads to computational complexity which is exponential in
the number of parameters.

A different approach has been pursued in [2] (pp. 582-
592) and [13], [14], [15], [16], proposing interval model
identification algorithms, that, starting from a set of mea-
sured frequency responses, generate interval plants whose
frequency response covers the experimental data. This ap-
proach has been further extended in [17] considering noisy
measurements, and exploiting Kharitonov’s theorem to ob-
tain hard bounds on the values of the parameters. Both

I'This is accomplished by exploiting information based complexity results
to overbound the diameter of the information.
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of these approaches, obtain a parameter set which covers
the experimental data, but is not related to the consistency
set. The latter is understood as the set of models included
in the candidate model set (a priori information) which
may reproduce the experimental measurements (a posteriori
information) within the error bounds (a priori information),
sometimes called feasible set. Thus, these approaches can
neither exploit additional information available for the plant
(such as bounds on the H., or Hs norms) to bound the
behavior of the identified model at frequencies other than
those used in the experiments nor provide worst case bounds
on the identification error.

In this paper we address the problem of robust identifica-
tion from a deterministic, set membership standpoint, applied
to LTI models with a LFT dependency on its uncertain
parameters. As discussed before, for these class of models,
existing methods as those in [12] and [11] lead to complex
computational problems. Our main result is an efficient algo-
rithm that, starting from some a priori information about the
plant and experimental data (frequency domain), generates
a nominal model that preserves the parametric structure of
the plant, along with hard bounds on the values of the
unknown parameters. By exploiting integral quadratic con-
straints (IQCs) results, the problem of finding these bounds
is recast as a Linear Matrix Inequality convex optimization
one that can be efficiently solved with existing software
(see [18], [19]). Moreover, since the proposed algorithm
is interpolatory, it is optimal within a factor of two [7],
[8], and worst case bounds on the identification error can
be computed by exploiting information based complexity
concepts.

The paper is organized as follows. Section II introduces the
notation and some background on robust interpolation with
frequency domain data. Section III presents the main results:
given measurements corrupted by bounded additive noise,
it provides tractable, LMI-based conditions for computing
inner and outer approximations to the set of parameters
so that the resulting plant is consistent with some given a
priori information and interpolates the experimental data. An
algorithm to solve this problem is also presented. Section IV
presents a simple example to which this procedure is applied.
Finally, Section V presents some conclusions and possible
directions for future research.

II. PRELIMINARIES

A. Notation

By L. we will denote the Lebesgue space of complex
valued matrix functions essentially bounded on the unit
circle, equipped with the norm:

1G(2)lloc = ess sup 7 (G(2))

|z|=1
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(b)

Fig. 1. (a) Robust Parametric Identification Set-up. (b) Equivalent
Formulation.

where o denotes the largest singular value. By Ho, we
denote the subspace of functions in L., with a bounded
analytic continuation inside the unit disk, equipped with
the norm [|G(z)|lec = esssup,<1 0 (G(2)). Similarly, Ho
denotes the Hilbert space of of matrix valued complex
functions F'(s) with analytic continuation inside the unit

disk, and square integrable there, equipped with the usual
2m

Hy norm ||F||3, = & [ Trace[F*(jw)F (jw)]dw < oo.
{5 denotes the space of Obounded vector functions x(e/*)
equipped with the norm ||z||3 = OQTF |f (e7)]|?42, and
BY5(€), the origin centered € radius closed ball in this space.

This paper considers discrete time, single input-single out-
put, causal, linear time invariant (LTI) systems represented by
the convolution kernel {h} in y, = (h*u) = E]’LO hi—juj,
or, alternatively by the complex—valued transfer function
H(z) = Y320 haz™.

Given a matrix M, M* denotes its Hermitian transpose.
As usual, M > 0 (M > 0) indicates that M is positive
definite (positive semi-definite). Finally JF, (M, q) denotes
the upper linear fractional interconnection of the matrices
M,q:

Fu(M,q) = Morq(I — My1q)~ " Mg + Mas.

B. Statement of the Problem

In this paper we will consider parametric systems of
the form shown in Figure 1(a), consisting of the Lin-
ear Fractional Transformation (LFT) interconnection of a
known, stable LTI plant P and a real uncertainty structure
g = diag{q1ln,,...,q-In, }. Our goal is to establish
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hard bounds on the values of the parameters ¢; such that
the F,(P,q): (i) is consistent with some given a priori
information, and (ii) interpolates, within some experimental
error, a set of experimental measurements. In particular, in
the sequel, we consider a priori information of the form:

A, = {q=diag(@ln,, .-, q¢1In.)
D IWqlloo <1, W given}
Ny = Bla(ey)

for the set of plants and measurement noise, respectively.
Here A, C R™*™. Moreover, in the sequel we will assume,
by absorbing W into P if necessary, that W = 1I. The
experimental information consists of Ny measurements of
the frequency response, y/, both corrupted by additive, ¢>
bounded noise:

yl = HE@)+0/, 0/ e Ny (1)

where H denotes the transfer function of the (unknown) plant
and vector H = [H (/) H{(e™Ns )]T its frequency
response.

Definition 2.1: Given: (i) a priori information of the form
(1), and (ii) a vector y/ of frequency domain experimental
measurements, the consistency set 7 (y/) is defined as the
set of all plants consistent with the a priori information that
could have generated the available a posteriori experimental
data, that is:

Ty ={HeS, ||y —H|, <e} )

Definition 2.2: The a priori information and a priori
experimental data are said to be consistent if and only if
T(y!)#0

Note that 7 (y/) is the smallest set of models that are
indistinguishable using the available information. Thus its
radius and diameter give lower and upper bounds on the
worst—case identification error (see chapter 10 in [8]).

Using these concepts, we can now formally state the
problem under consideration as follows:

Problem 2.1: Given an unknown parametric plant g, the
a priori sets of candidate models and noise (1), and a finite
set of frequency domain experimental data (y/):

o Determine whether the consistency set 7 (y/) is non-
empty.

o If T(y/) # 0, find hyperboxes H and H such that (i)
Fu(P,q) €T = q€ H and (i) g € H = Fu(P,q) €
T

IIT. MAIN RESULTS

In this section we propose a convex, LMI based opti-
mization algorithm to compute tight approximations to the
hyperboxes H and H. We begin by recasting the problem
into the equivalent form shown in Figure 1 (b), that involves
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finding the minimum value, over g, of | F,, (M, ¢)||2, where
M(e’) is a transfer matrix built from the a priori and a
posteriori information.

A. Problem Transformation

In principle, finding 4 and 7 in Problem 2.1 can be recast
respectively, into the following (non-convex) constrained
optimization forms (s.t. stands for subject to):

max || Wlloo st. [ly" — H(q)ll2 < ¢

. 3)
ming [Wallo s:t. y" — H(q)ll2 > €

Rather than attempting to solve these problems directly, in
the sequel we will exploit a combination of interpolation
theory and integral quadratic constraint techniques to first
reduce them to a finite—dimensional, albeit possibly non—
convex, optimization and then obtain tractable convex relax-
ations. The main idea of the method relies on the following
observation: since only a finite set of input/output measure-
ments is available, we can assume, without loss of generality,
that both u(e?) and y(e?) are the impulse responses of
some known systems S, S, € RHoo2. Tt follows then that
the condition

y=Fu(P,qu+n; n €Ny C))
is equivalent to
{s} | Pu P13Sy [r}
Ml —épzl % (Sy — P2Su)| |1
M(er) )

r(e) = gs(e™),
1]z < 1

where 1 denotes the unit impulse, 7, has been scaled to
belong to Bls, and (e’*) has been eliminated in the first
equation due to space limitations.

Thus, finding 7 and H in Problem 2.1 is equivalent to
solving the following optimization problems:

Problem 3.1: Given the experimental information
{u(e’),y(e’*)}, the nominal plant P and noise level ey,
find

max ||q||« subject to || Fy (M, q)1]], <1 (6)
q
and
min ||¢|| subject to || F, (M, q)1]], > 1 (7
q

B. A Convex Relaxation for H

In this section we introduce an LMI based algorithm for
computing an inner approximation to the hyperbox H. The
main idea is to use the formulation introduced above to
reduce the problem to a robust Hsy problem, which can then
be solved proceeding as in [20], with suitable modifications

28, and Sy can be found for instance by solving a boundary Nevanlinna—
Pick interpolation problem.
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to account for the fact that here the uncertainty under
consideration is real.

Theorem 3.1: Consider a given stable discrete—time LTI
system M(z) € RHo and a real uncertainty structure
g € A,. If there exist hermitian matrices X (e/¥) =
block — diag{ X}, G(e?*) = block — diag{G;}, X > 0,
and a real transfer function vw(e?”) > 0, such that the
following inequalities hold:

M* [a%X O]M_{X o]

0 I 0 v
G 0 .[G o
=[5 orr-ar [ ) =0
and 3

2w
d
/ v(ejw)ﬁ < 1
0 27

then || F, (M, q)|l2 < 1 for all g, [g;] < ay.
Proof: Given in the Appendix.

C. A Convex Relaxation for H

In this section we show that an upper bound to the solution
of problem (3.1) can be found by solving a set of convex LMI
optimization problems. To this effect, we begin by presenting
a theorem guaranteeing that |5, (M, q)||2 > 1°.

Theorem 3.2: Consider a given
LTI system M(z) € TRHo and a real uncertainty
structure ¢ € A,. If there exist hermitian ma-
trices Xi(e’) = block —diag{X; ;)}, Xo(e™) =
block — diag{X> ;}, G(e’) = block — diag{G;}, X; >
0, X5 > 0, and a real transfer function v(e’”) > 0, such
that the following inequalities hold:

stable discrete—time

[— X (e7) 0 0 0
0 a?X; 0 0
M* v M
0 0 —Xa(e™) 0
L O 0 0 1
—X1 0 0 0
B 0 X 0 0
0 0 —Xs(e) 0
L 0 0 0 v(e)
G 0 G 0
M — M* >
(5 e 50l =
and 9)
2m
dw
gy
/0 v(e )27r >

3Recall that the Mo norm of a transfer function is equal to the {2 norm
of its impulse response.
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then
|q|§17]:173n
Fu(M,q)l|2 > 1, V{ J . ;
17 )l lgi| > ci, 1 F# 5

Proof: Given in the Appendix.

Direct application of this result leads to the following
algorithm for finding an approximation to .

Algorithm 1: Given the a priori information P,e; and
experimental data {u(e?),y(e)}:

0.- Form the system M defined in (5). Set i =I.

1.- Find the minimum value of «; such that conditions (9)

hold.
I 0 0
2.- Scale M by [0 «; Of. Seti=i+l. If © < n go to
0 0 I
step 1.

3.- The desired hyperbox is given by H = {q: |q¢:| < s}
IV. EXAMPLE

Consider the problem of computing the inner and outer
bounds for the following system:

0 0 1

P oo Pe=|]
0.2(z +1)?
P. = |1 1| Pypp=—7F——
2t [ ] 2732816

The uncertainty structure is A = diag(d1, J2), measurement
noise bound e; = 0.18, and the candidate model is Psa(z).
Without loss of generality, the actual system is coincident
with the candidate one. The idea is to provide inner and
outer bounds on the consistency set, by setting the set of
models f(z) = Fy, (P, A) = Pss(z)+ 91 + 02. The inner and
outer bounds on the parameters should box the measurement
noise.

Using theorem 3.1, we have computed the set of parame-
ters that define an inner approximation to the consistency
set, and therefore consistent with a priori and a posteriori
information. The inner consistency parameter set |J;| < ay =
0.06, ¢« = 1,2 is contained within the measurement noise
bounds, as illustrated in figure 3. In this case, the worst
combination of uncertainties is d; 4+ d2 < 2ap < €7, which
verifies the theory with little conservatism.

For the outer bound, in this example we note that the
parameter combination §; = —do cannot be invalidated, i.e.
the resulting model coincides with the actual one f(z) =
Pyy(z). As a consequence «; > 1 (i = 1,2), otherwise
the resulting set would include points of the set §; = —ds.
The outer parameter bound is therefore |§;| < a; = 1.21
(¢ = 1, 2) which contains, the consistency set, as well as the
measurement bounds as seen in figure 3.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we address the problem of robust identifica-
tion of parametric plants from a deterministic, set member-
ship perspective. The goal is to provide hard inner and outer
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Fig. 2. Inner bounds for the consistency data set (dashed) vs. experimental
outcome (dotted) and real system (full).
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Fig. 3. Inner (dashed) and outer (dash-dot) bounds for the consistency data
set vs. experimental (dotted) and noise bounds (full).

bounds on a set of parameters such that the resulting plant
satisfies some given a priori information and interpolates,
within the measurement error level, some experimental data.
By exploiting IQC techniques, these problems are reduced
to convex LMI optimizations. This technique can serve as a
fast first step for a branch and bound optimization program
which may compute the exact consistency set. Research is
currently under way to extend these results to time—domain
data and to time—varying parameters.
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APPENDIX

Theorem 3.1

Proof: For simplicity we will assume non-repeated

parameters, which implies that the scaling matrices X and G
are diagonal. The case of repeated parameters follows along
similar lines. Pre/post—multiplying the first inequality in (8)
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by [r* I ] and its hermitian transpose yields, frequency
by frequency (see Figure 1):

Ng
> wi(aflsil® = [ri®) + Inl* —
i=1

q
+ JZ(TfQiSi —5;giri) <0 (10)
i=1
Since r; = ¢;s; and g; is real, the last term on the right
hand side vanishes, leading to:

|n|2<v—2xz —lail®)lsil?> <o AD

The proof follows now by integrating this last equation,

using the second inequality in (8), and the fact that the Ho

norm of a SISO LTI transfer function coincides with the

energy of its impulse response. [ ]
Theorem 3.2

Proof:  Proceeding as in the proof above, start

by pre/post-multiplying the first inequality in (9) by

Lo TE Ty, 1}, leading to:
Ngq
Yoo (Il sl Faiadlsl® — )
j=1
JFi
+ nP-v>0
=
Ng
>0+ > wy (1= lg?)lss)
j=1
J#i

+ ailsil* (gl —af) > v

where, as before, we used the fact that since the uncertainty
is real the term involving the G scales vanishes. The proof
follows now by integrating this last equation, using the
second inequality in (9). ]
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