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Abstract— In this paper we address the problem of finite–
horizon model reduction for a class of neutrally stable
discrete–time systems. The main result of the paper shows that
this problem can be solved by considering suitable defined
Hankel operators and Grammians, leading to an algorithm
similar to the well known balanced truncation. However, in this
case the structure of the problem can be exploited to obtain
tighter truncation error bounds. These results are illustrated
with a non–trivial practical example arising in the context of
image processing: texture synthesis and recognition.

I. INTRODUCTION

This paper addresses the problem of finite–horizon model
reduction of discrete linear time invariant systems that
have a periodic impulse response. This situation arises
in the context of many practical problems from widely
dissimilar areas, where the use of control–theoretic tools
can result in a substantial simplification. For instance, as
we will show in the sequel, solving this problem allows
for developing efficient algorithms for image restoration
and texture recognition. A second interesting application
is obtaining low–order approximations, over a finite time
horizon, of an input–output system with high–dimensional,
linear Hamiltonian dynamics. This problem is at the core
of explaining the apparent paradox entailed in the transition
from microscopically conservative dynamics to seemingly
dissipative macroscopic behavior [15], [4].

Model reduction of stable LTI systems is by now a well
understood problem and a number of efficient algorithms
are available (see for instance [11], [2], [7] and the text-
books [13], [20]). In comparison, relatively few results are
available for the case of interest here, where the system
has all its poles on the unit circle and it is only desired
to find approximations over a finite time interval. Model
reduction of unstable systems in the L∞ sense has been
addressed in [21]. However, contrary to the stable case,
L∞ approximation error bounds do not lead to bounds in
the L2[0, T ] sense when G is non Schur. Finite horizon
L2 model reduction of unstable systems was addressed in
[15], by recasting the problem into the reduction of an
equivalent stable system obtained through jω–axis shifting
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techniques. While computationally attractive, this approach
cannot guarantee that certain structural properties, such as
periodicity of the impulse response, are preserved, a key
requirement in the applications of interest here.

The present paper pursues a different approach to model
reduction. Motivated by some well known results on realiza-
tion theory [17], [19], [9], we work directly with the Hankel
matrix of the system under consideration. Since the impulse
response is periodic, this matrix is circulant and structural
properties can then be exploited to obtain balanced (in a
sense that we formalize in the paper) realizations in an
efficient way. Moreover, directly truncating these balanced
realizations provides an optimal (finite horizon) Hankel
norm approximation to the original operator.

In the second portion of the paper we apply these
tools to the non–trivial problems of texture synthesis and
recognition. The main idea is to model images as the
(periodic) impulse response of a non-necessarily causal
LTI system and use the proposed method to identify the
corresponding model. Partial images can be expanded and
additional realizations of the same texture can be obtained
by simply driving the corresponding model with a suitable
input. Texture recognition can be accomplished by recasting
the problem into a model (in)validation form.

II. NOTATION

Below we summarize the notation used in this paper:
x real–valued column vector.
‖x‖p p-norm of a vector: ‖x‖p

.=
(
∑m

k=1 |xk|p)
1
p , p ∈ [1,∞),

‖x‖∞ .= maxk=1,...,m |xk|.
A† Moore-Penrose pseudoinverse:(

AT A
)−1

AT .
σ (A) maximum singular value of A.
A > (≥)0 A = AT is positive (semi) definite.
BX (γ) closed γ-ball in a normed space X :

BX (γ) = {x ∈ X : ‖x‖X ≤ γ}
�m
2 Banach space of vector sequences

equipped with the norm:
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‖x‖2
.=

(∑∞
i=0 ‖xi‖2

2

) 1
2

�m
2[0,n] subspace of �m

2 formed by finite se-
quences of length n + 1.

L(�2) space of bounded operators in �2.
BS Unit ball in the space of bounded spec-

tral density signals.{
ek ∈ �2 : E(ejω)∗E(ejω) ≤ 1

}
.

This paper considers finite-dimensional, discrete-time,
linear shift invariant (FDLSI) operators. From an input–
output viewpoint, such an operator S can be represented
by its convolution kernel {Si}. Causal LSI systems (i.e
Si = 0, i < 0) will also be represented by a minimal
state–space realization:

xk+1 =Axk + Buk

yk =Cxk + Duk.
(1)

III. MODEL REDUCTION FOR A CLASS OF NEUTRALLY

STABLE SYSTEMS

Consider a system Gn with a state space realization
of the form (1), with A ∈ Rn×n, B ∈ Rn×m, C ∈
Rp×n, and such that An = I. Our goal is to find an rth

order reduced approximation Gr such that ‖Gn − Gr‖∗ is
minimized, where ∗ denotes a norm of interest, defined over
the finite interval [0, n−1]. In addition, we will require that
An

r = I, that is, the approximation preserves the periodicity
properties of the impulse response.

Next we present an algorithm to solve this problem based
on the singular value decomposition of the (finite horizon)
Hankel operator of G.

Algorithm 1:

1.- Given the system (1), let Mk = CAk−1B ∈ Rp×m

denote its kth Markov parameter and form the np ×
nm block matrix:

Hn
.=

⎡
⎢⎢⎢⎣
M1 M2 . . . Mn

M2 M3 . . . M1

...
...

. . .
...

Mn M1 . . . Mn−1

⎤
⎥⎥⎥⎦

2.- Perform a singular value decomposition:

Hn =
[
U U⊥

] [
S 0
0 0

] [
VT

VT
⊥

]
,

S = diag(σ1, . . . , σn), σi ≥ σj , i ≥ j

(2)

3.- Assume that σr > σr+1 and form the reduced order
model:

Sr = diag(σ1, . . . , σr)

Ar = S− 1
2

r UT
r PUrS

1
2
r , Br = S

1
2
r V(1)

r

Cr = U(1)
r S

1
2
r , Dr = D

(3)

where

P =

⎡
⎢⎢⎢⎣

0 Ip 0 . . . 0
0 0 Ip . . . 0
...

...
. . .

...
Ip 0 0 . . . 0

⎤
⎥⎥⎥⎦ (4)

Ur (Vr) denotes the submatrix formed by the first r

columns (rows) of U (V) and where U(1)
r and V(1)

r

denote the first p × r block of Ur and r × m block
of VT

r , respectively.
Lemma 1: The rth order realization (3) satisfies the

structural constraint An = I and its corresponding nth

order Hankel operator satisfies the following truncation
error bound:

‖Hn − Hred
n ‖∗ = ‖Sn−r‖∗ (5)

where Hn and Hred
r denote the nth order Hankel ma-

trices corresponding to the full and reduced realizations,
respectively, ‖.‖∗ denotes any unitarily invariant norm, and
Sn−r = diag(σr+1, . . . , σn).

Proof: Given in the Appendix
Remark 1: From this Lemma it follows that, for the case

under consideration here, the optimal rank–r approximation
to H obtained directly from its SVD also has a Hankel
operator structure. This is in contrast to the case of gen-
eral systems, where enforcing this constraint requires per-
forming a more computationally demanding Hankel norm
approximation [1], [7].

Next we show that the procedure above is equivalent
to performing balanced truncations using the finite–time
Grammians1.

Wc =
n−1∑
k=0

AkBBT
(
AT

)k
= KcKT

c

Wo =
n−1∑
k=0

(
AT

)k
CT CAk = KT

o Ko

(6)

where Kc and Ko denote Kalman’s controllability and ob-
servability matrices, respectively. Due to its block-circulant
structure, the Hankel matrix Hn and (WcWo)

1
2 have the

same singular values, as when using the usual (infinite–
time) definitions. The analogy is further carried by the
following result:

Theorem 1: Algorithm 1 is equivalent to performing bal-
anced truncations using the Grammian definitions (6).

Proof: Without loss of generality, consider the state
space realization of the original system (1) obtained from
(3) by taking r = n. Direct computations show that
(AT )kCT CAk = S

1
2 [U(k)]T U(k)S

1
2 , where U(k) denotes

the kth block of U. Since UT U = I, it follows that
Wo = S

1
2

{∑
[U(k)]T U(k)

}
S

1
2 = S. A similar reasoning

shows that Wc = S. Thus, this realization is balanced.
Eliminating the states corresponding to the smallest n − r
singular values leads precisely to the realization (3).

Remark 2: Equation (5) for computing the approxima-
tion error is reminiscent of the well known bounds on
the Hankel norm of the residual error operator obtained
for balanced truncation. Note however that it is exact,

1Alternatively, these matrices can be interpreted as “average” Grammi-
ans by taking the average value limN→∞ 1

N

∑∞
0 AkBBT

(
AT

)k and
1
N

∑∞
k=0

(
AT

)k
CT CAk .
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due to the specific structure of Hn, rather than an upper
bound. For instance, for the case of the �2 induced norm,
it yields ‖Hn − Hred

n ‖2 = σr+1, rather than the looser
upper bound 2 ∗

∑n
r+1 σi provided by standard balanced–

truncation theory.

IV. APPLICATION: TEXTURE MODELLING AND

RECOGNITION

Texture modelling has been a long standing problem in
computer vision. Statistical approaches proceed by mod-
elling texture as a stochastic process and attempting to
capture the relevant properties [5], [6]. The approach that
we pursue in this paper is related to these in the sense that
we will also model images exhibiting a given texture as
realizations of a second order stationary stochastic process.
Our starting point is to consider the intensity values I(k, :)
of the kth row of the image as the output, at step k, of a
discrete linear shift-invariant, not necessarily causal, system
driven by white noise. In this context, texture modelling
can be recast into the problem of identifying the relevant
system model from the given images. Once these models
are obtained, synthesis follows in a straightforward fashion,
by simple driving the model with a suitable input. Similarly,
texture recognition can be accomplished by interrogating a
collection of models to determine which one is the closest
to the given sample.

A. Extracting models from images.

The problem of identifying a causal, FDLSI system
from samples of its output has been extensively studied in
identification and several approaches, roughly divided into
subspace identification [18] and operator–theoretic methods
[3] are available. However, in the problem under considera-
tion here, the unknown system is not necessarily causal: the
intensity value at a pixel is likely to depend on the values of
all pixels in its neighborhood, not just on those preceding
it in some ordering of the image pixels.

We propose to circumvent this difficulty by considering
a given n×m image as one period of an infinite 2D signal
with period (n, m). Thus, at any given location (i, j) in
the image, the intensity values I(r, s) at other pixels are
available also at position (r − qn, s− qm), and the integer
q can always be chosen so that r − qn < i, s − qm < j.
From this observation, it follows that the unknown operator
S admits a state space representation of form (1), with
the additional constraint that An = I. Finally, rather
than considering a stochastic model, we will consider a
deterministic equivalent:

xk+1 =Axk + Buk, An = I

yk =Cxk + Duk.
(7)

where for each k, the output vector yk ∈ Rm contains all
the intensity values I(k, l), 1 ≤ l ≤ m of the pixels in the
kth row of the image, and where the (deterministic) input
uk ∈ BS captures the properties of the stochastic input
process using deterministic set membership constraints [12].

Further, without loss of generality, we can assume that the
specific image being considered corresponds to the case
uk = δ(0), by absorbing the dynamics of the input into the
model, if necessary. With these assumptions, the problem
becomes one of identifying a state–space realization from
its impulse response data, with the additional constraint
An = I, that is the dynamics are neutrally stable.

Note that this additional constraint prevents the use of
currently available identification methods dealing with non–
Schur plants, since most of these proceed by pre-stabilizing
the unknown plant (see for instance the survey [10]), clearly
not an option here. Direct identification of non–Schur
dynamics was also addressed in [16], but this technique
does not necessarily preserve the periodicity properties of
the impulse response. On the other hand, in the specific case
under consideration here, incompleteness of the information
is not an issue. For texture modelling it is reasonable to
assume that one has available at least one complete period
of the impulse response and that these samples are noise
free. Thus, a state space realization of the unknown operator
can be obtained as follows:

Algorithm 2:

1.- Given an n × m image, let RT
i denote its ith row,

and form the block matrix:

Hn
.=

⎡
⎢⎢⎢⎣
R2 R3 . . . Rn

R3 R4 . . . R2

...
...

. . .
...

Rn R2 . . . Rn−1

⎤
⎥⎥⎥⎦

2.- Use Algorithm 1 to obtain a balanced state–space
realization.

3.- Obtain a reduced order realization by truncating the
modes corresponding to the smallest n − r singular
values of S.

Lemma 2: The RMS approximation error of the image
when using the algorithm above is given by

e =
√∑

Image

(I(x, y) − Ired(x, y))2 =

√∑n
i=r+1 σ2

i

n

where Ired denotes the image reconstructed as the impulse
response of the rth order realization (3).

Proof: The proof follows by noting that, by con-
struction, Trace

[
(Hn − Hred

n )T (Hn − Hred
r )

]
= ne2 and

applying (5).
The procedure above is similar in spirit to a subspace

identification method. The main difference is that here the
special structure of the problem is exploited to explicitly
obtain an exact realization (which can then be further
model reduced with tight error bounds), that automatically
has the required properties. In contrast, generic subspace
identification methods require solving an over–determined
equations system, for instance through least squares, to
obtain the matrix A [18]. This (approximate) solution will
not satisfy, in general, the additional constraint An = I.
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B. Texture Synthesis and Image Restoration

A partial image corresponding to one of the models
above can be extended by driving its associated state space
representation with a suitable input. In principle, finding this
input entails searching over all candidates in BS, since the
partial image does not necessarily correspond to the impulse
response of the model. However, this (infinite dimensional)
search can be avoided by noting that, due to the periodicity
of the image, the effect at pixel k of a (finite length) signal
applied at pixel k−s is the same as the effect of this signal
applied at k − s − (m ∗ N), for any integer m, that is:

yk =
k∑

l=k−s

CAk−lBul =
k∑

l=k−s

CAm∗N+k−lBul

=
∑

l=k−s−(m∗N)

CAk−lBûl

where we have defined ûl = ul−m∗N . As we show next, this
observation allows for recasting the problem into a search
for a suitable initial condition, which can be explicitly
solved. Specifically, assuming that there is no input for
k ≥ 0, equation (7) reduces to

xk+1 =Axk, for some xo

yk =Cxk.
(8)

Since for each k, yk corresponds to the kth row of the
image we have that I = Koxo, where

KT
o =

[
CT (CA)T . . . (CAn−1)T

]
= S

1
2 UT (9)

Since the model is observable by construction, Ko has full
column rank and the least squares solution to the equation
above is given by xo = K†

oY, where Y contains the image
stacked row-wise.

The effectiveness of the proposed approach is illustrated
in Table 1 showing the results of several experiments where
it was used to complete the partial images shown in the
first column. In all cases the model was obtained using
a different portion of the image that does not overlap the
swatch that was expanded.

Fig. 1. Partial and Reconstructed Images

S��x0 �
zk

� ∆
v

��+ �
Rk

Fig. 2. The Texture Recognition Set-up

C. Texture Recognition as a Model (In)Validation Problem

Most texture recognition schemes rely on representations
in terms of statistics of the responses to a collection of filters
[6], [14]. In this paper we propose a different approach,
based upon recasting the problem into a robust model
(in)validation form. To this effect, we will postulate that
all images corresponding to realizations of a given texture
T can be obtained as the output of a LSI operator S to
an unknown input signal e ∈ BS applied in (−∞, 0], or,
equivalently, as discussed in section IV-B, to an unknown
initial condition xo. This leads to the set-up shown in Figure
2, where S� represents a nominal model of a particular
texture, zk and Rk denote the rows of the ideal and actual
images, respectively, and where the (unknown) operator
∆ ∈ ∆∆∆ describes the mismatch between these two images,
i.e.:

Rk =
[
(∆ + I)S�xo

]
k

In this framework, the texture recognition problem can be
solved as follows. Given an unknown image R with N < n
rows Ri and a set of nominal models {S�}:

• Find for each S� an initial condition x0 and an
admissible uncertainty operator ∆ of minimum size
γ�
opt:

γ�
opt

.= min
∆∈∆∆∆,x0

{‖∆‖∗ : Rk =
[
(∆ + I)S�x0

]
k
}.
(10)

where ‖.‖∗ denotes some norm of interest.
• Let j

.= arg min� γ�
opt. Assign the image R to the

texture represented by model Sj .

Depending on the choice of the admissible uncertainty set
∆∆∆, one gets different conditions that solve (10). In the
case of texture recognition, it can be argued from physical
considerations that the operator ∆ should be neither causal
(to account for interactions amongst all pixels of the image),
nor shift invariant, to allows for non–homogeneous distor-
tions. On the other hand, linearity should be retained, to
preserve invariance with respect to input scaling. Finally, we
are interested in quantifying the difference between images
in terms of the (relative) sum of the squared pixel errors,
i.e. (Rk − Zk)T (Rk − Zk)/(ZT

k Zk). Thus, ∆ should be
characterized in terms of its �2–induced norm. Based on
these considerations, in the sequel we will assume that
∆ ∈ BL(�2)(γ), and search for the smallest value of γ
so that the interconnection (S, ∆) can reproduce the given
image.
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S1 S3 S5 S9

S10 D1 D94 D95

Fig. 3. Sample textures used for recognition.

Recall that (see for instance Chapter 5 in [12]), given
two finite vector sequences vk and zk, k = 0, 1, . . . n, there
exists a shift varying, not necessarily causal, operator ∆ ∈
BL(�2)(γ) such that v = ∆z if and only if ‖v‖2

2 ≤ γ2‖z‖2
2.

This result allows for recasting the search for ∆ into the
following LMI problem in x0 and α

.= (γ2 − 1)−1:

min γ subject to : ‖v‖2
2 ≤ γ2‖z‖2

2

=⇒ min γ subject to :[
RT R − RT KoNx0 − (KoNx0)

T R (KoNx0)
T

KoNx0 −(γ2 − 1)−1

]
≤ 0.

(11)

where R contains the texture to be recognized, and KoT
N =[

CT . . . (CAN−1)T
]T

The above approach was tested on slices taken from the
seven textures shown in Figure 3. To avoid biasing the
models, in all cases the identification was performed using
a region of the image that did not overlap the subimage
to be recognized. A representative result is shown in Table
I containing the minimum value of γ obtained comparing
42 slices generated from texture S10 against 5 candidate
models. Table II shows the results of a similar experiment,
where the goal is to distinguish the brick–like texture D94
from the similar looking textures D1 and D95. In order to
reduce the computational complexity of the problem –given
mainly by the size of the initial condition x0– we solved
(11) by estimating the initial condition x0 as:

x0 = Ko†
ns−1Y, (12)

where Kons−1 is the observability matrix of the nominal
model under consideration and Y contains the given image,
stacked by rows. We then computed the minimum value
of γ so that (11) was satisfied for this value of x0. As
shown in both tables, in all cases this minimum indeed
corresponds to the correct texture. Similar results, omitted
for space reasons, were obtained with all textures. Overall,
in more than 400 experiments we achieved a recognition
rate of over 98%.

Image S1 S3 S5 S9 S10

1 0.1282 0.1573 0.1251 0.1543 0.0715
2 0.1287 0.1583 0.1255 0.1554 0.0722
3 0.1293 0.1594 0.1262 0.1556 0.0735
4 0.1294 0.1594 0.1260 0.1557 0.0759
5 0.1410 0.1601 0.1264 0.1562 0.0790
6 0.1299 0.1604 0.1260 0.1563 0.0789
7 0.1303 0.1610 0.1264 0.1564 0.0799
8 0.1314 0.1611 0.1274 0.1567 0.0828
9 0.1318 0.1608 0.1272 0.1570 0.0668

10 0.1317 0.1609 0.1274 0.1574 0.0673
11 0.1316 0.1616 0.1279 0.1633 0.0675
12 0.1313 0.1609 0.1280 0.1676 0.0678
13 0.1348 0.1603 0.1316 0.1743 0.0680
14 0.1318 0.1600 0.1284 0.1734 0.0683
15 0.1318 0.1618 0.1289 0.1573 0.0685
16 0.1317 0.1629 0.1298 0.1575 0.0688
17 0.1319 0.1625 0.1300 0.1580 0.0689
18 0.1324 0.1625 0.1305 0.1585 0.0691
19 0.1337 0.1633 0.1313 0.1587 0.0693
20 0.1347 0.1637 0.1317 0.1591 0.0696
21 0.1341 0.1648 0.1318 0.1595 0.0698
22 0.1340 0.1641 0.1324 0.1634 0.0701
23 0.1342 0.1638 0.1330 0.1602 0.0704
24 0.1346 0.1623 0.1337 0.1610 0.0707
25 0.1350 0.1618 0.1337 0.1624 0.0709
26 0.1352 0.1609 0.1341 0.1653 0.0711
27 0.1356 0.1605 0.1346 0.1668 0.0712
28 0.1398 0.1608 0.1357 0.1707 0.0714
29 0.1366 0.1613 0.1359 0.1698 0.0714
30 0.1406 0.1629 0.1409 0.1750 0.0718
31 0.1505 0.1643 0.1448 0.1821 0.0720
32 0.1584 0.1711 0.1522 0.1967 0.0720
33 0.1713 0.1781 0.1566 0.1883 0.0722
34 0.1840 0.1800 0.1593 0.1924 0.0726
35 0.1457 0.1602 0.1553 0.1638 0.0729
36 0.1447 0.1591 0.1388 0.1602 0.0732
37 0.1312 0.1605 0.1344 0.1583 0.0733
38 0.1321 0.1619 0.1358 0.1586 0.0735
39 0.1346 0.1638 0.1372 0.1589 0.0740
40 0.1472 0.1656 0.1388 0.1595 0.0747
41 0.1329 0.1660 0.1389 0.1602 0.0749
42 0.1346 0.1653 0.1401 0.1610 0.0755

TABLE I

RESULTS FOR TEXTURE 10

V. CONCLUSIONS

Many problems of practical interest require addressing
the issues of identification and model reduction of systems
having a periodic impulse response. Currently available
techniques are not well suited for solving these problems,
since they cannot guarantee that key structural properties,
such as periodicity of the impulse response, will be pre-
served.

Motivated by existing subspace identification methods
and their relationship with well known results in realization
theory, in this paper we address these problems by work-
ing directly with the Hankel matrix of the system under
consideration. The main result of the paper shows that,
due to the block circulant structure, a direct SVD–based
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Image S1
brick S94

brick S95
brick

1 0.4349 0.1956 0.4873
2 0.4589 0.3605 0.4586
3 0.4720 0.4545 0.4972
4 0.5599 0.5075 0.5154

TABLE II

RESULTS FOR BRICK TEXTURE 94

approximation of this matrix also has a Hankel structure,
and that this procedure is equivalent to performing balanced
truncations based on the finite–time grammians.

These results are illustrated with a non–trivial practical
example arising in the context of image processing: texture
synthesis and recognition. Here the proposed method leads
to low order, parsimonious models capable of generating
images with the desired texture when excited with ap-
propriate initial conditions (or equivalently, with signals
with unit spectral density). Moreover, these models can
be successfully used to both restore partial images and
to classify an unknown sample. A potential drawback of
the proposed technique is that at this stage it requires
ordering the pixels of the image either row or column–wise,
leading to potentially different models if the image exhibits
substantially different behavior in these two directions.
Efforts are currently under way to remove this limitation
by extending the proposed approach to 2-D systems.
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APPENDIX

A. Proof of Lemma 1

Start by partitioning U =
[
Ur Un−r

]
. Since PUr is

a circular block permutation of Ur, then UrUT
r PUr =(

I − Un−rUT
n−r − U⊥UT

⊥
)
PUr = PUr. It follows that

Ak
r = S

−1
2

r UT
r PkUrS

1
2
r . The fact that An = I follows di-

rectly from Pn = I . Straightforward computations (omitted
due to space constraints) using the expressions for Cr,Br

and Ak
r yield

Mred
k

.= CrAk−1
r Br = E(1)P(k−1)UrSrV(1)

r

E(1) .=
[
Ip . . .0 . . .0

] (13)

From the (block) symmetry properties of Hn it follows
that for any k, j, U(k)SV(l) = U(l)SV(j), where U(k)

and V(j) denote the kth and jth blocks of U and V,
respectively. Combining this observation with (13) and the
fact that

E(1)P(k) = E(k) .= [0 . . .0︸ ︷︷ ︸
k−1

Ip . . .0]

yields Hred
n = UrSrVr. Hence,

Hn − Hred
n = UH

⎡
⎣0

Sn−r

0

⎤
⎦VT

H (14)

where UH =
[
Ur Un−rU⊥

]
and VH =[

Vr Vn−rV⊥
]
. The bound (5) follows now immediately

from the fact that UH and VH are unitary.
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