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Abstract 

In this paper we illustrate how the newly introduced con- 
cept of superstability can be used to synthesize low- 
complexity controllers for LPV systems, with guaranteed 
C- disnubmce rejection properties. As shown here, in  
the superstability context this problem admits a simple 
solution, both in the continuous and discrete time cases. 
Moreover, in the case of parameter-&ne dynamics, it 
leads to simple gain-scheduled controllers. 

1 Introduction 

A widely used idea to handle non-linear dynam- 
ics is to linearize the plant around several operating 
paints and then use linear control tools to design a 
controller for each of these points. The actual con- 
troller is implemented using gain scheduling. How- 
ever, while intuitively appealing, this idea has sev- 
eral pitfalls [ 1 I]. Motivated by these shortcomings, 
considerably attention has been devoted to the prob- 
lem of synthesizing controllers for Linear Parameter 
Varying Systems, where the state-space matrices of 
the plant depend on time-varyhg parameters whose 
values are not known a priori, but can be measured 
by the controller. Assuming that bounds on both 
the parameter values and their rate of change are 
known, then Affine Matrix Inequalities based con- 
ditions are available guaranteeing exponential sta- 
bitity of the system. Moreover, these conditions can 
be easily used to synthesize stabilizing controllers 
guaranteeing worst case performance bounds (for 
instance in an 'HHZ or 7fm sense [l, 7, 3, 121). On 
the other hand, the &-induced performance case 
is considerably less developed. Most of the work 
dealing with LPV systems in an C, setup deals 
with synthesizing robust non-linear controllers that 
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guarantee some robust performance level for the en- 
tire family of plants, without exploiting information 
about the present value of the parameter [6].  
In this paper we consider the problem of rejection of 
persistent L, bounded disturbances, both for con- 
tinuous and discrete time systems. Our main result 
shown that in these cases superstability [lo] can be 
exploited to synthesize low<omplexity LPV con- 
trollers with guaranteed Cm induced closed-loop 
performance. Moreover, in the case where the dy- 
namics of the plant depends affinely on the pa- 
rameters, these controllers reduce to simple gain- 
scheduling. At the present time, the main drawback 
of the approach stems from the fact that, since su- 
perstability is a stronger property than stability, not 
every controllable system can be rendered super- 
stable with a simple controller. While the general 
case of MIMO systems is still open, as we show in 
the paper, this issue can be addressed, at the price of 
a more involved controller, in the SISO case. 

2 Notation 

In the sequel, we use 11 . 11 to denote the co-norm for 
vectors: l/all G maxi /ail, a = ( a l , .  . . , a,)T E 
R", and 11 . 11- the em (P) norm of a sequence 
(function). Also, we use the 1-norm for matri- 
ces: IlAlIl = maxi Cj laij/, A = (a;j) and for 
polynomials: for b ( z )  = bo + blr + . . . + b,z", 
Ilbill = Ibil. Finally, given amatrix A, we will 
denote its ib row by A ( i , : ) .  

Definition 1 A matrix A = ((a,j)) is said to be d- 
superstable, if it satisfies the following condition: 

pd(A) = l l d  A 1 - lIAll1 > 0. (1) 

Similarly, a matrix A is said to be c-superstable ifit 
satisfies the condition 
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Clearly, a superstable matrix is stable, hut the con- 
verse does not hold. In the sequel, we refer to matri- 
ces satisfying either (1) or (2) simply as superstable 
and use p to denote either pd or pc when the mean- 
ing is clear tiom the context. 

3 Stability and Disturbance Rejection 
Properties of LPV Superstable Systems 

In this section we show that as in the LTI case, 
superstability of an LF'V system implies both ex- 
ponential stability of the origin, and Lw stability. 
In the sequel we will consider LPV systems of the 
form: 

m = A Idt)] z ( t )  + B [dt)] w(t) (3) 

Proof: In the discrete time case, properly a) follows 
from the fact that: 

l ldk + 1)llcw 5 n:=, llA[PCi)llllllzollm 
i (1 - ~)("f)IIZollm 

To prove the continuous time counterpart, define 
w(t )  = r n a & ~ ~ ( t ) ~ .  It can be easily shown that 
the upper right-hand derivative of U, D+u satisfies: 

D+v 5 -2f i {Ab(t) lJv (7) 

Hence, from the Comparison Principle ([SI, page 
65 1) it follows that 

We will prove property (b) by establishing that the 
hypercube {z E Rn : 1 1 ~ 1 1  5 7 }  is d-invariant 141. 
To this effect, note that in the discrete time case we 
have that 

where U denotes either the one stepadvance (dis- 
Crete time) or time4erivative (continuous time) op- 
erator, z E Rn=, and w E R"- represent the state 
and exogenous disturbances, respectively, p E R". 
denotes a vector of time-varvine Dammeters and 

~ 

I d k +  1)il i l~ j l l z (k ) j l+  where the matrix functions A(.) and B(.)  are con- 
tinuous. Further, we will assume that at all times 
p ( t )  E P C R"., where P is a given compact set. 

Definition 2 
stable ifA [p ( t ) ]  is superstablefor all p E P. 

Lemma 1 lfrhe LPVsystem (3j is supersfable, then 
the following facts hold for  all admissible parame- 
fer trajectories p( .): 

(9) 
E::, Ibijl i 7 

system (3) is said to be super- similarly, for continuous time Systems, consider a 
point on the bounday of the hypercube, and assume 
withouth loss of generality that Izi(t)l = 7 ,  i = 
1 , .  . . ,m and Izi(t)l < 7 ,  i = n + 1,. . . , n. Then 
fori = 1,. . . , rn we have that: 

_ _  I d  2 2 
d t ~ i  = aiizi 

where p = inf pd {Alp] J in the discrete-rime 

case and 
P€P 5 ( - p +  ?)72 < 0 

Ilz(t)II i e-"l/z(O)/l ( 5 )  

for the continuowtime counterpart, where 
P = j$ Pc {Alol J 

Remark 1 Note that there is no counterpa?t of 
these results if superstability is relaxed to just sta- 
bility: it is well known that frozen-time stability of 
the mat& A ( t )  does not guarantee stability of the 
origin (see for instance example 3.22 in [8]). 

Next, we exploit these results to synthesize simple 
controllers with guaranteed pexfonnance properties. 
Consider now an LPV system of the form system 

b) Letp,(p) = 1 - Ci laij(p)I in thediscrete time 
case andpi(P) = -aii(P) -Ej , laij(P)I in 
the continuous fh case. r f  llufi 5 1 and 
/Izoil 5 y A maYptP maxi then 

I l ~ l l m  5 Y (6) 04t) = Ab)z(t)  + Bi(p)w(t) + B z ( P ) ~ ~ )  

in both cases. (11) 
d t )  = z + D ( p ) w  
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where U and y denote the control action and the out- 
puts available to the controller, respectively. From 
Lemma 1 it follows that if there exists a matrix 
K ( p )  such that the corresponding (frozen-time) 

is superstable, then the control action U = K(p)z  
renders the origin an exponentially stable equilib- 
rium.point of the closed-loop system. As pointed 
out in [lo], existence of a matrix K that supersta- 
hilizes a given pair (A, B), while not guaranteed, 
reduces to a LP feasibility problem. This prop- 
erty allows for recasting the problem of finding a 
super-stabilizing LPV controller into the following 
parametric (in p) LP form, for both continuous and 
discrete-time systems): 

closed loop matrix Ad = A Ip(t)] + Bz [p(t ) ]  K ( p )  

mp’” [ A b )  + B2(P)KI (12) 

If this problem admits a solution p ( p )  > 0 for all 
p E P, then the additional degrees of freedom avail- 
able in the problem can be exploited to optimize per- 
formance, for instance measured in terms of the C, 
induced norm. 

4 Persistent Disturbance Rejection 

The goal here is to design a controller such that 
the worst case C, norm over all feasible parame- 
ter trajectories and persistent bounded disturbances 
llrnll 5 1 is minimized, that is 

The problem above can he solved by finding the 
maximal controlled-invariant set and the associated 
non-linear controller [6]. However, the complex- 
ity of this controller can be arbitrarily high. On the 
other hand no known solutions to this problem exist 
when the controller is restricted to the class of LPV 
controllers with bounded complexity’. To circum- 
vent this difficulty, we propose to minimize, rather 
than IIzllrn. an upper bound motivated by (6). This 
leads to the following problem: 

Problem 1 Find a superstabilizing LPV controller 
that minimizes the upper bound (6) over all param- 
eter trajectories, thar is; 

J* A max min { mpil(BI(p)+ 
PEP K(P),” 

B2(P)K(P)%))(i> :)I1 1 / 4  

Iln conmsf when performance is measured in the e2 induced 
sense and the stales we awilable for feedback the problem ad- 
mits a solution ofthe form U = K(p)z. 

subject to 

P; [A@)  + Bz(p)K(p)l2 U; > 0, VP E P 

Since the constraints are linear in the entries of the 
matrix K(p) ,  this problem can be recast as a Lin- 
ear Programming problem, parametric in p and U. 
The resulting controller has guaranteed closed-loop 
performance, in the sense that 

Since an upper bound of the state vector is mini- 
mized uniformly over time rather than just asymp- 
totically, this approach prevents “peaking effects,” 
in the initial part of the trajectory. 

5 Implementation Consideration 

As shown above, in the context of superstability, 
the disturbance rejection problems lead to paramet- 
ric LP problems. In simple cases, these problems 
may admit an explicit solution. Alternatively, if the 
dimension of the plant is not too large, these pmb- 
lems can be solved on-line. However, in many cases 
of practical interest, neither approach may be feasi- 
ble. In the case of general dependence of the plant 
on the time-varying parameters p this may require 
griding the parameter space, solving the parametric 
LP problems at each point in the grid and interpo- 
lating the resulting controllers. This is precisely the 
approach pursued in [12] to deal with the ‘Jf, case. 
However, as we show in the sequel, in the case of 
afine dependence on the parameters, superstability 
leads to a simple gain-scheduled controller, avoid- 
ing the need for griding and interpolating. 

Theorem 1 Assume that A ( p )  = E:, piA;, pi > 
0, Ep; = 1 and that there exists K ,  such thar 
A; + B2K;, i = 1, .  . . , np is superstable. ?hen 
the solution to Problem I is given by 

(15) 

where the ntatrices K; solve: 

minx. SUP, (16) 

Proof From (1) and (21) it can be easily shown that 
since the matrices Ai + BzK; are superstable, the 
controller K(p)  = xi ptKi renders the LPV sys- 
tem A ( p )  + BzK(p) superstable. To show opti- 
mality, begin by noticing that the hypercube HJ & 
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{ x  E R": llxllm 5 J'} is the smallest hypercube 
.that can be rendered invariant for all p E P by an 
LPV superstabilizing controller. Thus, to show opti- 
mality, we only need to show that the controller (IS 
) also renders H invariant. In the case of discrete- 
time systems we have that, if z( t )  E H then: 

Iz(t + 1)rl = I ?  pi C,(A, + BzK;) , , z ( t ) ,  

Z pi E,(& + BzKiD)vsw(t)sl 

5 ? p i (C,  l(A; + B z K ; ) d J * +  
(17) 

ll€&r, : ) ] I 1 )  
5 J' 

Figure 1: Norm of s ( k )  versus time instant k 

where Bi,d = B1 + BzK;D. Similarly, in the con- 
tinuous time case, given a point z(t) on the bound- 
ary of H, z(t)  E %, Ix;(t)/ = J', i = 1,. . . ,m, 
Is,(t)l< J'; i = m + l ,  ..., nwehavethat: 

-0.0402 
K3 % ( -0.2706 ) T. 

The optimal control law is 

Adz? < E .p .a3!c 'x:  3 

+CizkICjpp:t'lJ2 + IxilCk IbC'kIlwrlJ' ;=1 

2 d t  z - 3 3 11 
U = K ( p ) z  = x p ; K ( i ) z  

(18) 
where &;I denotes the r, element of A ~ , ~ ,  & + 
BzKj and Bj," = B1+ BzKjD. 

To test the contro~ler above, we generated random 
sequences p ( k )  and w ( k )  and simulated the above 
closed loop system. A typical trajectory of 11z(k)ll 
with z(0) = 0 is shown in Figure 1. As it can be 

6 A Simple Example 

\ I  .. 
seen from the plot, the 11~11, is below the upper 
bound J', confirming the results presented in the 
previous section. 

Consider a discrete-time affine LPV system of the 
form described in Theorem 1, having~three vertex 
matrices 

7 Dynamic Output Feedback and Some Open 
Problems -0'96 -:;:: ) ; Az = ( 0.00 -0.14 

= ( 0.36 0.42 -0.40 

= ( -0.62 -0.40 

constant input matrices 

and Dd. In accordance with Theorem 1, to find 
the optimal control, we first determine the feedback 
gains K1, K Z  and K3.  Finding this matrices reduces 
to solving three LPs (as mentioned in Theorem 1). 
The gain matrices obtained are 

K1 ( o,2584 0.3857 )'; K Z  % ( 0'1178 )' 
-0.0883 

To conclude the paper, in this section we briefly 
comment on the dynamic output feedback case and 
on some open problems. As mentioned before, 
one of the main drawbacks of the superstability ap- 
proach is that not every stabilizable pair (A, Bz)  is 
superstabilizable. As we show next, in the SISO 
discrete-time case this difficulty can be solved by 
extending the concept of superstability to rational 
transfer functions and using dynamic output feed- 
back. 

Definition 3 A polynominlofrhefonn P ( z )  = 1 + 
a l r  + . . . + ant" is said to be superstahle $its co- 
efficients satish the condition Xi la; l < l .  
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Such polynomials were introduced by Cohn in 1922 
and were used by [5] and [9] to synthesize low order 
suboptimal controllers for LTI systems. 

In the sequel we show that this problem reduces to 
a finite-dimensional convex optimization problem. 
To this effect consider a controller of the form: 

Definition 4 An LPV SISO sysiem described by ihe 
nih order difference equation: 

z ( k )  = a l ( p ) z ( k  - 1)  + . . . + a,(p)z(k - n)+ 
bo(P)w(k)  + . . . + b m ( p ) w ( k  - m) 

where p is a monic polynomial of degree n,. The 
corresponding closed-loop system is: 

nu 1 nlzqnzt W .  
e =  -+ -  1 (24) [ d d (dp-nzzq )  

Since the polynomial [nllnzz - n1znz1] has d as a 
factor, i.e. 

(1% 
is superstable if the choracieristic polynomial 
d ( z , p )  = 1 - alo - . . . a,zn is supersfable for all 
p E P. 

It can be easily shown that results similar to Lemma 
1 hold for a SISO LPV system if its associated poly- 
nomial is superstable (the p m f s  are omitted due to 
space constraints): it follows that 

n11n22 - n1znz1 = d A  

Fact 1 Consider a supersiable discrete-time SISO 
sysiemofiheform(19). L e t p p  = l-Clu,(p)Iand 
p = minpp > 0. Then, the following properiies 

hold: 
P E P  

a) Ifwk = 0 fora11 k 2 0 ihen 

Il4k)ll I ( 1  - P )  g,yn I ldk - i)ll (20) 

b)  I f  llwllm I 1 and 1 1 ~ 0 1 1  5 7 A 
S"PP€P IWIIL MP then 

(dp - n m ) e  = (PII - qfi)w (25) 

This last expression can he rewritten as: 

dcl@,q)(r,p)e = ncl(p,q)( t ,p)w.  (26) 

Without loss of generality (by using an appropriate 
scaligifnecessary),p(z,p) andq(t ,p) canalways 
be selected such that the polynomial d,r (p ,  q)( t ,  p)  
has its independent term equal to one, that is 

dcr@,q)(t,p) = 1 + dcr , i (p ) t  + dcr,z(p)z2 + . . . . 
(27) . .  

llzllco I Y (21) 

This property allows for reducing the problem of 

parametric convex optimization problem as follows: subject to (28) 

Thus, Problem 2 can be recast into the following 
form: 

:,$ /Incl/ll/~ 

synthesizing output feedback LPV controllers to a 

Consider a SISO ~ l a n t  of the form: 

(22) 
where the scalar signals U, w,. y and e represent 
the control input, exogenous disturbances, measure- 
ments available to the controller and performance 
output respectively, and where z denotes the unit 
delay operator. In this context, the problem of de- 
signing a super-stabilizing LPV controller that op- 
timizes the upper-bound (21) becomes: 

Problem 2 Given ihe LPV plani (22). f n d  an LPV 
connoller such ihai 

Ilbd ( P )  II 1 y = sup 
P€P PP 

is minimized 

1-111-dciIl1 57  
Since, for a given p, n,r(p,q) and d,r(p,q) are 
affine functions of the coefficients of the polyno- 
mials p ( t , p )  and q( t ,p ) ,  and since the additional 
constraint (27) is equivalent to a linear constraint 
involving only the leading coefficients of q and p, 
it follows that solving (28) is equivalent to an LP 
problem, parametric in y and p. 

Remark 2 In conirasi wiih ihe MlMO case, noiice 
that Problem 2 always has a solution, provided that 
the order of ihe controller is chosen to be ai least as 
large as ihe order of the plani. This followsfmm the 
fact that in this case p and q can be chosen so that, 
for each p, the corresponding closed-loop is a FIR 
and rhus (28) is guaranteed to be feasible for some 
y large enough (see 161 for details). 
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The results above show that superstabilizing 
output-feedback dynamic LPV controllers always 
exists for controllable SISO discrete time systems. 
On the other hand, it is worth noticing that the stan- 
dard conversion of a SISO system in the form (19), 
e.g. an nth order difference equation, to the state 
space form (3) does not yield a supentable ma- 
trix. This suggest that the results presented bere for 
MIMO systems can be expanded to larger classes 
of systems and that in some cases (at least SISO) 
superstability is a structural property, independent 
of the coordinate system chosen for the state-space 
realization. Finally, the issue of SISO analogs of 
superstability remains unsolved for continuous-time 
systems. At the present time no meaningful coun- 
terpart of the discrete time superstability concept is 
known for continuous-time polynomials. 

8 Conclusions 

In contrast with the case of linear plants, tools for si- 
multaneously addressing performance and stability 
of linear parameter varying systems have emerged 
relatively recently, and the theory is far from com- 
plete. In particular, few tools are available when its 
is desired to optimize the LC,-induced norm of the 
closed-loop system. 

In this paper, motivated by some earlier results on 
L, gain minimization of LTI systems [6, 9, 101, 
we propose a new suboptimal L,-induced con- 
troller for LPV systems. This controller is based 
upon minimizing an upper bound obtained by im- 
posing supersfability of the closed-loop system. As 
shown here, this leads to simple controllers that 
can be found using parametric Linear Programming. 
Moreover, in the case of affine dependence of the 
dynamics with the time-varying parameters, the ap- 
proach leads to simple gain-scheduled controllers, 
avoiding the need for griding the parameter space 
and interpolating the resulting controllers. 

At this point, the main drawback of the proposed 
approach stems from the fact that not every stabi- 
lizable system is super-stabilizahle. However, as 
shown in the paper, this approach can be circum- 
vented in the case of SISO discrete-time systems by 
using dynamic output feedback controllers. At the 
present time, it is not known whether or not these 
results‘can be extended to the continuous-time case 
or MIMO systems. 
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