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Abstract

Feedback stabilization of systems subject to constraints
has been a long-standing problem in control theory. In
contrast with the case of LTI plants where several tech-
niques for optimizing performance have recently ap-
peared, very few results are available for the case of
nonlinear systems, In this paper we propose a new con-
troller design method, based on the combination of Re-
ceding Horizon and Control Lyapunov Functions, for
nonlinear systems subject to input constraints. The
main result of the paper shows that this control law
renders the origin an asymptotically stable equilibrium
point in the entire region where stabilization with con-
strained controls is feasible, while, at the same time,
achieving near-optimal performance.

1 Introduction

Feedback stabilization of systems subject to input con-
straints has been a long-standing problem in control
theory (see [2] for an excellent survey of the literature
and {24, 18) for some recent contributions), In the case
where the plant itself is linear, time-invariant, consider-
able progress has been made in the past few years, lead-
ing to controllers capable of globally (or semiglobally)
stabilizing the plaot, while optimizing some measure of
performance, usually given in terms of €7 disturbance
rejection [11, 12, 3, 14, 19, 23],

On the other hand, the problem of optimizing perfor-
mance in nonlinear systems is considerably less devel-
oped, even in the absence of input constraints. Common
design techniques for unconstrained nonlinear systems
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include Jacobian linearization (JL) [9], feedback lin-
earization (FL) [9], the use of control Lyapunov func-
tions (CLF)[1, 16, 5], recursive backstepping [9], and
recursive interlacing [13]. While these methods pro-
vide powerful tools for designing globally (or semi-
globally) stabilizing controllers, performance of the re-
sulting closed loop systems can vary widely, as illus-
trated in [22] using a simplified model of a thrust vec-
tored aircraft.

In the case of input constrained systems, if a CLF is
known then an admissible control action can be found
using Arstein-Sontag’s formula [1, 16, 10]. More
general control restrictions, including rate bounds have
been addressed in [15]. A difficulty with these tech-
niques is that most of the methods available in the lit-
erature for finding the required CLF (such as feedback
linearization and backstepping) do not allow for taking
control constraints into consideration. Moreover, as in-
dicated above, performance of the resulting system is
strongly dependent on the choice of CLF,

Motivated by the approach pursued in [20, 21, 22] in
this paper we propose a suboptimal controller for non-
linear systems subject to input constraings. The main
result of the paper shows that this controller, obtained
by combining Receding Horizon (RH) and Control Lya-
punov Function (CLF) techniques, stabilizes the plant
in the entire region where stabilization with constrained
controls is feasible. Moreover, it provides near aptimal
performance. Additional results include a discussion on
obtaining suitable CLFs for nonlinear systems subject
to control constraints and on extending these techniques
to handle state or output constraints.
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2 Preliminaries

2.1 Notation and Definitions
In the sequel we consider the following class of
control--affine nonlinear systems:

*= f(x)+g(x)u 8))

where x € R” and u € R™ represent the state and con-
trol variables, and the vector fields f{(.,.) and g(.,.) are
known ! functions.

Definition 1 A C! function V : R® -+ R is a Con-
strained Control Lyapunov function (CCLF) for the sys-
tem (1) with respect to a given set Q if it is radially
unbounded in x and

uiezgu [LeV(x) + LV (x)u] € —o(x} <0, Vx#0

@
where of. ) is a positive definite function, and where
Ly (x)= -a;h(x) denaotes the Lie derivative of V along
h.

Definition 2 Given a compact, convex set £y C R™,
a control law u(t) is admissible with respect to Q, if
(Y e L and u(t) € Q, for allt > 0.

2.2 The Constrained Quadratic Regulator Problem
Consider the nonlinear system (1). In this paper we ad-
dress the following problem:

Problem 1 Given an initial condition x4 and a com-
pact, convex control constraint set y, find an admis-
sible state~feedback control law u[x(t)| that minimizes
the following performance index:

[

J(xo,8) = [x’ Q(x)x+u'R(x)u] dt, x(0) =x, (3)

where O(.) and R(.) are C., positive definite matrices’.

It is well known ([17], section 8.5) that this problem is
equivalent to solving the following Hamilton-Jacobi-
Bellman partial differential equation:

":u’é‘fﬂ { % [f(x)+g(=)u]+ %H'Ru-i- “gl*fo}
subject to: V{0) =0
@

! This condition can be relaxed to Qfx} > 0
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If this equation admits a ¢! nonnegative solution V,
then the optimal control is given by:

{3: (x)u+ = u’Ru}

and V (x) is the corresponding optimal cost (or storage
function).

)=

3 A Finite Horizon Approximation

Unfortunately, the complexity of equation (4) prevents
its solution, except in some very simple, low dimen-
sional cases. To solve this difficulty, motivated by the
idea first introduced in [20] for linear systems and ex-
tended in [22] to the nonlinear case, in this section we
introduce a finite horizon approximation to Problem 1.
Assume that a CCLF P(x), in the sense of Definition
l,isknownin aregion 0ESCR". Letc = mf‘I’(x)

where 9 denotes the boundary of § and deﬂne r.|1e set
Se = {x¥(x) < ¢} 5)

Consider the following finite horizon performance in-
dex:

1 [+T (¢ Qx4 t/Ru) dt +Plx(t +T)]
x()=%o

J\}'(xg, u) =

()
Then we propose the following Receding Horizon type
law:

(1) = v(f) where:v(s) = ar‘gellelin-’w[x(-"),"] )]
subject to:
LVRv+X0x) +¥)irs: <0 ®

x(T +5) €S

where U denotes the sef of control laws admissible with
respect to £y,

Theorem 1 The control law wyp has the following prop-
erties:

1. It is admissible.

2. It renders the origin an asymptotically stable
equilibrium point of (1} in the entire region where
the system is stabilizable with a bounded control
action.

. Coincides with the globally optimal control law
when ¥(x) =V (x),where V(x) € C! satisfies the
Hamilton-Jacobi-Bellman PDE (4).



Proof: By construction, the control law is admissible.
Denote by Jo(x) the value of the finite horizon index
(6) corresponding to the control law (7). To show that
this control law renders the origin an asymptotically
stable equilibrium point, we will show that J,(x) is a
Lyapunov function for the closed loop system. To this
effect, consider an initial condition x, and denote by
u",x* the optimal control and associated trajectory re-
spectively, Then

T+

L+ an)< 5 [ @oxt v Ry + T+ 0]
i-+dt

+rmn{ T +00x" (T +0)+ v’Rv+‘1’[x’(T+r)]}dr

= la(0)] - 3 [ (/02 (1) + 4 (ORat ()]

+m1n{ =T +00" (T +0)+ = 1/Rv+‘l‘[x'(T+r)}}dt

Therefore, if (8) holds then we have that

lun o[ﬂde!I—Jo]x{l!
[x* (t)Qx*(r)+u"'(t)Ru 0] <

Lo
)

IA

To complete the proof of item 2, let R denote the
region where Problem 1 is feasible. Given any ini-
tial condition x, € &, there exists an admissible con-
trol law u,(x) such that the corresponding trajectory
im;x(r) = 0. Hence, there exists some finite 7'(x,) such

that x[T (xo)] € Sc. By construction the set S is con-
trolled invariant with respect to some admissible con-
trol law ug. Tt follows that the control:

tta(x)

"“{ us[x(s)]

is admissible and renders Jy(x, ) finite, Thus, the opti-
mization problem (7) subject to (8) is feasible at t = 0.
Denote by u*,x" the solution to this problem in {0, d?]
and the associated trajectory, respectively, Consider
now the problem (7)-(8) starting from the initial con-
dition x* (dt). It follows that the control law:

=

is admissible, since it steers the system along the fea-
sible trajectory x* in [dt,T] and keeps it inside the set

in [T,T +dt]. Thus x*(¢+di) € R, ie., the con-
trol action wy rendexs R invariant. This establishes the
fact that the control action uw is admissible for all ¢.
Asymptotic stability follows from (9),

*ESe

X€S, (19

w'(s)
uslx(s)]

5 € [dt,T]

se[T,T +di an
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To prove item 3.- note that when ‘W(x} =V (x) then from
the Hamilton Yacobi equation {(4) we have that
v} =0
(4+T)

(12
Thus in this case the constraints (8) are redundant.
From a dynamic programming argument it follows that

2 +TYQx(+T)+Lp¥

+ min
veQ,

VRv+ L¥
x(1+T)

Jo (xa)

T
inf { [1¥Qx+WRuldt +V [x(T)]}
uel | g

it

inf [ ¥ Qx+1/Ru]dt
HEUO
V{xo)

it

(13)

Next, we show that the suboptimality level of the pro-
posed algorithm decreases monotonically along the tra-
Jjectories of the system.

Theorem 2 Let J,(x) denote the optimal value of the
performance index (6) and define the approximation er-
ror e(x) = J,(x) —V(x), where V (x) € C? is a solution
to the HIB equation (4). Then %e(x) < 0 along the
trajectories generated by the control law ug.

Proof; From (4) it follows that forallu € Q,,

v 1 1
5 F@) +e(ul+ suRu+ 54Qx >0 (14)

In particular, this implies that along the trajectories of
the system (1) generated by the control law uy, we have:

0 %7[1’ (x)+g(x)u.y] + lyRung + 53 Qx

A

(15)
From (9) it follows that the evolution of ¢(¢) along the
trajectory satisfies:

d d

Ze=—J_=
dt dt

e=

1 d

(16)
where the last inequality follows from (15).

Remark 1 The result above formalizes the intuitive
fact that minimizing the upper bound (6) moves the sys-
tem in the “right” direction, since the suboptimality
leve! decreases monotonically along the trajectories.

4 Incorporating State or Output Constraints

Assume that in addition to the control constraint i € Q,,,
the system is subject to state constraints of the form



x € Q,, where I, is a convex set containing the origin
in its interior’. As we briefly show next, the proposed
controller can be readily modified to handle these con-
straints. The only changes that are required is to select
the invariant set S, in (8) so that S, C Q2 *, and to mod-
‘ify the optimization (7) so that the state constraints are
taken into accout. Note that Theorem 1 still holds under
these conditions. In particular, the controller is guaran-
teed to stabilize the system in the entire region where
the problem is feasible, and yields optimal performance
when ‘F(x) =V (x).

5 Selecting suitable CLFs

In principle, a simple way of finding a CCLF is to find
first a CLF using any of the methods available in the
literature, such as feedback linearization and backstep-
ping (see for instance [6, 5]), and then considering an
invariant set S. where the associated control action does
not exceed the bounds*. However this approach may re-
quire the use of a large horizon T in the optimization to
guarantee that the set S, is reached (Le. the constraints
(8) are feasible). In addition, in order to minimize the
suboptimality level incurred by the proposed algorithm,
the CLF should be “close” to the value function V. In
this section we propose a method for finding a suitable
lIocal CCLF, This approach is motivated by the empir-
jcally observed success of the SDRE method, briefly
covered in the Appendix.

In the sequel we conskder for simplicity the case where
the control constraints are of the form {[4]|o < timax but
the method can be easily generalized to more general
constraints, Begin by rewriting the nonlinear system
(1) into the following linear-like form:

iF=A(x)x+B(x)u a7n
and assume that, for every x the pair [A(x),B(x)] is sta-
bilizable (in the linear sense). Consider now the follow-
ing Riccati egquation, parametric in xand v

0=A"(x)P(x,7) + P(x,T)A(x) + %Q(x) 18)
~P(x, )B(x)R-1(x)B (x)P(x,7)  (19)

and the associated control law:
u=—R1(x)B'P(x,%)x (20)

2This set can represent either state constraints or ofiginate from
output constraints of the form k(1) < hmax.

3This is always possible since 0 € int {Q,}.

4This idea was originally proposed for the case of LTI systems in
[20].
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where P(x,t) is the positive definite solution of (18).
Finally, consider the the mapping < : R® — R defined
implicitly by the solytion to the following equation:

¥P(x,T)x—c{t)=0 21

where
(1) =min ——-—-u?"“"
= P b @ P (x, 0B
Note that P(x) = P(x,1) is precisely the solution to the
SDRE associated with the system (17) and hence is a
CLF in a neighborhood ( of the origin. Let Spr & A,
denote the largest set inside A/ that is rendered invariant
by the control law

22)

i =—RB(x)P(x)x (23)
and define the sets:
£ = {ndP(x)x<c(l)}
$1 = ENSy @)

By coustruction, the set S; is invariant with respect to
the control law (23). Moreover, it can be easily shown
that inside this set 4 is admissible. Motivated by these
observations we propose the following CCLF;

1¢Plx,1(x))x xE€Ss /S
¥(x) = { 2%.\"}’ fx,1]x x eﬂgl 25)
with associated control action
_ [ —RB@Pxa(x)]x xeSy/Si
ulx) = { _RBEPRx xes 2O

In the sequel we show that, if ¥’ P(x)x is a CLF for the
system (1) in the region §;, then W(x) is a CCLF in
some region S; 2 5.

Theorem 3 Given some tmay > 1, assume that, for ev-
ery fixed © € [1, Tnax|, there exists an invariant region
S: where §(x,7) =x'Plx,1(x)|x is a CLF for the system
(1). Define the region S¢ = (M%S:)US:. Then W[x, t(x)]
isa CCLF for (1} in the region S..

Proof: Begin by noting that, by construction, the control
action u is admissible. To establish that ¥ is a CLF,
differentiate (18) with respect to T to obtain:

1 OP
*n
+%§ [A(x) - BXR'B (x)P(x)] (@8)

0< ;lz—Q(x) + [A@) -BRRTB(x)P)]) 5= @D

Since P(x,7) is stabilizing by construction, the matrix
Ac(x) = [A(x) — B(x)R™1B' (x)P(x)] is Hurwitz. Since



Q > 0, this fact, combined with (27) establishes that
$P(x,t) < 0. From (22) it follows that %0 5 0. Con-
sider now Z¥(x) along the trajectories generated by
the control action

u=—B(x)P[x,t(x)]x 29)
Differentiating (21) we have that:
oP  ac],
¢,+[L’Ex—ﬁl1_0 (30)

n
where ¢, = ¥Px + ¥Pi+ ¥ ¥ F&Y k. Solving for ¢
i=1 g
yields:

t= o = <0 GD

A&
- . delt
where the inequality follows from the facts that —%l >

0, 955’%‘1 < 0, and by assumption, ¢; < 0. Finally, note
that from (31) we have that:

oP
Jt

si=%i<0

d
E.\’ Pix,t(x)jx = +% 5

(32)

6 Conclusions

A large number of realistic control problems involve
designing a controflers for systems subject to time-
domain constraints on the control action. This prob-
lem has been the subject of considerably attention in
the past two decades, and in the case of LTT dynamics,
several techniques are available for finding stabilizing
controllers that, at the same time, optimize some mea-
sure of performance (for instance in the #2 or £ in-
duced norm sense). On the other hand, very few results
are available for nonlinear systems.

In this paper we propose a procedure for synthesizing
state—feedback controllers for nonlinear, control affine
systems subject to control constraints and performance
requirements expressed in terms of a quadratic perfor-
mance index. The proposed controller is obtained by
combining Receding Horizon and Control Lyapunov
ideas, following in the spirit of [22], and it only neces-
sitates knowing a (not necessarily optimal) local Con-
strained Control Lyapunov Function., As we show in
the paper, such a function can be readily obtained using
as a starting point the State Dependent Riccati Equation
{SDRE) approach,

The main resnlt of the paper shows that the proposed
control law is guaranteed to stabilize the system (in the
entire region where stabilization with bounded controls
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is feasible) and outperform the control law obtained
when using the CCLF alone, Thus, the proposed ap-.
proach provides a simple way to improve the perfor-
mance that can be achieved from a given CLE.

An additional advantage of the proposed framework is
that it can be easily extended to incorporate additional
constraints on outputs or states.
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A The SDRE approach to nonlinear regulation

In this section we briefly cover the details of the SDRE
approach [4]. The main idea of the method is to recast
the the nonlinear system (1) into a State Dependent Co-
efficient (SDC) linear-like form:

x=A(x)x+B(x)u (33

and to solve pointwise along the trajectory the corre-
sponding algebraic Riccati equation:
A ()P (x) + P(x)A(x) —P(x)B(x)R~! (x)B' (x)P(x)+ Q(x)} = O
34
The suboptimal control law is given by uy. =
~R-1(x)B'P(x)x. In the sequel we briefly review the
properties of this control law. The corresponding proofs
can be found in the appropriate references.

Lemma 1 ([4]) Assume that Q(x) = C'(x)C(x) and
that there exisis a neighborhood S of the origin where
the pairs {A(x),B(x)} and {A(x),C(x)} are pointwise
stabilizable and detectable respectively and all the ma-
trix functions involved are C'. Then the control law
Usare renders the origin a locally asympiotically stable
equitibrium point of the closed-loop system.

Lemma 2 ((4]) The SDRE control law and its asso-
ciated state and co-state trajectories satisfy the nec-
essary optimality condition: %‘:—’ = 0, where H =
PO(x)x+ W R(x)u+ N [f(x) + B(x)u] and where X de-
notes the co-states.

Lemma 3 ([4]) Assume that the parametrization (33)
is stabilizable and all the matrices involved along with
their gradients are bounded in a neighborhood & of the
origin. Then the SDRE control law and its associated
state and co-state trajectories asymptotically satisfy at
a quadratic rate” following necessary condition for op-
timality:

A=—

dx
in the sense that

;. OH
A+ 3;” < XUx
for some constant matrix [/ > Oand all x € Q.

Lemma 4 ([7]) Let P(x) denote a solution to the SDRE
(34). If there exists a positive definite function V(x)

Such that %S—Q = P(x)x then ugare is the globally op-
timal control law.

Sie. ||i+ 21t — 05 Of[jx]?) as x— 0.



