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Abstract 

Feedback stabilization of systems subject to constraints 
has been a long-standing problem in control theny. In 
contrast with the case of LTI plants where several tech- 
niques for optimizing pformance have recently a p  
p e d ,  very few results a ~ .  available for the case of 
nonlinear systems. In this paper we propose a new con- 
troller design method, based on the combination of Re- 
d i n g  Horizon and Control Lyapunov Functions. for 
nonlinear systems subject to input constraints. The 
main m l t  of the papei shows that this control law 
renders the origin an asymptotically stable equilibrium 
point in the entire region where stabilization with con- 
strained controls is feasible. while, at the same time, 
achieving near-optimal performance. 

1 Introduction 

Feedback stabilization of systems subject to input con- 
straints has been a long-standing problem in colltrol 
theay (see [21 for an excellent s w e y  of the literature 
and i24.18) for some recent contributions). In the case 
where the plant itself is linear. time-invariant, consider- 
able progre.ss has been made in the past few years, lead- 
ing to controllers capable of globally (or semiglobally) 
stabilizing the plant, while optimizii some measure of 
perfomme. usually given in terms of tp disturbancc 
rejection [ l l ,  12,3.14,19,23]. 

include Jacobian linearization (JL) [91. feedback lin- 
earization 03,) 191. the use of control Lyapunov func- 
tions (CLF)[l. 16. 51, recursive baclcitepping [91. and 
recursive interlacing [131. While these methods pro- 
vide powefil tools for designing globally (or semi- 
globally) stabilizing controllers, performauce of the re- 
sulting closed loop systems can vary widely. as illus- 
trated in [221 using a simplified model of a thrust vec- 
tored aimaft. 

In the case of input constrained systems, if a CLF is 
known then 811 admissible control action can be found 
using AasteinSontag's formula [l. 16, 101. More 
general wntml restrictions. including rate bounds have 
been addressed in 1151. A difficulty with these tech- 
niques is that most of the methods available in the lit- 
erature for finding the required CLF (such as feedback 
linearization and backstepping) do not allow for taking 
control constraints into consideration. Moreover, as in- 
dicated above. performance of the resulting system is 
strongly dependent on the choice of CLF. 

Motivated by the approach pursued in [20.21,22] in 
this paper we propose a suboptimal controller for non- 
linear systems subject to input c0nstmint.s. The main 
result of the paper shows that this C ~ ~ I I O ~ .  obtained 
by combining Receding Horizon and Control Lya- 
punw Fundion (CLF) techniques. stabilizes the plant 
in the entire region where s t abh t ion  with constrained 
controls is feasible. Moreover, it provides near optimal 
Derformance. Additional results include adiscussion on ~ .~ 

obtaining suitable C L F s  for nonlinear systems subject 
On the other hand* the problem of optimiz% perfor- to control constlaints md on extending these t&niques 
mame in nonlinear systems is considerably less devel- 
oped, even in the absence of input conshints. Common 
design techniques for unconshained nonlinear systems 
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2 Preliminaries 

2.1 Notation and Definitions 
h the sequel we consider the following class of 
control-affiae nonlinear systems: 

(1) 

w b e n . r ~  R" and u~ Rm represent the state ami con- 
trolvadables,andthevectorfie)ds f(.,.)andg(.,.)are. 
k n 0 ~  C' functions. 

f = f (4 + g(.)u 

Definition 1 A C' function V : R" 3 R+ is a Con- 
strained Control Lyapunovfimction (CCLP) for the sys- 
tem ( I )  with respect to a given set 0, if it is radially 
unbounded in x and 

inf [LfV(X) +L,V(X)U] 5 -a(x) < 0, v x  # 0 
U€% 

(2) 
where a(.) is a positive definite function, and where 
L,,V(x) = $h(x) denotes the Lie derivative of V along 
h. 

Definition 2 Given a compact, convex set 9, c R'", 
a control law u(t) is admissible with respect to 62. f 
U(.) EL" and u(t)  E R.for all t 2 0. 

2.2 The Constrained Quadratic Regulator Problem 
Consider the nonlinear system (1). In this paper we ad- 
dress the following problem: 

Problem 1 Given an initial condition x, and a com- 
pact, convex control constraint set 0.. jnd an admis- 
sible state-feedback control law u[x(t)] that minimizes 
the following performance index: 

J(x,,,u) = - [x'Q(x)x+u'R(x)u]~~, x(O)=X, (3) 2 l i  0 

where Q(.) andR(.) are C',positiwe definite matrices'. 

It is well known (1171. section 85) that this problem is 
equivalent to solving the following Hamilton-Jacobi- 
Bellman partial differential equation: 

0 = min { 
subject to: V(0)  = 0 

[ f  (x) +g(x)uJ+ qdRu+ q.lif?~} 4th 

(4) 
'lk condition can be relaxed to Q(z) 2 0 

If this equation admirs a C' nonnegative solution v. 
then the optimal control is given by: 

and V ( x )  is the colresponding optimal cost (or storage 
function). 

3 A Finite Horizon Approximation 

Unfofiunatdy. the complexity of equation (4) prevents 
its  solutio^^ except in some very simple. low dimen- 
sional cases. To solve this difficulty. motivated by the 
idea first introduced in [20I for linear system and ex- 
tended in 1221 to the nonlinear case. in this section we 
introduce a finite horizon approximation to F'rublem 1. 
Assume that a CCLF Y(x). in the SCnSe of Debition 
1. i s  known in a region 0 E S R". Let c = inf Y(x). 

when aS denotes the boundaty of S and define the set 
X€a 

s, = {x:Y(x) <c} (5) 

Corr~ider the following finite horizon &OIIMIKX. in- 
dex: 

zh I r+T (A'@+dRu) d t + Y [ ~ ( t + T ) ]  I~(x~,u)= 
x ( t )  = x, 

(6) 
Then we proposc the following Receding Horizon type 
law: 

(7) w(t) = v(t)  where:w(s) = argminJy[x(s),u] 
VEU 

subject to: 

where U denotes the sd of control laws admissible with 
respect ton.. 

Theorem 1 The contml law ulp har the followingprop- 
erties: 

1. It  is admissible. 

2. I t  renders the origin an asymptotically stable 
equilibrium point of (1) in the entire region where 
the system is stabilizable with a bounded control 
action. 

3. Coincides with the globally optimal control law 
when Y(x) = V(x),where V(X) E C1 satisjes the 
Hamilton-lacobi-Bellman PDE (4). 
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By consmction. the control law is admissible.. 
Denote by Jo(x) the value of the finite horizon index 
(6) conesponding to the control law (7). To show that 
this control law renders the origin an asymptotically 
stable equilibrium point. we will show that lo(.) is a 
Lyapunov function for the closed loop system. To this 
effect, consider an initial wndition xo and denote by 

spectively. Then 
U'$ the optimal control and associated trajectory re- 

T+t 

/,,[x(f + d f ) ]  1 f / (;'ex' + v"Rv*) dt + Y v ( T  + f ) ]  

t+dt 

1 
2 

-.?'(T + f)Qx'(T +I) + - d R v + Y  v(T + t ) ]  

1 I 
+min { -x' ' (T+r)QY(T+t)+ Z d R v + Y v ( T + f ) ]  

V E R  2 

Therefore. if (8) holds then we have that 

To complete the proof of item 2. let K denote the 
region where Problem 1 is feasible.. Given any ini- 
tial condition x, E K .  there exists an admissible con- 
trol law k ( ~ )  such that the corresponding tmjectory 
limx(t) = 0. Hence. there. exists some finite T(x,) such 
that x[T (xo)] E S,. By cmhuction the set Se is con- 
trolled iWariant with respect to some admissible con- 
trol law us. It follows that the controk 

1- 

is admissible and renders Jv(x, U) finite. Thus. the opti- 
mization problem (7) subject to (8) is feasible at t = 0. 
Denote by u*,P the solution to this problem in [O,dt] 
and the associated trajectory. mpectively. Consider 
now the problem (7)-(8) starting from the initial UUI- 

dition X (dt). It follows that the control law: 

is admissible, since it steers the system along the fea- 
sible trajectory X. in [dt,T] and keep it inside the set 
S, in [T,T + dt]. Thus x'(r + dt)  E i.e., the con- 
trol action uy renders K invariant. This establishes the 
fact that the control action uy is admissible for all 1. 
Asymptotic stabiii follows fmm (9). 
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Toproveitem3.-notethatwhen\Y(x)=V(x)thenfrom 
the Hamilton Jacobi equation (4) we have that 

Thus in this case the constraints (8) are redundant. 
From a dynamic programming argument it follows that 

= UEUO i n f ~ [ d Q x + d R u ] d t  

= W O )  

(13) 

Next. we show that the suboptimality level of the pro- 
p d  algorithm decreases monotonically al- the tra- 
jectories of the system. 

Theorem 2 Let Jo(x) denote the optimal value of the 
performance index (6) and dejine the approximation er- 
ror e(%) = &(x) - v ( x ) .  where v ( x )  E c' is a solun'on 
to the HJB equation (4). Then $e(x) 5 0 along the 
trajectories generated by the control law uy. 

From (4) it follows that for all U E Cl. 

ax 
- [ [ f (%)+g(~) t~]+?~ 'Ru+ av 1 ~ ~ ' Q x 2 0  1 (14) 

In particular, this implies that along the trajectories of 
the system (1) generated by the control law uv we have: 

0 I ~[V(X)+g(x)u~l+~U;IRUyr+:IQT 
= $V+~dyRuyl+$t'X'QX 

(15) 
From (9) it follows that the evolution of e(t) along the 
trajectory satisfies: 

where the last inequality follows from (15). 

Remark 1 The result above formalizes the intuitive 
fact that minimizing the upper bound (6) moves the sys- 
tem in the "right" direction, since the suboptimaliry 
level decreases monotonically along the trajectories. 

4 Incorporating State or Output Constraints 

Assumethatinadditiontothecontrolconstraintu Ea.. 
the system is subject to state constraints of the form 



x E Sr,. where SL, is a convex set containing the -in 
in its interio?. As we briefly show next, the proposed 
controller can be readily modified to handle these con- 
straints. The only changes that are required is to select 
the invariant sets, in (8) so that S, c sl, ', and to mod- 
ify the optimization (7) so that the state constraints are 
taken into -ut. Note that Theorem 1 still holds under 
these conditions. In particular, the conlroller is guaran- 
teed to stabilize the system in the entin region where 
the pmblem is feasible, and yields optimal performance 
whenY(x) = V ( x ) .  

5 Selecting suitable CLFs 

h principle. a simple way of finding a CCLP is to find 
first a CLF using any of the methods available in the 
literature. such as feedback linearization and backstep- 
ping (see for instance 16.51). and then considering an 
inva&ut set S, where the associated control action does 
not exceed the bounds4. Howeverthis approach may re- 
quire the use of a large horizon T in the optimization to 
guarantee that the set S, is reached (Le. the constraints 
(8) are feasible). In addition, in der to d i z e  the 
suboptimality level incurred by the proposed algorithm. 
the CLF should be ''close" to the value function V. In 
this seaion we. propose a method for finding a suitable 
local CCLP. This approach is motivated by the empir- 
ically observed success of the SDRE methd. briefly 
m e e d  in the Appendix. 

In the sequel we consider for simplicity the case where 
the control constraints of the form llullrn 5 U,, but 
the method can be easily gene- to m m  general 
constraints. Begin by r e d i g  the nonlinear system 
(1) into the following hear-like form: 

f = A(x)x +B(x)u 117) 

and assume that. for every x the pair [A(x),B(x)] is sta- 
bilizable (in the linear sense). Considanow the follow- 
ing R m t i  equation. parametric in x and r: 

1 
O = A ' ( ~ ) P ( X , ~ ) + P ( ~ , ~ ) A ( X ) + ; Q ( ~ )  (18) 

-P(x,T)B(x)R-'(x)B'(x)P(x,T) (19) 

and the associated control law: 

U =  -R-'(x)B'P(x,s)x (20) 

where P(x,r )  is the positive debite solution of (18). 
Pinally. consider the the mapping T : R" + R' detined 
implicitly by the solution to the following equation: 

*'P(x,T)x-c(T) = 0 (21) 

where 

Note that P(x) = P(x, 1 )  is precisely the solution to the 
SDRE associated with the system (17) and hence is a 
CLF in a neighborhood N of the origin. Let SN C N 
denote the b e s t  set inside that is rendered invariant 
by the control law 

G = -R-'B(x)'f(x)x (23) 

and define the sets: 

By constructioa the set SI is iWariant with resped to 
the control law (23). Moreover, it can be easily shown 
that inside thh set fi is admissible. Motivated by these 
obsmations we propose the following CCLF: 

with associated contml action 

In the sequel we show that. if?P(x)x is a CLF for the 
system (1) in the region SI. then Y(x) is a CCLF in 
some region Sc 2 SI. 

Theorem 3 Given some T,, 2 1. assume that, for  ev- 
eryfued 7 E [l,r-]. there exists an invariant region 
S, where $(x, T) = I P [ x ,  r(x)]x is a CLF for the system 
(1). Define rhe region S, = (&S,)US,. Then Y[x,r(x)] 
is a CCLF for ( I )  in the region Sc. 

proof: Begin by noting that, by constmction. the control 
action U is admissible. To establish that Y is a CLF. 
differentiate (18) with respect to 7 to obtaii: 

Since P(x,r )  is stabilizing by construction, the matrix 
AC(x)  = [A(.) -B(x)R'B'(x)P(x)] is HUrWitz. Sin= 
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Q > 0. this fact, combined with (27) establishes that 
$P(x, 5 )  < 0. prom (22) it f0Uow.s that > 0. con- 
sider now $Y(x) along the trajectork.~ generated by 
the control action 

U = --B‘(x)P[x,7(x)]x (29) 

DiBFerentiating (21) we have that: 

(3 1) 

where the inequality follows from the facts that > 
0, 4 < 0, and by assumptica Or < 0. F d l y .  note 
that from (31) we have that: 

aPIr 

d aP ac 
-?P[X,r(x)]x= $,+?--Xi = --i < 0 (32) d t  a5 a% 

6 Conclusions 

A large number of realistic control problems involve 
designing a controllers for systems subject to time- 
domain comtraints on the control action. This prob- 
lem has been the subject of considerably attention in 
the past two decades, and in the case of LTI dynamics, 
several techniques are available for finding stabilizing 
contmllw that, at the same time, optimize some mea- 
SUII: of performance (for instance in the e2 or em in- 
duced norm sense). On the other hand, very few results 
am, available for nonlinear system. 

In this paper we propose a procedure for synthesizing 
statefeedback controllers for nonlinear, control &ne. 
systems subject to control consnaints and performance 
requinments expressed in tenus of a quadratic perfor- 
mance index. The proposed controller is obtained by 
combining Receding Horizon and Control Lyapunov 
ideas, foUowing in the spirit of 1221. and it only neces- 
sitates knowing a (not necessarily optimal) local Con- 
strained Control Lyapunw Function. As we show in 
the paper. such a function cm be feadily o b t a i i  usiug 
as a starting point the State Dependent Riccati Quation 
(SDRE) approach. 

The main result of the paper shows that the proposed 
control law is guaranteed to stabilize the system (in the 
entire region where stabilization with bounded controls 
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is feasible) and outperform the contml law obtained 
when using the CCLP alone. Thus. the proposed ap- 
proach provides a simple way to improve the perfor- 
mance that cau be achieved from a given CLE 

An additional advantage of tbe proposed framework is 
that it can be easily extended to incorporate additional 
constraints on outputs or states. 
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A The SDRE approach to nonlinear regulation 

In this section we briefly cover the details of the SDRE 
approach [41. The main idea of the method is to recast 
the the nonlinear system (1) into a State Dependent Co- 
efficient (SDC) linear-like form: 

f =A(x)x+B(x)u (33) 
and to solve pointwise along the trajectory the corre- 
sponding algebraic Rimti equation: 

A’(x)P(x)+P(x)A(x) -P(x)B(x)R-’ (~)E’(x)P(x)+Q(x)  = 0 
(34) 

The suboptimal control law is given by U,, = 
-R-’(x)B‘P(x)x. In the sequel we &5y review the 
properties of this control law. The corresponding proofs 
can be found in the appropriate Zfeerences. 

Lemma l(141) Assume that Q(x) = C’(x)C(x) and 
that there exists a neighborhood .Q of the origin where 
fhe pairs {A(x),B(x)] and {A(x),C(x)} are pointwise 
stabilizable and detectable respectively and all the ma- 
trix functions involved are c’. Then the control law 
udrr renders the origin a locally asymptotically stable 
equilibrium point of the closed-loop system. 

Lemma 2 ([4]) The SDRE control law and its asso- 
ciated state and co-state trajectories sari& the nec- 
essary optimality condition: 2 = 0, where H = 
x‘Q(x)x+dR(x)u+A‘[f(x) +B(x)u] and where h de- 
notes the co-states. 

Lemma 3 ([4]) Assume that the parametrization (33) 
is stabilizable and all the matrices involved along with 
theirgradientsare bounded in a neighborhood L2 of the 
origin. Then the SDRE control law and its associated 
state and co-state trajectories asymptotically s a t i ~  at 
a quadratic rate’following necessary condition for op- 
timaliry: . aH A=--- ax 
in the sense that 

for some constant matrix U > 0 and all x E a. 

Lemma 4 ([71) LetP (x)  denote a solution to the SDRE 
(34). If  there exists a positive definite function V ( x )  
such that = P (x)x then Usdm is the globally op- 
timal control law. 
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