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Abstract 

Recent hardware developments have rendered controlled 
active vision a viable option for a broad range of practi- 
cal problems. However, realizing this potential requires 
having a framework for synthesizing robust active vision 
systems, capable of moving beyond carefully controlled 
environments. Recent work has shown that this can be 
achieved by combining robust computer vision and control 
techniques. However, in some cases robustness is achieved 
at the expense of performance. In this paper we show that 
this performance loss can be avoided by recasting the prob- 
lem into a Linear Parameter Varying (LPV) form and using 
recently developed robust identification and control tools 
for this class of problems. These results are experimen- 
tally validated using a Bisight robotic head. 

1 Introduction and Motivation 

Recent hardware advances have rendered visual 
feedback a viable option for a very diverse spectrum 
of applications ranging from MEMS manufacture[7] 
to assisting individuals with disabilities [23], and 
Intelligent Vehicle Highway Systems [ 181. Clearly 
these applications would not be possible without the 
use of feedback control to compensate for uncer- 
tainty and errors. 

Active vision systems appeared as far back as late 
1970's [lo] and have been the subject of much re- 
search since. An excellent survey of the earlier work 
(up to 1996) can be found in [12]. 

Earlier active vision systems dealt with stability is- 
sues by detuning the controller, at the expense of 
performance, until stability was accomplished [ 121. 
Latter approaches combined PID controllers with 
some prediction to explicitly address time delays. 
However, these predictors can tolerate only small 
amounts of uncertainty [15]. Moreover, the combi- 

nation PID controller/predictor had to be tuned em- 
pirically, a process that entailed considerable experi- 
mentation [6]. 

Set-point tracking can be improved using a two- 
degrees of freedom (2-DOF) controller [6]. How- 
ever, this approach can improve neither robustness 
nor disturbance rejection. Optimal controllers have 
the potential to improve performance [14, 91, but 
can lead to fragile systems 1141. Empirical results 
[13, 171 show that adaptive controllers can accom- 
modate calibration errors. However, this approach 
does not allow for achieving an a-priori established 
robustness level or to balance robustness versus per- 
formance. 

Arguably, at this point fragility is one of the critical 
factors limiting widespread use of active vision tech- 
niques. Indeed, while commercially available prod- 
ucts offer basic object-tracking, they have very lim- 
ited robustness capabilities and lack flexibility [ll].  

Very recent work has recognized the fact that robust- 
ness issues are central to the success of active vi- 
sion systems. Robustness to calibration errors and 
estimation noise has been addressed in [8, 221 and 
[ 161 respectively. Robustness against unmodelled 
dynamics and parametric uncertainty has been ad- 
dressed in [20]. However, in all these cases robust- 
ness is potentially obtained at the expense of perfor- 
mance. 

In this paper we illustrate with a simple example the 
control-related issues involved in active vision and 
we show how some very recently developed Linear 
Parameter Varying (LPV) control techniques can be 
brought to bear on the problem. These results are ex- 
perimentally validated using a stereo-head. Finally, 
the paper ends by pointing-out new research direc- 
tions and possible extensions of currently available 
techniques. 
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2 Preliminaries 

2.1 Hardware description 
The hardware setup used in this paper, shown in 
Figure 1 (a), consists of a Unisight padtilt plat- 
form with a BiSight stereo head with Hitachi KP- 
M1 cameras and Fujinon HlOXllEMPX-31 motor- 
ized lenses. The input commands to the head and the 
lenses were given using a 10 channel PMAC 6 - T 

controller. The image processing was performed us- 
ing a Datacube MaxSPARC S250 hosted by a Sun 
Ultra Sparc workstation. 

In the next section we use this setup as a vehicle to il- 
lustrate some problems with currently available tech- 
niques and to motivate the proposed approach. For 
the sake of briefness, in the sequel we concentrate 
only on controller design for the pan axis. Control 
design for the second axis (tilt motion) follows ex- 
actly along the same lines. 

2.2 Illustrative example 
The control-related issues involved in active vision 
can be illustrated by considering the problem of 
smooth tracking of a non-cooperative target, illus- 
trated in the block diagram shown in Figure 1 (b). 
Here the goal is to internally stabilize the plant and 
to track the reference signal yref, using as measure- 
ments images possibly corrupted by noise. 

Figure 1: (a) The experimental setup, (b) Block diagram 
of a visual tracking system. 

Control oriented identification of the plant yields the 
following model for the nominal transfer function 
from the command input to the tracking error (in pix- 
els, see [20] for details): 

where the factor 5 models the image processing 
delay. 

Figure 2: Tracking error of an optimal LQG controller 
(experimental). 

Once the model (1) has been obtained, a controller 
can be synthesized using standard techniques. Fig- 
ure 2 shows experimental results obtained using an 
LQG controller tuned to achieve a compromise be- 
tween settling time and overshoot. Note that while 
the controller achieves acceptable performance for 
the nominal plant, the closed-loop system becomes 
unstable for off-nominal conditions '. 

Figure 3: (a) Open loop frequency responses for different 
f's (b) Selection of the uncertainty weight. 

0 . 0 1 6 ~ ~  + 0 . 0 8 8 ~ ~  + 0 . 1 0 3 ~ ~  + 0 . 0 7 7 ~ ~  + 0.0451 + 0.077 
z6 + 0 . 3 8 5 ~ ~  + 0 . 8 3 7 ~ ~  + 0 . 3 6 ~ ~  + 0.29~ + 0.076 

I 

x ;? 'Similar results were also obtained vith a PID controller. 
(1) These results are omitted for space reasons. 
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This phenomenon can be easily explained by looking 
at the transfer functions corresponding to different 
values of the focal length f, shown in Figure 3 (a). 
As shown there, changes in f effectively amount to a 
change in a gain multiplying the control action, lead- 
ing to instability when the gain margin of the system 
is exceeded. 

This difficulty can be solved by modelling the system 
as a nominal plant subject to multiplicative dynamic 
uncertainty (intended to cover, in addition to vari- 
ations in f ,  unmodelled dynamics and uncertainty 
in the time-delay), and using robust control tools to 
synthesize a controller guaranteeing robust perfor- 
mance. Figure 3 (b) shows the uncertainties corre- 
sponding to the minimum and maximum values of 
the zoom f, and up to one-sampling period in the 
time-delay (the total time delay fluctuates between 
two and three sampling periods depending on the 
amount of time required to locate the target in the 
image). From these plots it follows that a suitable 
uncertainty weight is given by: 

S 
P U 
- 

Finally, in order to guarantee perfect tracking of step 
displacements, the plant was augmented with an in- 
tegrator at the control input. Using p-synthesis with 
first order scales and performance weigth W,(z) = 
2.:%;g6 * leads to a loth order controller. The step 
responses of the closed loop system obtained with 
this controller (simulation and experimental) for two 
different values of f are shown in Figure 4. As 
shown there, in the nominal case performance is sim- 
ilar (in terms of overshoot and settling time) to that 
achieved with the LQG controller. On the other hand, 
changes in f result in somewhat degraded perfor- 
mance, but the system still remains stable. 

This example illustrates the ability of the combina- 
tion of robust identification and robust control tech- 
niques to address the fragility exhibited by active 
vision systems designed using classical techniques. 
However, in some cases this robustness is achieved 
at the expense of performance. For instance, experi- 
mental results obtained in our lab show that this ap- 
proach works well when f is allowed to change be- 
tween 30% to 70% of its range, but it entails sub- 
stantial performance loss otherwise. Simply put, 
one is asking a single controller to accommodate a 
large range of plant dynamics and this can be ac- 
complished only by using a small gain, leading to 

Y 

2This function has a low pass characteristic, penalizing large 
tracking errom and leading to a closed loop function with a band- 
width on the order of lOHz (equivalently, settling times on the 
order of 0.5 sec.). 
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Figure 4: Tracking error for a robust controller: (a) 50% 
zoom (nominal), (b) 70% zoom 

relatively slow systems. As we show in the sequel, 
performance can be regained by casting the active 
vision problem into an LPV form. 

3 Improving performance using a Linear 
Parameter Varying Approach 

Most active vision setups allow for measuring pa- 
rameters (such as f and the distance 2, to the target 
in real time [3]; albeit compted by noise). Thus, the 
system can be recast in the form shown in Figure 5 
where the plant depends on time-varying parameters 
that are unknown a-priori, but can be measured on- 
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-line. Problems involving these types of systems (lin- 
ear parameter varying (LPV)) have been the object 
of recent attention in the control community. While +a 
comprehensive theory is still being developed, some 
tools are already available that allow for optimizing 
performance while guaranteeing stability [24]. Since 
in this approach the controller depends explicitly on 
the present values of these parameters, it has the 
potential to outperform a fixed linear controller de- 
signed to accommodate the entire parameter range. 
Successful application of this approach to active vi- 
sion systems requires development of tools for: 

1 .- Robust identification of LPV models 

2.- Real time self-calibration and depth estimation 

3.2 Synthesis of robust LPV controllers that ac- 
commodate the special features of active vi- 
sion problems. 

In this paper we will consider only items (1) and (3) 
above, assuming that measurements of the relevant 
parameters are available. Some open issues concem- 
ing these measurements and their impact in the con- 
troller design are discussed in section 5. 

3.1 Control Oriented Identification of LPV sys- 
tems 
The first step in applying LPV tools to the active vi- 
sion problem is to identify a model suitable to be 
used by the available control synthesis methods. A 
difficulty here is that while control oriented identi- 
fication of LTI systems is by now relatively mature 
[15], comparable identification tools for LPV sys- 
tems are just starting to appear. In this paper we 
will use the robust LPV identification framework re- 
cently proposed in [21], that starting from exper- 
imental data and some mild a priori assumptions 
on the plant, generates a nominal model as well as 
bounds on the worst case identification error suitable 
to be used by LPV robust control synthesis methods. 

The experimental information considered consisted 
of N t  = 25 samples of the time response of the real 
system Y k  to a known input U k  while the time vary- 
ing parameter Pk (in this case the focal length) was 
allowed to vary between -0.5977 and 0.2076 during 
the experiment. By repeatedly measuring the loca- 
tion of the centroid of the target in the absence of 
input, the experimental noise measurement was de- 
termined to be bounded by et = 4/ll0pixels/count 
'. Based on this data we obtained the following LPV 
model: 

3This experimental error is mainly due to fluctuating condi- 
tions such as ambient light. 

x k + 1  

+ 
Yk = + 

where: 

A p  = 
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Figure 6 compares the output of the identified model 
against the experimental data. As shown there, the 
identified model explains the observed data within 
the experimental error. 

Figure 6: Output of the identified LPV model and exper- 
imental data 

4 Controller Design 

A difficulty in synthesizing LPV controllers for ac- 
tive vision systems is that currently available tech- 
niques assume that the controller has instantaneous 
access to exact values of the parameters. On the 
other hand, in active vision problems these parame- 
ters must be estimated from images, leading to de- 
lays and some level of uncertainty. Nevertheless, 
these factors can be taken into account, albeit in 
a somewhat conservative fashion, by incorporating 



them into the model uncertainty and designing a ro- 
bust LPV controller. In the sequel we pursue this ap- 
proach, using the technique proposed in [4] to design 
an LFT scheduled 3-1, controller. It can be shown 
that in this context, the problem reduces to an LMI 
feasibility problem that can be efficiently solved. 

Figure 7 compares the performance of the LPV 
controller4 against that achieved by the p-synthesis 
based one. As expected, while performance is 
comparable for the nominal case, the LPV con- 
troller yields substantially better performance for 
off-nominal conditions. 

I 

Figure 7: LPV versus p controllers:(a) 0% zoom (b) 50% 
zoom (c) 100% zoom 

4A state space realization of the controller, omitted for space 
reasons, can be obtained contacting the authors 

5 Conclusions and Directions for Further 
Research 

Recent hardware developments have opened up the 
possibility of applying active vision techniques to 
a broad range of real-world problems. However, 
as noted in recent conferences [l, 21 involving both 
control and computer vision researchers, while there 
seems to be a consensus in these communities about 
the implicit power of visual control, actually realiz- 
ing this potential requires controllers capable of ac- 
commodating, in addition to uncertainty, the sub- 
stantial time delays and time-varying parameters 
typical of visual servoing problems. As shown in 
this paper, the combination of very recently devel- 
oped LPV robust identification and control tools has 
the potential to address these issues, leading to con- 
trollers capable of achieving good performance for a 
wide range of operating conditions. 

Some issues still open that were not addressed in this 
paper include: 

Multiple performance objectives: In this paper 
all performance specifications were given in terms 
of a single norm (12-induced) also used to assess 
stability. Clearly, a single norm is usually not 
enough to capture different, and often conflicting, 
design specifications. For instance the 12-induced 
norm, while adequate to address robustness con- 
siderations, is not well suited for directly optimiz- 
ing the size of the region in the image that can be 
reached by the target (fovea). The larger this re- 
gion is, the more computationally expensive it be- 
comes to find the target in each frame, resulting in 
larger time-delays, which in turn limits tracking 
of fast-moving targets and can compromise sta- 
bility. Addressing these issues requires expand- 
ing the available LPV formalism to handle multi- 
ple objectives. A possible way of achieving this is 
by extending the LMI-based multiobjective tech- 
niques proposed in [SI to the LPV case. 
Noise and time-deiays in the parameter esti- 
mates. As mentioned in section 4, in this paper 
we have assumed that exact current values of the 
parameters are available to the controller. How- 
ever, these values are usually corrupted by noise 
and delayed. Addressing these issues will require 
expanding LPV techniques to handle this case. 
Model (1n)Validation of LPV Systems: In or- 
der to obtain less conservative results, methods 
should be developed to obtain tight uncertainty 
characterizations. This can be achieved by devel- 
oping LPV counterparts of model validation meth- 
ods currently available for LTI systems[l9]. 
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