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Abstract— A major roadblock in taking full advantage of
the recent exponential growth in data collection and actuation
capabilities stems from the curse of dimensionality. Simply put,
existing techniques are ill-equipped to deal with the resulting
volume of data. The goal of this paper is to show how
the use of simple dynamical systems concepts can lead to
tractable, computationally efficient algorithms for extracting
information sparsely encoded in extremely large data sets. In
addition, as shown here, this approach leads to non–entropic
information measures, better suited than the classical, entropy–
based information theoretic measure, to problems where the
information is by nature dynamic.
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Fig. 1. Examples of sparsely encoded information. (a) Detecting a
traffic accident. (b) Tracking a person in a crowd.(c) gfp–visualized
promoter activation during a diauxic shift experiment in E. coli
[49]. In all cases fewer than O(10−5) of the data is relevant.

The recent exponential growth in data collection and

actuation capabilities has the potential to profoundly im-

pact society, with benefits ranging from safer, self aware

environments, to enhanced image-based therapies. A major

road-block to realizing this vision stems from the curse

of dimensionality. Simply put, existing techniques are ill-

equipped to deal with the resulting volume of data.
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0901433, AFOSR grant FA9550–09–1–0253, and the Alert DHS Center of
Excellence.

This paper discusses the key role that dynamics can play

in timely extracting and exploiting actionable information

that is very sparsely encoded in high dimensional data

streams. Its central theme is the use of dynamical models

as information encoding paradigms. Our basic premise is

that spatio-temporal dynamic information can be compactly

encapsulated in dynamic models, whose rank, a measure

of the dimension of useful information, is often far lower

than the raw data dimension. Embedding problems in the

conceptual world of dynamical systems makes available a

rich, extremely powerful resource base, leading to robust

solutions, or, in cases where the underlying problem is in-

trinsically hard, to computationally tractable approximations

with sub-optimality certificates. For instance, in this context,

changes in the underlying process can be detected by simply

computing the rank of a Hankel matrix constructed from the

data and missing information can be recovered by solving a

rank minimization problem that can be relaxed to a tractable

semi-definite program. Finally, the use of dynamic models

leads naturally to non-entropic information measures, better

suited for problems where the information is by nature

dynamic and changes as it propagates through a network

where the nodes themselves are dynamical systems. These

ideas are illustrated with several examples from different

applications, including change detection in video sequences,

motion segmentation, and uncovering co-promoted genes.

II. KEY SUBPROBLEMS ARISING IN THE CONTEXT OF

DYNAMIC INFORMATION EXTRACTION

The challenges entailed in exploiting dynamic information

sparsely encoded in very large data sets are illustrated in

Figure 1: In all cases, decisions must be taken based on

events discernible only in a small fraction of a very large

data record: a short video sequence adds up to megabytes,

yet the useful information (a change of behavior of a single

target), may be encoded in just a portion of a few frames,

e.g., less than 10−6 of the total data. Similarly, the data

from the diauxic shift experiment shown in Figure 1(c)

consists of 342×103 data points from the time traces of

1,920 promoters, (e.g., a total of 19 Mb of data), yet only

a few critical time instants and promoter correlations are of

interest. Additional challenges arise from the quality of the

data, often fragmented and corrupted by noise. Addressing

these challenges requires solving the following subproblems:
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A: Nonlinear embedding of dynamic data. Finding low

dimensional manifold structures in data, a hallmark of ma-

chine learning, is a key precursor to both dimensionality

reduction and robust information extraction. Existing static

techniques ([22] and references therein) provide low dimen-

sional embeddings, but fail to exploit the large gap between

data dimension and dynamic rank. As we will show in this

paper, this can be accomplished by employing low rank

dynamic models to capture time/parameter dependence on

low dimensional manifolds that maximally absorb stationary

high dimensions and nonlinearities.

B: Uncovering structures embedded in data. A key step

in information extraction is the ability to find structures

embedded in the data. For example, when analyzing data

generated by an unknown number No of sources, it is

of interest to identify the number of sources, associated

substreams, and the individual dynamics. This is commonly

accomplished by searching for statistical correlations or ex-

ploiting a priori known structural constraints. For example,

independently moving objects in a video clip are efficiently

detected by factorizing a matrix of feature trajectories [8],

[44], [50]. However, methods based on correlations and

(application dependent) a priori information alone are fragile

to missing/corrupted data and have trouble disambiguating

structures with overlapping kinematic or statistical proper-

ties. As shown here, all these difficulties can be avoided

by seeking dynamically coherent substreams, e.g., subsets

that can be jointly explained by low rank models. Further,

this task can be efficiently carried out without explicitly

finding these models, by estimating ranks of Hankel matrices

constructed from time traces. A second example of the use

of dynamics to uncover structure is given by the problem of

recovering the 3D Euclidean geometry of a rigid object from

a set of 2D image coordinates of its points in a sequence of

images. Traditional approaches to this problem that rely only

on geometrical constraints can recover 3D geometry only up

to a projectivity transformation. On the other hand, exploiting

the underlying dynamics leads to a convex algorithm that

recovers the (provably correct) 3D Euclidian geometry.

C: Dynamic data segmentation. The goal here is to partition

the data record into maximal, disjoint sets within which the

data satisfies a given predicate. Examples include segmenting

a video sequence of a person into its constituent activities,

or identifying time periods where a given group of gene

promoters is active. While this problem has been the object

of considerable research in the past decade, it remains very

challenging in cases involving noisy data, where most ex-

isting methods lead to computationally demanding problems

[26], [2], with poor scaling properties. As we will show in

the sequel, the use of dynamics provides a unified, efficient

approach to robust segmentation. In its simplest form, the

idea is to group data according to the complexity of the

model that explains it. Intuitively, models associated with

homogeneous data, e.g., a single activity or metabolic stage,

have far lower complexity than those jointly explaining

multiple datasets. Boundaries are thus characterized by a

step increase in model complexity. In turn, these jumps in

model complexity can be efficiently detected by examining

the singular values of a matrix directly constructed from the

data.

D: Dynamic interpolation. Data streams are often frag-

mented: clinical trial patients may miss appointments, targets

may be momentarily occluded. The challenges here are to

(i) identify fragments belonging to the same data sets (for

instance “tracklets” corresponding to a track of a single

target, fragmented due to occlusion), and (ii) interpolate the

missing data while preserving relevant dynamical invariants

embedded in it. The latter is particularly important in cases

where a transition is mediated by the missing data. An

example is detecting an activity change from video data,

when the transition point is occluded. Formulating the prob-

lem as a minimum order dynamical interpolation one leads

to computationally attractive solutions, whereby values for

missing data are selected as those that do not increase the

complexity - or rank - of the model underlying the data

record.

E: Hypothesis testing and distributed information shar-

ing. Examples include determining whether (possibly non-

overlapping) data streams correspond to the same process

or assessing whether a data set is a realization of a given

process. In turn, this entails computing worst-case distances

between data and model predictions, a task that can be effi-

ciently accomplished by combining concepts from dynamical

systems and information based complexity. Situations involv-

ing multiple information sources and users require the ability

to (i) maintain consistent data labeling across sources, and

(ii) mitigate the communications and computational burdens

entailed in sharing very large datasets. Both issues can be

efficiently addressed by exploiting the dynamical models

underlying the data. Briefly, the idea is to identify a dynamic

operator mapping the dynamic evolution of data projections

over individual manifolds, amounting to a dynamical reg-

istration between sources. Sharing/comparing data streams

then entails transmitting only the (low order) projections of

dynamic variables and running these projections through the

interconnecting operator.

In the remainder of this paper we show how the use

of systems theory concepts provides a unified set of tools

leading to computationally efficient solutions to problems A

–E above. In all cases, these solutions are illustrated with

practical examples.

III. NONLINEAR EMBEDDING OF DYNAMIC DATA.

In the past few years, considerable research has been

devoted to the problem of non-linear dimensionality re-

duction via manifold embedding. Briefly, the idea is to

obtain lower complexity data representations by embedding it

into low dimensional non-linear manifolds while preserving

spatial neighborhoods. Commonly used methods include

locally linear embeddings (LLE) [35], Isomap [40], Lapla-

cian Eigenmaps [1], Hessian LLE [13], and Semidefinite

Embedding [46], [45]. These methods successfully exploit

spatial correlations to achieve (often substantial) dimension-

ality reduction. However, they fail to take advantage of the
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temporal correlations that are characteristic of dynamic data.

As we show next, constraining target manifolds to those

spanned by feasible dynamical trajectories enables additional

(substantial) dimensionality reduction and provides robust-

ness against missing data and outliers.

Fig. 2. Hammerstein/Wiener System Structure. Wiener system.

The starting point is the realization that since projections

to/from manifolds can be modeled as memoryless nonlin-

earities, the problem of jointly identifying the embedding

manifold, the dynamics characterizing the evolution of the

data on this manifold, and the projection operators can be

recast into the Hammerstein/Wiener system identification

problem illustrated in Figure 2. Here Πi(.) and Πo(.) are

memoryless nonlinearities, S is a linear time invariant (LTI)

system that describes the temporal evolution of the data on

the manifold, and u ∈ Rnu , d ∈ Rnd , um ∈ Rnum and

y ∈ Rny , with nd ≫ ny , nu ≫ num
represent the respective

input (for instance a vector composed of past values of the

output and a stochastic driving signal), the raw data, and their

projections on the low dimensional manifold. A potential

difficulty here stems from the fact that, as recently shown in

[31], robust identification of Hammerstein/Wiener systems

is generically NP–hard. However, efficient, computationally

tractable relaxations that scale polynomially with problem

size (both manifold dimension and number of temporal

data points) can be obtained by pursuing a risk-adjusted

approach. The main idea is to identify first the (piecewise)

linear dynamics by sampling the set of signals (um,y),
and attempting to find, for each sample (typically a subset

of a ball in ℓ2) an LTI operator S (the dynamics on the

manifold) compatible with existing a priori information and

such that y = Sum. As shown in [38], [37] both steps reduce

to a convex optimization problem via the use of Parrot’s

Theorem on norm-preserving matrix expansions and standard

results on interpolation. The effectiveness of this approach is

illustrated in Figure 3, where the application of these ideas

enabled sustained tracking of multiple subjects in a cluttered

outdoor scene [23]. Here, recasting the problem into a non-

linear identification form allowed for reducing the problem to

an identification/prediction one in a 3-dimensional manifold.

It is worth emphasizing that this approach has the ability

to exploit the synergy between the data embedding and

dynamic modeling problems to improve robustness and com-

putational properties. Robustness is improved by automati-

cally discarding manifolds incompatible with a priori ex-

isting information on the dynamics, while computationally

attractive models result from maximally absorbing nonlin-

earities in the manifold structure. Further, the consistency

set [34] associated with the identification problem provides

the means to (in)validate assumptions about the geometry

(a) (b)

(c) (d)

Fig. 3. (a): Sample 3 dimensional manifold extracted from a
walking sequence. (b)-(d): use of dynamics on this manifold to
predict target position and appearance.

of the manifolds and to quantify the approximation error.

Thus, viewing data as a manifestation of hidden dynamics

allows a synergy between machine learning (the manifold

structure), identification theory (theoretical underpinnings,

computational framework) and information based complexity

(worst case prediction–error bounds).

IV. STRUCTURE EXTRACTION FROM HIGH DIMENSIONAL

DATA STREAMS.

Structure extraction methods based on correlations and

(application dependent) a priori information alone are often

fragile to missing/corrupted data and have trouble disam-

biguating structures with overlapping kinematic or statistical

properties. As an illustrative example, consider time traces

pti = (uti, vti)
T , t = 1 . . . n of np features Pi, i =

1, . . . , np, from a single rigid object. Kinematic constraints

imply that the rank of the “measurements” matrix W1:F
.
=

[pti] ∈ R2n×np is at most 4 [41]. The number No of

independent rigid bodies can thus be estimated by factorizing

that matrix into rank 4 submatrices. Yet this approach fails to

disambiguate objects with partially shared motion, as illus-

trated in Figure 4: Here rank(W) = 7 due to shared propeller

rotations; hence any segmentation based solely on factorizing

W will fail to distinguish this case from the case of just

two independently moving propellers. The root-cause is that

properties that are invariant under row permutations in W
are limited to revealing geometric dependencies but ignore

dynamic constraints1. As shown next, these ambiguities can

be solved through the use of dynamical models that exploit

both sets of constraints.

The starting point is the realization that for two points

pr,ps belonging to the same source, the time evolution of

1Any permutation of the rows of W satisfies the same geometric
constraints, but corresponds to different time trajectories.
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Fig. 4. Objects with shared motion modes. Right and left wing
propellers move in opposite directions at the same speed.

(a) (b)

(c) (d)

Fig. 5. Segmentation results for the airplane example. (a) Dynamics
based segmentation. (b) Costeira-Kanade segmentation. (c) Zelnik-
Manor-Irani segmentation. (d) GPCA segmentation.

yr,s(k)
.
= pr(k) − ps(k) does not carry information about

the overall group motion of the source. Equivalently, states

associated with group motion are unobservable from yr,s

if pr and ps belong to the same dynamic cluster. Hence

the associated Hankel matrix is rank deficient [34] vis-a-vis

the case of points from different sources. This leads to the

following simple dynamic clustering algorithm [25]:

(i) For each pair (r, s), form the Hankel matrix Hyr,s
of

pairwise differences yr,s(k) = pr(k) − ps(k):

Hy =













y(1) y(2) · · · y(n
2 )

y(2) y(3) · · ·
...

...
...

. . .
...

y(n
2 ) · · · · · · y(n)













(1)

(ii) Group points according to the minimum value of

rank[Hyr,s
].

In this context, robust handling of noisy measurements

ŷ(k) = y(k) + η(k), is accomplished by simply replac-

ing “rank” by the number of singular values above the

covariance of the measurement noise2, leading to an algo-

rithm computationally no more expensive than a sequence

2In this case Hŷ = Hy +Hη , and, under ergodicity assumptions, H
T
η Hη

is an estimate of the covariance matrix of the noise.

of SVDs. The effectiveness of this approach is illustrated

in Figure 5 where darker matrix elements indicate higher

correlations: As shown there, the dynamics based approach

achieves perfect segmentation, while methods relying solely

on factorizations of W [50], [47], [43] fail.

(a)

(b)

Fig. 6. (a) Sample frame. (b) Structures found using dynamic rank
(darker color indicates higher dynamic correlation). The hierarchy
in the lower right corner corresponds to different portions of the
body.

Fig. 7. Dynamic correlation between genes in the diauxic shift
experiment of Figure 1(c). The two identified groups correspond to
growth related (top left) and stationary (bottom right) genes. The
fainter correlation between wrbA and (rpsM,rplN) was unexpected.

An interesting property of the dynamics based approach

to segmentation, illustrated in Figures 6 and 7 is the ability

to provide a hierarchical segmentation according to the

complexity of the joint dynamics. This is key to model

the behavior of a target composed by several components

acting in a dynamically correlated fashion, e.g., the limbs

of a walking person or co-regulated genes. The aggregate

behaves as a non-rigid object, whose components share

motion modes.

A. Euclidean Geometry from Dynamics

Another example illustrating the power of dynamics to

uncover structure embedded in data is given by the problem
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frame: 311

Fig. 8. Sample data for a dynamic segmentation example: Frames 311 and
341 from a car crash sequence.
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Fig. 9. Hankel rank time traces for the crash detection example. Top: Car
1. Bottom: Car 8.

of recovering 3D shape of an object from a video sequence

of perspective images. Traditional approaches to 3D structure

from perspective images rely only on geometrical constraints

(reflecting the rigid nature of the object) but can only recover

shape up to a projectivity transformation [20], [15]. In

contrast, using the dynamical information encapsulated in

the temporal ordering of the frames [36], leads to a provably

correct algorithm that finds the Euclidean structure (up to a

single scaling factor) by minimizing the rank of the Hankel

matrix associated with its trajectory, subject to one linear and

two rank constraints. From its definition, it is clear that the

rank of the Hankel matrix encapsulates temporal correlations,

since it is not invariant under a permutation of the ordering

of the frames. The surprising result is that this rank also

encapsulates rigidity, since it can be proved that the correct

Fig. 10. Detecting transitions in an E. coli culture via Hankel rank.
Jumps at 20 and 57 correspond to shifts from metabolizing glucose
to lactose, to stationary phase, respectively.

3D rigid geometry, up to an overall constant scaling factor, is

precisely the one that minimizes it, subject to the additional

constraints.

More formally, consider the image trajectories pki =
(uki, vki)

T , i = 1, 2, 3, k = 1, . . . , F of the perspective

projections of three points Pki, i = 1, 2, 3, belonging to a

rigid moving under some point-wise rigid motion operator

L. Then, it can be shown [36] that the 3D camera Cartesian

coordinates of Pki i = 1, 2, 3, k = 1, . . . , F are given by:

Pki =





Xki

Yki

Zki



 =
1

λoρk
Z∗

ki





1
f
uki

1
αf

vki

1



 (2)

where λo and ρ > 0 are constant factors (point and frame

independent), and where {Z∗
k1, Z

∗
k2, Z

∗
k3}k=1,...,F solve the

following rank minimization problem

min{Z∗

k1
,Z∗

k2
,Z∗

k3
}k=1,...,F

rank
([

Hy13 Hy23

])

(3)

subject to: Zki ≥ 1

where

y
ij
k =





1
f
(Z∗

kiuki − Z∗
kjukj)

1
αf

(Z∗
kivki − Z∗

kjvkj)

Z∗
ki − Z∗

kj





and where Hy denotes the Hankel matrix of the sequence

{yk}
F
k=1.

Thus, the correct relative 3D structure can be recovered by

solving a rank–minimization problem, since Z∗
ki = λoρ

kZki,

then
Z∗

ki

Zki
=

Z∗

kj

Zkj
for all (i, j), where Z and Z∗ denote the

actual and recovered depths, respectively. While in many

situations this may suffice, in others it is of interest to recover

the geometry up to an overall, frame-independent scaling.

This can be accomplished by the algorithm below which

incorporates one linear and two rank constraints imposing

rigidity between the first and last frame [36]:

Algorithm 1: RANK MINIMIZATION

BASED 3D-DEPTH RECOVERY

Data: Camera Intrinsic Parameters.

Input: (uki, vki), the temporally ordered 2-D coordinates

of N points in F frames.

Output: 3D depths Zki up to an overall scaling constant.

1. Form the difference vectors yiN
k

.
= P∗

ki − P∗
kN ,

i = 1, . . . , N − 1 where P∗
ki

.
= Z∗

ki

[

uki

f
vki

αf
1
]T

,

and the corresponding Hankel matrices HyiN

2. Solve: minZ∗

ki
≥1rank

[

Hy1N . . .HyN−1N

]

subject to (4)

and (6)
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that account for the memory of the model (e.g., j = 0
corresponds to a causal model, or i = j = 0 corresponds to

a memoryless model). Next, consider the sequence of first

order differences of the parameters pσ(t), given by

g(t) = pσ(t) − pσ(t+1) (8)

Clearly, a non-zero element of this sequence corresponds to a

change in the underlying model. Hence, partitioning the data

record into maximal homogeneous sequences is equivalent

to finding a hybrid model of the form (7), consistent with

the a priori information (e.g., a bound on ‖η‖ℓ∞ ) and

experimental data, such that the number of non-zero elements

of the vector g(.) is minimized. Formally, defining δ(t) =
‖g(t)‖∞, the objective is to minimize ‖δ‖ℓo , the number of

non-zero elements of δ, subject to (7). Using the fact that

the convex envelope of ‖·‖ℓ0 in RN is the ℓ1-norm [16], this

non-convex problem can be relaxed to:

minimizep(t),η(t) ‖{g}‖ℓ1

subject to f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖∗ ≤ ǫ
(9)

Since f is an affine function of p(t), (9) has a convex

feasibility set F . Thus, using the ℓ1 norm leads to a

convex, computationally tractable relaxation. The resulting

solution can be further improved using the iterative procedure

proposed in [17], based on solving, at each iteration, the

following weighted ℓ1-norm minimization over the convex

feasible set F :

minimizez,g,p,η

∑T−1
t=1 w

(k)
t zt

subject to ‖g(t)‖∞ ≤ zt ∀t

f
(

p(t), {x(k)}t+j
k=t−i

)

= η(t) ∀t

‖{η}‖∗ ≤ ǫ
(10)

where w
(k)
i = (z

(k)
i + δ)−1 are weights with z

(k)
i being the

arguments of the optimal solution at the kth iteration and

z(0) = [1, 1, .., 1]T ; and where δ is a (small) regularization

constant that determines what should be considered zero.

The choice of ∗, the norm characterizing the noise, is

application dependent. For instance the ℓ∞-norm performs

well in finding anomalies, since in this case the change de-

tection algorithm looks for local errors, highlighting outliers.

On the other hand, when a bound on the ℓ1 or ℓ2-norm of

the noise is used, the change detection algorithm is more

robust to outliers and it favors the continuity of the segments

(i.e., longer subsequences). In addition, when using these

norms, the optimization problem automatically adjusts the

noise distribution among the segments, better handling the

case where the noise level is different in different segments.

A. Example 1: Video Segmentation.

Segmenting and indexing video sequences have drawn

significant attention due to the increasing amounts of data

in digital video databases. Systems that are capable of

0 100 200 300 400 500 600 700 800
0

0.5

1
Drama Sequence ground truth Segmentation

0 100 200 300 400 500 600 700 800
0

0.5

1
Segmentation with our method

0 100 200 300 400 500 600 700 800
0

0.5

1
Segmentation with MPEG Method

0 100 200 300 400 500 600 700 800
0

0.5

1
Segmentation with GPCA

0 100 200 300 400 500 600 700 800
0

0.5

1
Segmentation with Histogram Method

Frame #

Fig. 14. Video segmentation as a hybrid system identification

segmenting video and extracting key frames that summarize

the video content can substantially simplify browsing these

databases over a network and retrieving important content.

An analysis of the performances of early shot change detec-

tion algorithms is given in [18]. The methods analyzed in

[18] can be categorized into two major groups: i) methods

based on histogram distances, and ii) methods based on

variations of MPEG coefficients. A comprehensive study is

given in [48] where a formal framework for evaluation is

also developed. Other methods include those where scene

segmentation is based on image mosaicking [30], [32] or

frames are segmented according to underlying subspace

structure [24].

Given a video sequence of frames
{

I(t) ∈ R
D

}T

t=1
, the

video segmentation problem can be solved by first projecting

the data into a lower dimensional space, using for instance

Principal Component Analysis (PCA), and then applying the

sparsification algorithm described above to the projected data

(to exploit the fact that the number of pixels D is usually

much larger than the dimension of the subspace where the

frames are embedded):

I(t) 7−→ x(t) ∈ R
d.

Assuming that each x(t) within the same segment lies on

the same hyperplane not passing through the origin4 leads to

the following hybrid model:

H1 : f
(

pσ(t),x(t)
)

= pT
σ(t)x(t) − 1 = 0 (11)

Thus, in this context algorithm (10) can be directly used

to robustly segment the video sequence. It is also worth

stressing that as a by-product this method also performs

key frame extraction by selecting I(t) corresponding to the

minimum ‖η(t)‖ value in a segment (e.g., the frame with the

4Note that this always can be assumed without loss of generality due to
the presence of noise in the data.
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Roadtrip Mountain Drama Family

Sparsification 0.9373 0.9629 0.9802 0.9638
MPEG 1 0.9816 0.9133 0.9480
GPCA 0.6965 0.9263 0.7968 0.8220

Histogram 0.9615 0.5690 0.8809 0.9078

TABLE I

RAND INDICES

smallest fitting error) as a good representative of the entire

segment.

The content of a video sequence usually changes in a

variety ways: For instance: the camera can switch between

different scenes (e.g., shots); the activity within the scene

can change over time; objects or people can enter or exit the

scene, etc. There is a hierarchy in the level of segmentation

one would require. The noise level ǫ can be used as a tuning

knob in this sense.

Figure 14 shows the results of applying this ap-

proach to a video sequence, drama.avi, available from

http://www.open-video.org. The original mpeg

files were decompressed, converted to grayscale and title

frames were removed. Each sequence shows a different

characteristic on the transition from one shot to the other. The

camera is mostly non-stationary, either shaking or moving.

For comparison, results using GPCA, a histogram based

method and an MPEG method for segmenting the sequences

with optimal parameters (found by trial and error) are also

shown. Table I shows the Rand indices [33] corresponding

to the clustering results obtained for this sequence and

three others from the same database (roadtrip.avi,

mountain.avi, and family.avi) using the different

methods, providing a quantitative criteria for comparison.

Since the Rand index does not handle dual memberships,

the frames corresponding to transitions were neglected while

calculating the indices. These results show that indeed the

sparcity method does well, with the worst relative per-

formance being against MPEG and B2B in the sequence

Roadtrip. This is mostly due to the fact that the parameters

in both of these methods were adjusted by a lengthy trial and

error process to yield optimal performance in this sequence.

Indeed, in the case of MPEG based segmentation, the two

parameters governing cut detection were adjusted to give

optimal performance in the Roadtrip sequence, while the

five gradual transition parameters were optimized for the

Mountain sequence.

B. Example 2: Segmentation of Dynamic Textures.

Modeling, recognition, synthesis and segmentation of dy-

namic textures have drawn a significant attention in recent

years [14], [5], [7], [19]). In the case of segmentation tasks,

the most commonly used models are mixture models, which

are consistent with the hybrid model framework.

In the sparsification framework described earlier in this

section, the problem of temporal segmentation of dynamic

textures reduces to the same mathematical problem as the
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Fig. 15. Comparison of segmentation results for the Smoke sequence
concatenated with its transposed dynamics.

video segmentation problem, with the difference that now

the underlying hybrid model should take the dynamics into

account. First, dimensionality reduction is performed via

PCA (I(t) 7−→ y(t) ∈ R
d) and then the reduced-order data

is assumed to satisfy a simple causal autoregressive model

similar to the one in [7]. Specifically, in this case the hybrid

model is given by:

H2 : f
(

pσ(t), {y(k)}t
k=t−n

)

= pT
σ(t)







y(t − n)
...

y(t)






− 1 = 0

(12)

where n is the regressor order. This model, which can be

considered as a step driven autoregressive model, was found

to be effective experimentally5. The power of this approach is

illustrated in Figures 15 and 16 where two very challenging

sequences were segmented. The first sequence consists of

a patch of dynamic texture (smoke) appended in time to

another patch from the same texture but transposed. Thus, the

two subsequences have the same photometric properties but

differ in the main motion direction. The second sequence was

generated using another dynamic texture (river) by sliding a

window both in space and time (by going forward in time

in the first half and by going backward in the second), thus

reversing the dynamics due to the river flow.

VI. CONSTRAINED INTERPOLATION OF HIGH

DIMENSIONAL SIGNALS:

Consider first the simpler case of interpolating noiseless

data, generated by a single LTI system, with McMillan

degree bounded by some known no. Formally, given a partial

sequence dg = {d1, · · · , dq, dq+r, · · · , dn}, the goal is to

estimate the missing elements dx = {dq+1, . . . , dq+r−1}
that optimally fit the given data. Intuitively, the best fitting

missing elements are those that require adding the least

5The independent term 1 here accounts for an exogenous driving signal.
Normalizing the value of this signal to 1, essentially amounts to absorbing
its dynamics into the coefficients p of the model. This allows for detecting
both changes in the coefficients of the model and in the statistics of the
driving signal.
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Fig. 16. Comparison of segmentation results for the River sequence
concatenated with its reversed dynamics.

number of modes to the existing model in order to explain

the new data. Using the fact that the order of the underlying

model is given by the rank of the corresponding Hankel

matrix (under the assumption that n ≫ no), this problem

can be recast into the following rank minimization form:

dx o = argmindx
rank(H) where H is the Hankel matrix

associated with the completed sequence d = {di}. In this

context, noise can be readily handled by simply adding a

new variable v such that the measured data y = d + v, and

a suitable noise description of the form v ∈ N , a convex,

compact set. Finally, since rank minimization is NP–hard

[42], using the convex relaxation proposed in [17] leads to

the following algorithm [9]:
Algorithm 2: HANKEL RANK MINIMIZATION BASED

INTERPOLATION/PREDICTION

Input at time k: Nh: Horizon length;

Ia ⊆ [k − Nh, k]: set of indices of available measurements

(with card(Ia) ≥ n);

Ie ⊆ [k − Nh, k + 1]: set of indices of data to be estimated;

with Ia ∪ Ie = I; available data yℓ, ℓ ∈ Ia;

set membership description

of the measurement noise v ∈ N .

Output: Estimates ζ̂ℓ of ζℓ, ∀ℓ ∈ Ie ∪ Ia

1. Let ζ∗ denote the following sequence:

ζ∗i =

{

yi − vi if i ∈ Ia

xi if i ∈ Ie
where v, x are free

variables, and form the matrix

Hζ
.
=











ζ∗i1 ζ∗i2 · · · ζ∗in+nu+1

ζ∗i2 ζ∗i3 · · · ζ∗in+nu+2

...
...

. . .
...

ζ∗in+1
ζ∗in+2

· · · ζ∗i2n+nu+1











2. (Approximately) minimize rank[H(x, v)] by solving

the following convex problem in x, v, R, S:

minimize Tr(R) + Tr(S)

subject to

[

R H(x)

H(x)
T

S

]

≥ 0, {vℓ} ∈ N .

3. Estimate/predict the output ζℓ from the noisy

measurements yℓ by:

ζ̂i =

{

yi − vi if i ∈ Ia (estimation)
xi if i ∈ Ie (interpolation/prediction)

Fig. 17. Missing data (second and fifth rows) interpolated by rank
minimization on 3D manifolds (third and sixth rows).

Examples of application of this idea are shown in Figures

17 and 18. In Figure 17 nonlinear embeddings were used first

to map the data to a low order manifold where the rank-

minimization based interpolation was performed, followed

by a remapping of the data to pixel space. Fig. 18 shows

how a combination of dynamic interpolation and Hankel–

rank based segmentation is able to detect occluded events.
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Fig. 18. Occluded event detection. Top: Dynamic data interpolation.
Bottom: Hankel rank plot showing events.
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It is worth mentioning that the ideas discussed in this

section are directly applicable to hybrid models of the form

(7). In this case, minimizing the rank is roughly equivalent to

interpolating the data so that the resulting underlying model

exhibits the minimum number of jumps.

VII. HYPOTHESIS TESTING AND DATA SHARING.

A salient feature of the dynamics–based information ex-

traction framework is its ability to furnish application–

relevant worst–case bounds on distances between data

and model predictions and, significantly, between non-

overlapping data streams, in terms of their respective models.

These bounds lead to computationally efficient hypothesis

testing techniques. Consider a data stream {yk}
N−1
k=0 gener-

ated by an underlying model of the form:

yk+1 = F [yk, ek], yk
.
= [yk, . . . , yk−n], ek

.
= [ek, . . . , ek−n]

(13)

where e is a stochastic input, and F is the (unknown)

evolution operator. Collecting all available a priori infor-

mation about F and e (e.g., known dynamic modes and

noise statistics) into sets S and N reduces the problem

of finding F to a finite dimensional optimization via an

extended Caratheodory-Fejer interpolation framework [39].

This method is interpolatory, hence it generates a model

Fid ∈ T (y)
.
= {F ∈ S : yk+1 = F [y, e], e ∈ N}

the set of all models consistent with both the a priori in-

formation and the experimental data. Since the actual (un-

known) model that generated the data must also belong to

T (y), a bound on the worst case prediction error of the

identified model Fid is given by:

‖ŷ − y‖∗ ≤ sup
F1,F2∈T (y)

‖F1[y, e] −F2[y, e]‖∗ = D[T (y)]

(14)

where ‖.‖∗ is a suitable norm and D(.) denotes the diameter

of the set T (y). When the sets S and N are convex, com-

puting this bound reduces to a convex optimization problem

[34, Lemma 10.3]. Note that these bounds are computed only

once and remain valid as long as the underlying dynamics

do not change.

S1
-e - f+

6̃ω

-

- ∆
?f+ -y2
z

Fig. 19. Distance between data streams as a model (in)validation problem.

The worst case bounds provided by D[T (y)] can be used

to robustly assess the distance between non-overlapping data

streams [28]. The idea is to measure this quantity in terms of

the distance between the corresponding (model) consistency

sets. Intuitively, two partial data streams are considered to be

manifestations of the same underlying process if they can be

generated by the same dynamic model. The introduction of

the consistency set in this context allows for taking into con-

sideration data–quality issues (relatively few observations,

Walk (Ind. 1) Walk (Ind. 2)

Stairs (Ind. 1) Stairs (Ind. 2)

Fig. 20. Sample joint traces (*, shoulder; +, elbow; x, hip; o, knee) for
different activities

Person Walking Running Staircase

A 1, 2 16 to 18 25 to 27
B 3 to 8 11 to 15 21 to 24
C 9, 10 none 28 to 30
D none 19 none
E none 20 none

TABLE II

EXPERIMENTAL DATA

corrupted by noise) and a priori information. Computing

the exact distance between consistency sets is costly, but it

can be relaxed to the model (in)validation form shown in

Figure 19. Given data streams y1, y2, the idea is to identify

a nominal model S1 associated with y1 and a deformation

operator ∆ so that the pair (S1,∆) generates y2. As shown

in [6], computing the minimum norm γmin
.
= min ‖∆‖∞

over the set of all operators with this property reduces to a

convex Linear Matrix Inequality optimization problem. Thus,

the value γmin provides a computationally tractable upper

bound on the distance between consistency sets.

This idea is illustrated next, using as an example the

problem of gait classification. The experimental data listed

in Table II and plotted in Figure 20, consists of 30 vector

sequences, taken from 5 different persons, named A, B, C, D

and E. Each sequence contains measurements of the angles of

the shoulder, elbow, hip and knee joints of a person walking,

running or walking up a staircase. For illustrative sake, these

sequences are numbered from 1 to 30 so that the first 10
correspond to walking, the second set of 10 to running and

the third set of 10 to walking up a staircase.

Table III shows the distance from each data set to the dy-

namic model representing each activity. For each sequence,

these nominal models were obtained by first finding a model

associated with each of the remaining sequences and then
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Sequence Swalk Srun Sstair

y1 0.1743† 0.6758 0.5973
y2 0.2333† 0.5818 0.2427
y3 0.0305† 0.6843 0.6866
y4 0.0410† 0.6217 0.5305
y5 0.0819† 0.6915 0.6069
y6 0.0001† 0.6879 0.7688
y7 0.0900† 0.6892 0.9188
y8 0.2068† 0.6037 0.7883
y9 0.0001† 0.6926 0.6028
y11 0.9265 0.3415† 1.0000
y12 0.9676 0.2452† 0.9325
y13 1 0.0002† 0.9323
y14 1 0.0002† 0.9903
y15 1 0.0002† 0.8999
y16 1 0.0005† 0.5707
y17 0.9220 0.0532† 0.5437
y18 1 0.0004† 0.6961
y19 1 0.3545† 0.8374
y21 0.9631 0.5002 0.3174†

y22 0.7952 0.4122 0.0577†

y23 0.7215 0.4089 0.0936†

y24 0.8499 0.4456 0.0805†

y25 0.7252 0.5928 0.3962†

y26 0.6828† 0.7127 0.8827
y27 0.5553 0.5818 0.4682†

y28 0.2650 0.6801 0.1699†

y29 0.0391† 0.6102 0.1470

TABLE III

DISTANCE BETWEEN DATA AND MODELS (IN THE H∞ NORM). IN EACH

ROW † DENOTES THE MODEL WHOSE OUTPUT BEST MATCHES THE

GIVEN SEQUENCE

selecting as representative of each class the model closest

to its center (e.g., the one solving mini maxj ‖Si − Sj‖∞).

Note that nearest neighbor classification using this metric

can successfully recognize 25 out of the 27 sequences under

consideration; it only confuses 2 sequences, (y26 and y29,

belonging to persons A and C walking up a staircase) as

walking sequences. The failure is due to the fact that in

these instances the experimental data record is too short to

disambiguate between activities.

In the case of distributed data sources, the high costs (both

in bandwidth and computational cost) entailed in sharing

information can be avoided by (i) associating to each source

a set of intrinsic coordinates on a low dimensional manifold,

and (ii) using robust identification techniques [6] to identify

dynamic models for the mappings between the projections

of the different local data sources (e.g., sensors) onto the

respective manifolds (see Figure 21). Then, only these

low dimensional projections need to be exchanged between

nodes, and each node can reconstruct the data observed by

other nodes, simply by applying the interconnecting models.

Figure 21 shows an application of these ideas to the problem

of tracking and disambiguating two virtually identical targets.

G

Fig. 21. Mapping manifolds between 2 sensors used to recreate an
occluded person.

VIII. CONCLUSIONS

Arguably, one of the hardest challenges entailed in exploit-

ing actionable information sparsely encoded in high volume

data streams is the development of scalable, tractable meth-

ods capable of dealing with the extremely large volume of

data [11]. Recent work (manifold embedding [22], compres-

sive sensing, [3], [12], [4]) have led to substantial progress

in addressing this issue. However, these methods stop short

of fully exploiting the gap between data dimensionality and

the rank of the dynamical system underlying the data record.

As shown in this paper, the use of dynamic models as an

information encoding paradigm, can lead to both, substantial

dimensionality reduction and computationally attractive algo-

rithms for data extraction/interpretation. Dynamic structures

can be tractably discovered from the data in a way which

leverages their inherently lower dimensionality. One key

feature is the ability of dynamic representations to pro-

duce quantifiable measures of uncertainty as provable error

bounds on the validity of the data interpretation suggested by

the model. Another is their relative computational simplicity:

in many cases postulating the existence of such a model and

associated invariants (e.g., model order) is enough to develop

computationally attractive, robust solutions to problems such

as segmentation, interpolation and event detection. We be-

lieve that these techniques hold the key to render practical

several applications, ranging from self-aware environments

to automatic discovery of co-regulated genes, that are cur-

rently at the proof–of–concept stage, and where the major

roadblock is precisely the lack of techniques to robustly

handle the extremely high volume of (often relatively low

quality) data.
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