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Abstract--Recent advances in computer technology have 
spurred new interest in the use of feedback controllers based 
upon the use of on-line optimization. Still, the use of 
computers in the feedback loop has been hampered by the 
limited amount of time available for computations. In this 
paper we propose a feedback controller based upon the use 
of on-line contrained optimization in the feedback loop. The 
optimization problem is simplified by making use of the 
special structure of time-optimal systems, resulting in a 
substantial dimensionality reduction. These results are used 
to show that the proposed controller yields asymptotically 
stable systems, provided that enough computation power is 
available to solve on-line a constrainted optimization 
problem considerably simpler than the original. 

1. Introduct ion 
A SUBSTANTIAL NUMBER of control problems can be 
summarized as the problem of designing a controller capable 
of achieving acceptable performance under design con- 
straints. This statement looks deceptively simple, but even in 
the case where the system under consideration is linear 
time-invariant, the problem is far from solved. 

During the last decade, substantial progress has been 
achieved in the design of linear controllers. By using a 
parametrization of all internally stabilizing linear controllers 
in terms of a stable transfer matrix Q, the problem of finding 
the "best" linear controller can be formulated as an 
optimization problem over the set of suitable Q (Boyd et al.,  
1988). In this formulation, additional specifications can be 
imposed by further constraining the problem. However, most 
of these methods can address time-domain constraints only in 
a conservative fashion. Hence, if the constraints are tight this 
approach may fail to find a solution, even if the problem is 
feasible (in the sense of having a, perhaps non-linear, 
solution). 

Classically, control engineers have dealt with time-domain 
constraints by allowing inputs to saturate, in the case of 
actuator constraints, and by switching to a controller that 
attempts to move the system away from saturating 
constraints, in the case of state constraints. Although these 
methods are relatively simple to use, they have several 
serious shortcomings, perhaps the most important being their 
inability to handle constraints in a general way. Hence, they 
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require ad hoc  tuning of several parameters making extensive 
use of simulations. 

Alternatively, the problem can be stated as an 
optimization problem (Frankena and Sivan, 1979). Then, 
mathematical programming techniques can be used to find a 
solution (see for instance Zadeh and Whalen, 1962; Fegley et 
al., 1971, and references therein). However, in most cases 
the control law generated is an open-loop control that has to 
be recalculated entirely, with a considerable computational 
effort, if the system is disturbed. Conceivably, the set of 
open loop control laws could be used to generate a closed 
loop control law by computing and storing a complicated 
field of extremals (Judd et al.,  1987). However, this 
alternative requires extensive amounts of off-line computa- 
tion and of storage. 

Because of the difficulties with the optimal control 
approach, other design techniques, based upon using a 
Lyapunov function to design a stabilizing controller, have 
been suggested (Gutman and Hagander, 1985). However, 
these techniques tend to be unnecessarily conservative. 
Moreover, several steps of the design procedure involve an 
extensive trial and error process, without guarantee of 
success (see example 5.3 in Gutman and Hagander, 1985). 

Recently, several techniques that exploit the concept of 
maximally invariant sets to obtain static (Gutman and 
Cwikel, 1986; Vassilaki et al., 1988; Benzaouia and Burgat, 
1988; Bitsoris and Vassilaki, 1990; Blanchini, 1990; Sznaier, 
1990; Sznaier and Sideris, 1991a) and dynamic (Sznaier and 
Sideris, 1991b; Sznaier, 1991) linear feedback controllers 
have been proposed. These controllers are particularly 
attractive due to their simplicity. However, it is clear that 
only a fraction of the feasible constrained problems admit a 
linear solution. Furthermore, performance considerations 
usually require the control vector to be on a constraint 
boundary and this clearly necessitates a non-linear controller 
capable of saturating. 

Finally, in the last few years, there has been a renewed 
interest in the use of feedback controllers based upon the use 
of on-line minimization. Although this idea was initially 
proposed as far back as 1964 (Dreyfus, 1964), its 
implementation has become possible only during the last few 
years, when the advances in computer technology made 
feasible the solution of realistically sized optimization 
problems in the limited time available. Consequently, 
theoretical results concerning the properties of the resulting 
closed-loop systems have started to emerge only recently. In 
Sznaier (1989) and Sznaier and Damborg (1990) we 
presented a theoretical framework to analyse the effects of 
using on-line optimization and we proposed a controller 
guaranteed to yield asymptotically stable systems. However, 
although these theoretical results represent a substantial 
advance over some previously used ad hoc  techniques, in 
some cases they are overly conservative, requiring the 
on-line solution of a large optimization problem. Since in 
most sampled control systems the amount of time available 
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between samples is very limited, this may preclude the use of 
the proposed controller in many applications. 

In this paper we present  a suboptimal  feedback controller 
for the minimum-t ime control of  discrete t ime constrained 
systems. Following the approach presented in Sznaier and 
Damborg  (1990) this controller is based upon the solution, 
during the sampling interval, of  a sequence of optimization 
problems. We show that by making use of the special 
structure of t ime-optimal systems the proposed algorithm 
results in a significant reduction of the dimensionali ty of  the 
optimization problem that mus t  be solved on-line, hence 
allowing for the implementat ion of the controller for 
realistically sized problems. 

The paper is organized as follows: in Section 2 we 
introduce several required concepts and we present  a formal 
definition to our problem. In Section 3 we present  the 
proposed feedback controller and the support ing theoretical 
results. The main result of  this section shows that by 
relinquishing theoretical optimality we can find a stabilizing 
suboptimal controller that allows for a substantial  reduction 
of the dimensionality of  the optimization problem that must  
be solved on-line. Finally, in Section 4, we summarize  our  
results and we indicate directions for future research. 

2. Problem formulation and preliminary results 
2.1. Statement o f  the problem. Consider  the linear, t ime 

invariant, controllable discrete t ime systems modeled by the 
different equation: 

_Xk+l=Axk+B_uk, k = O ,  1 . . . .  (S) 

with initial condition _Xo, and the constraints 

_Uke~'d~R m, _ x k • ~ R  ~ 
( c )  

~={_x:lG_xl<-y}, ~ = {_u:lW_ul-< ¢o), 

where ), • R p, _to • R q, I/i, °9i 2> O, G • R pn, W • R qm with full 
column rank,  _x, indicates x is a vector quanti ty and where 
the inequalities (C) should be interpreted in a componen t  by 
component  sense. Fur thermore ,  assume as usual  that  m 1 
exists. Our  objective is to find a sequence of admissible 
controls, _uk[_x~ ], that minimizes the transit t ime to the origin. 
Throughout  the paper we will refer to this optimization 
problem as problem (P) and we will assume that it is well 
posed in the sense of having a solution. In Section 3 we give 
a sufficient condition on ~d for (P) to be feasible. 

2.2. Definitions and preliminary results. In order to 
analyse the proposed controller we need to introduce some 
definitions and background theoretical results. We begin by 
formalizing the concept of  null controllable domain and by 
introducing a constraint-induced norm. 

Definition 1. The Null Controllable domain  of (S) is the set 
of all points x • ~3c R n that can be steered to the origin by 
applying a sequence of admissible controls _u~ • ~ c R " ,  such 
that x k • qd, k = O, 1 , . . . .  The  Null Controllable domain of 
(S) will be denoted as C~. The Null Controllable domain in ] 
or fewer steps will be denoted as Cj ~_ C~. 

Definition 2. The Minkowsky Functional (or gauge) p of a 
convex set ~3 containing the origin in its interior is defined by 

A well-known result in functional analysis (see for instance 
Conway, 1990) establishes that p defines a seminorm in R n. 
Fur thermore,  when ~3 is balanced and compact,  as in our  
case the seminorm becomes a norm. In the sequel,  we will 

• - - 1  A 
denote this norm as p(_x)=l lF a_xl[®=[l_xl[~ where 
F = diag (y~ • • • yp). 

Remark  1. The set ~ can be characterized as the unity ball in 
I1'11~- Hence,  a point _x • ~d iff II_xll~ < - 1. 

Next, we formalize the concept of underes t imate  of the 
cost to go. We will use this concept to determine a sequence 
of approximations that converges to the solution of (P). 

Definition 3. Let O be a convex open set containing the 
origin and such that for all the optimal trajectories starting 
out in O, the constraints (C) are not effective, and let Jo(_x) 
be the optimal cost-to-go from the state _x. A function 
g : R"----~ R such that: 

0 -< g(_x) ~ Jo(_x) V_x e ~, 

g(_x) = Jo(_x) V_x • O, 

will be called an underes t imate  of  the cost-to-go relative to 
the set O. 

The following theorem,  where we show that problem (P) 
can be exactly solved by solving a sequence of suitable 
approximations,  provides the theoretical motivation for the 
proposed controller. 

Theorem 1. Let O be the set introduced in Definition 3 and 
let _x~,(~) be the (unconstrained) optimal trajectory 
corresponding to the initial condition ~ e  O. Finally let 
g(_x) :R"----~ R be an underest imate  relative to O. Consider  
the following optimization problems: 

min {J(_x) = N} = rain 1 , (1) 

min {Jm(x) = m - 1 + g(_x,.)} = min 1 + g(Xm) , 

m < N ,  (2) 

subject to (C) where ~ / =  {_Uo, _ul . . . .  }. Then  an optimal 
trajectory, _x~, k = 1, 2 - - - m  which solves (2), extended by 
defining x~ = x~(x°.~), k = m + 1 • • • N, is also a solution of 
(1) provified that-_x~,, e O. 

Proof. The proof follows by noting that the theorem 
corresponds to a special case of Theorem 1 in Sznaier and 
Damborg  (1990), with Lk(_X k, _Uk) --= 1 Q .  

It follows that problem (P) can be exactly solved by using 
the sampling interval to solve a sequence of optimization 
problems of the form (2), with increasing m, until a number  
m o and a trajectory _x k such that _Xm0• O are obtained. 
However this approach presents the difficulty that the 
asymptotic stability of  the resulting closed loop system can 
not be guaranteed when there is not  enough  time to reach 
the region O. 

In our previous work (Sznaier, 1989; Sznaier and 
Damborg,  1990) we solved this dfficulty by imposing an 
additional constraint (which does not affect feasibility) and 
by using an optimization procedure based upon the 
quantization of the control space. By quantizing the control 
space, the attainable domain from the initial condition can be 
represented as a tree with each node corresponding to one of 
the attainable states. Thus  the original optimal control 
problem is recast as a tree problem that can be efficiently 
solved using heuristic search techniques based upon an 
underest imate of  the cost-to-go (Winston,  1984). We 
successfully applied this idea to min imum time and quadratic 
regulator problems. However,  as we noted there,  in some 
cases the results, based upon a worst-case analysis, proved to 
be overly conservative. As a result,  the optimization problem 
quickly became untractable. This phenomenon  is illustrated 
in the following example.  

2.3. A realistic problem. Consider  the min imum time 
control of  an F-100 jet engine. The system at intermediate 
power, sea level static and PLA = 83 ° can be represented by 
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Sznaier (1989): 

0.8907 

0.0237 

A = / 0.0233 

\°L79 
/64.o% 

0.0213 

0.0731 

B = ~ -0 .0357 

~ 0.2212 

\ 0.0527 

0.0474 -0 .0980  0.2616 0 . 0 6 8 9 \  

0.9022 -0 .0202 0.1057 0 . 0 3 1 1 [  

-0 .0149 0.8167 0.2255 0 . 0 2 9 5 I ,  

0.0 0.0 0.7788 0.0 ] 

0.3532 0.3662 0.6489 0.0295 / 

- 0 . 3 7 0 4 \  

-0 .1973 / 

-0 .5538 I '  

G = I ;  ~2={_u•R2:lUll<-31.O;lu21<-200.O}. (3) 

The sampling time for this system is 25 msec. In this case 
equation (21) in Sznaier and Damborg  (1990) yields ~103 
nodes for each level of the tree, which clearly precludes the 
real-time implementat ion of the algorithm proposed there.  

3. Proposed control algorithm 
In this section we indicate how the special structure of 

time-optimal systems can be used to reduce the dimen- 
sionality of the optimization problem that  must be solved 
on-line. Specifically, we use a modification of the Discrete 
Time Minimum Principle to show that the points that satisfy 
a necessary condition for optimality are the corners of a 
subset of ft.  Hence,  only these points need to be considered 
by the optimization algorithm. 

3.1. The modified discrete time minimum principle. We 
begin by extending the Local Discrete Minimum Principle 
(Butkovskii, 1963) to Frechet differentiable terminal-cost 
functions and constraints of the form (C). Note that in its 
original form, the minimum principle requires the state 
constraint set ~ to be open,  while in our framework it is 
compact. 

Theorem 2. Consider the problem (P')  defined as 

min S(XN), 

subject to: 

Xk + I : A_x k + l u k ~= f ( x k ,  Uk),  

(4) 

x0, N given (5) 

II-xk+,ll~ < II_x~ I1.~, (6) 

where S is Frechet differentiable. Let the co-states ~'k be 
defined by the difference equation: 

Ox' - ~ k + l A '  

OS(~N) ~ ,-- 
05' 

(7) 

Finally, define the Hamiltonian as: 

Then,  if: 

n(X-k ,  ~k ,  ~ k )  = l~'kf(X-k, -Uk). (8) 

max ~min I{A_x + B_ull~} < 1, 
Ilsll,~= 1 L t,~t~ 

(9) 

the following results hold; (i) problem (P ' )  is feasible; (ii) for 
any initial condition _x o • ~d the resulting trajectory {_xk} is 

admissible; and (iii) a necessary condition for optimality is: 

H(_x~,  _u~,, V.~) = m i n  H(_x~,, _u, V,~) ,  k = 1 . . . . .  N - 1,  
II~Ouc_Q1 

(10) 
where 

Ql(_Xk, k) = {_u e f-~: {l_xk+lll~--< (1 - e)II-xkll~}, (11) 

where O, is some neighborhood of _u, e > 0 is chosen such 
that Q~ is not empty and where * denotes the optimal 
trajectory. 

Proof. Feasibility follows from (9) and Theorem 3.1 in 
Gutman and Cwikel (1986) (or as a special case of Theorem 
2 in Sznaier and Damborg  (1990)). Since _x0 • ~, ILxoll~-< 1. 
From (9) II_xkll~< 1 and therefore x k • ~3 for all k. To prove 
(iii) we proceed by induction. From (6) it follows that there 
exists • > 0 such that ff2~ is not empty. From the definition of 
ff~l it follows that for any _u k e f~l(_Xk, k) there exists a 
neighborhood O, c Q  I, not necessarily open,  where (6) 
holds. Hence,  if_x k • ~, xk+ ~ =f(X_k, _Uk) • ~V_u k • 0 u. Let gk 
denote a non-optimal feasible trajectory obtained by 
employing the non-optimal control law -UN1 at stage 
k = N - 1. Consider a neighborhood O.  c ~ of u* such 

- -  - N  I 

that the state constraints are satisfied for all the trajectories 
generated employing controls in (9.. For any such trajectory 
g, _a we have: 

Hence: 
S(x_~,) <. S(gN). (12) 

aS ~ ,~_N = 00~_x S, ~,  x* a_x' (f(_N-,,  _au ,) 

X *  * > - ( f ( - N - , ,  fiN-,))--0, (13) 

H(x-~-i, -UN-1, ~P~V 1) O_X Iak f ( -N- ' '  ON--I) 

OS ~k x* u* 
> Ox ~ f ( -N 1' -N--I) 

= H(_x~_I, u* -N - t ,  ~P~ ,). (14) 

Consider now a neighborhood O. c_ Q of u~ such that  all the 
trajectories obtained by replacing _u~ by any other  control in 
O, satisfy the constraints and assume that (10) does not hold 
for some k < N - 1, Then,  there exists at least one trajectory 
g, _a such that: 

n(_x~, _ak, ~p~) < n(_x~, _u,~, ~,~). (15) 

Therefore: 

0 >  ~p;'(f(_x;, -Uk) --f(_x~, _U,~)) = '~'~' ASk+,. (16) 

Hence: 

H(gk+,, _u~+,, ~p;+,)- H(x_~+,, _u~+,, ap;++,) 

= Wt '+, f (gk+,,  u t + l ) -  Wt'+lf(_xt+,, u t+ , )  

o r :  

, af < =Vk'+I(~S,] ]A_xk+ , 0, (17) 
\c,_x Is,~+ / 

H(gk+,,  _ut+,, ~/,t+0 < H(_xt+,, _ut+,. ~/'~,+1)- (18) 

Using the same reasoning we have: 

H(g~+~, _u,L~, ~,;+~) < H(_xL~, _u,~+~, ~,L~), 
: (19) 

H(gN 1, -uk 1, ~P,~-t)<H(-x~,-I,  u* - N , ,  ~ k - 0 .  

From (19) it fol lows that 

0 > ~ , L ,  A_XN = O~S, A_XN = AS, (20) 

against the hypothesis that S(_x,~) was a minimum. 

3.2. Using the modified discrete minimum principle. In this 
section we indicate how to use the results of Theorem 2 to 
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generate a set of points that satisfy the 0ecessary conditions 
for optimality. In principle, we could apply the discrete 
minimum principle to problem (P')  by taking S(_XN)= II_XNll~ 
and solving a sequence of problems, with increasing N, until 
a trajectory _x* and a number N o such that _x~, 0 = 0 are found. 
However note that Theorem 2 does not add any information 
to the problem since; 

, ,  sS(_x~) 
~ON t = ~  ,=_xlo=0.. (21) 

It follows that ~o k = 0Vk, and hence the optimal trajectory 
corresponds to a "singular arc". Therefore,  nothing can be 
inferred a priori about the controls. In order  to be able to 
use the special structure of the problem, we would like the 
co-states, ~p, to be non-zero. 

Consider now the special case of problem (P') where 
S(X-N) = ½ II-XNIl~ (with fixed terminal time N). Let n be the 
dimension of the system (S) and assume that the initial 
condition _x o is such that the origin cannot be reached in N 
stages. Then, from (7): 

W~' = V)~ ~A, 
(22) 

~p~,'_ ~ = _x N :# _0. 

x o 

FIG. 1. Using the discrete minimum principle to limit the 
search. 

It follows (since A is regular) that ~0~ ~ 0 Vk. Furthermore,  
since (S) is controllable, C n (null controllability region in n 
steps) has dimension n (Sznaier, 1989). It follows that, by 
taking N large enough _x N • Cn. Hence an approximate 
solution to (P) can be found by solving (P')  for N such that 
_x N • C~ and by using Linear Programming to find the optimal 
trajectory from x N to the origin. 

Theorem 3. The optimal control sequence 0//= (_u(~'... u,~_ t} 
that solves problem (P') is always in the boundary of the set 
f l .  Further, the control sequence can always be selected to 
be a corner point of such a set. 

Proof. Since the constraints are linear and apt ~ ~ _0, it follows 
that the control _u~ that solves (10) belongs to the boundary 
of the set fil(_x k, k). Further, except in the case of 
degeneracies, i.e. when V~ is parallel to one of the 
boundaries of f~t, the control _uT, must be a corner point of 
the set. In the case of degeneracies, all the points of the 
boundary parallel to the co-state yield the same value of the 
Hamiltonian and therefore the optimal control _u k still can be 
selected to be a corner of fi). 

3.3. Algorithm HMe. In this section we apply the results 
of Theorem 3 to obtain a suboptimal stabilizing feedback 
control law. From Theorem 3 it follows that problem (P')  
can be solved by using the following algorithm. 

Algorithm HMp (Heuristically Enhanced Control using the 
minimum principle). 
(1) Determine • for equation (11) (for instance using Linear 

Programming off-line). Let O = C1, and determine an 
underestimate g(.) relative to O. 

(2) Let _x k be the current state of the system: 
(a) If _x k • Cn, null controllability region in n steps, solve 

problem (P) exactly using Linear Programming. 
(b) If _x k ~ C n generate a tree by considering all possible 

trajectories starting at _x k with controls that lie in the 
corners of the polytope ~l(_Xk, k). Search the tree 
for a minimum cost trajectory to the origin, using 
heuristic search algorithms and g(.) as heuristics. 

(c) If there is no more computation time available for 
searching and the region O has not been reached, 
use the minimum partial cost trajectory that has 
been found. 

(3) Repeat step 2 until the region the origin is reached. 

Remark 2. Note that by solving problem (P')  instead of (P) 
we are relinquishing optimality, strictly speaking, since the 
trajectory that brings the system closer to Cn is not 
necessarily the trajectory that will yield minimum transit time 
to the origin. However,  for any "reasonable" problem, we 
would expect both trajectories to be close in the sense of 

yielding approximately equal transit times (in the next 
section we will provide an example where this expectation is 
met). 

Remark 3. Algorithm HMp considers at each level of the tree 
only the control that lie in the corners of f i t ,  as illustrated in 
Fig. 1, therefore presenting a significant reduction of the 
dimensionality of the problem. However,  the algorithm 
requires finding the vertices of a polytope given by a set of 
inequalities in R m and this is a non-trivial computational 
geometry problem. 

Theorem 4. The closed loop system resulting from the 
application of algorithm //Me to problem (P') is asymptoti- 
cally stable, provided that there is enough computational 
power available to search one level of the tree during the 
sampling interval. 

Proof. From Theorem 2 it follows that II_xkll~ is mono- 
tonically decreasing in ~d. Hence the system is guaranteed to 
reach the region C n. But, since the solution to (P) is known 
in this region, it follows that the exact cost-to-go is a 
Lyapunov function for the system in C n. Thus the resulting 
closed-loop system is asymptotically stable. 

3.4. The heuristic for algorithm HMp. In order  to complete 
the description of algorithm HMp we need to provide a 
suitable underestimate g(_x). In principle, an estimate of the 
number of stages necessary to reach the origin can be found 
based upon the singular value decomposition of the matrices 
A and B, using the same technique that we used in Sznaier 
and Damborg (1990). However,  in many cases of practical 
interest such as the F-100 jet engine of Section 2.3, the 
limitation in the problem is essentially given by the state 
constraints (i.e. the control authority is large). In this 
situation, this estimate yields an unrealistically low value for 
the transit time, resulting in poor performance. 

The performance of the algorithm can be improved by 
considering an heuristic based upon experimental results. 
Recall that optimality depends on having, at each time 
interval, an underestimate g(x) of the cost-to-go. Consider 
now the Null Controllability regions (Ck). It is clear that if 
they can be found and stored, the true transit time to the 
origin is known. If the regions are not known but a 
supraestimate C~ such that C k ~_ C~ is available, a suitable 
underestimate g(_x), can be obtained by finding the largest k 
such that _x e C~, and x ~ C~_ r However,  in general these 
supraestimates are difficult to find and characterize 
(Sznaier, 1989). Hence,  it is desirable to use a different 
heuristic, which does not require the use of these regions. 
From the convexity of f i  and ~d it follows that the regions C k 
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are convex. Therefore, a subestimate Csk such that Csk ~_ Ck 
can be found by finding points in the region C k and taking 
C~k as their convex hull. Once a subestimate of Ck is 
available, an estimate g(_x) of the cost-to-go can be found by 
finding the largest k such that _x e C~k and _x ~ C,k_~. Note 
that this estimate is not an underestimate in the sense of 
Definition 3. Since C~k ~_ Ck then _x k e Ck ~ _xk e C~k and 
therefore g(#k) is not necessarily - k .  Thus, Theorem 1 that 
guarantees that once the set O has been reached the true 
optimal trajectory has been found is no longer valid. 
However, if enough points of each region are considered so 
that the subestimates are close to the true null controllability 
regions, then the control law generated by algorithm Hue is 
also close to the true optimal control. 

3.5. Application to the realistic example. Figure 2 shows a 
comparison between the trajectories for the optimal control 
law and algorithm //Me for Example 2.3. In this particular 
case, the optimal control law was computed off-line by 
solving a sequence of linear programming problems, while 
algorithm Hue was limited to computation time compatible 
with an on-line implementation. The value of e was set to 
0.01 (using linear programming it was determined that the 
maximum value of E compatible with the constraints is 0.025) 
and each of the regions C,k was found as the convex hull of 
32 points, using optimal trajectories generated off-line. Note 
that in spite of being limited to running time roughly two 
orders of magnitude smaller than the computation time used 
off-line to find the true optimal control solution, algorithm 
Hrap generates a solution that takes only 25% more time to 
get to the origin (25 vs 31 stages). 

Figure 3 shows the results of applying algorithm HMp 
when the heuristic is perfect (i.e. the exact transit time to the 
origin is known). By comparing Figs 2 and 3 we see that most 
of the additional cost comes from the approximation made in 
Theorem 2, while the use of an estimate of the cost-to-go 
based upon the subestimates Csk (rather than a " true" 
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underestimate as required by Theorem 1) adds only one 
stage to the total transit time. 

4. Conclusions 
Following the idea presented by Sznaier (1989) and 

Sznaier and Damborg (1990), in this paper we propose to 
address time-domain constraints by using a feedback 
controller based upon the on-line use of a dynamic- 
programming approach to solve a constrained optimization 
problem. Theoretical results are presented showing that this 
controller yields asymptotically stable systems, provided that 
the solution to an optimization problem, considerably 
simpler than the original, can be computed in real-time. 
Dimensionality problems common to dynamic programming 
approaches are circumvented by applying a suitably modified 
discrete time minimum principle, which allows for checking 
only the vertices of a polytope in control space. This 
polytope is obtained by considering the intersection ~ of the 
original control region t2 with the region obtained by 
projecting the state constraints into the control space. The 
proposed approach results in a substantial reduction of the 
dimensionality of the problem (two orders of magnitude for 
the case of the example presented in Section 2.3). Hence, the 
proposed algorithm presents a significant advantage over 
previous approaches that use the same idea, especially for 
cases, such as Example 2.3, where the time available for 
computations is very limited. 

We believe that the algorithm presented in this paper shows 
great promise, especially for cases where the dimension of 
the system is not small. Note however, that the algorithm 
requires the real time solution of two non-trivial computa- 
tional geometry problems in Rn; determining the inclusion of 
a point in a convex hull and finding all the vertices of a 
polytope. Recent work on trainable non-linear classifiers 
such as artificial neural nets and decision trees may prove 
valuable in solving the first problem. 

Perhaps the most serious limitation to the theory in its 
present form arises from the implicit assumptions that the 
model of the system is perfectly known. Since most realistic 
problems involve some degree of uncertainty, clearly this 
assumption limits the domain of application of the proposed 
controller. We are currently working on a technique, 
patterned along the lines of the Norm Based Robust Control 
framework introd,,ted by Sznaier (1990), to guarantee 
robustness margins for the resulting closed-loop system. A 
future paper is planned to report these results. 
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