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AImtraet--A large class of problems frequently encountered 
in practice involves the control of linear time invariant 
systems with states and controls restricted to closed convex 
regions of their respective spaces. In spite of the significance 
of this problem, to date it has not been solved satisfactorily 
except in some restricted cases. In this paper we propose a 
suboptimal feedback control algorithm based upon on-line 
optimization during the sampling interval. Theoretical results 
are presented showing that our approach yields asymptoti- 
cally stable systems. Finally an implementation of the control 
algorithm using an analog circuit is discussed. This 
implementation provides an alternative to the use of digital 
computers in the feedback loop that offers advantages in 
terms of cost and reliability. We believe that it may prove to 
be specially valuable when the time available for 
computations is limited. A 5th-order model of a F-100 jet 
engine is used as an example application of the controller. 

1. Introduction 
A LARGE CLASS of problems frequently encountered in 
practice involves the control of linear, time-invariant, systems 
with states and controls restricted to closed convex regions of 
the respective spaces. For example, the constraints may 
represent physical limitations of the system or they may 
originate in the process of modeling. The latter occurs when 
a complex system is represented by a linear model obtained 
through a linearization around a nominal trajectory. In this 
case the states are constrained to remain in a neighborhood 
of the nominal trajectory where the representation is 
sufficiently accurate. 

In spite of the significance of this problem, it has not been 
solved satisfactorily. There have been several recent attempts 
to design linear and nonlinear feedback controllers for 
constrained systems. However, most of the design proce- 
dures available are severely restricted in their domain of 
application, as discussed in Sznaier and Damborg (1990). 
Another approach casts the problem as an optimization 
problem and then uses the vast machinery available for 
optimization to solve it. This approach is appealing because 
it guarantees an acceptable system response in the sense of 
some performance index. However, in most cases the control 
law generated is an open-loop control law that must be 
recalculated entirely, with considerable computational effort, 
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if the system is disturbed. Recently, we proposed a 
suboptimal controller (Sznaier and Damborg, 1987, 1989, 
1990), based upon on-line optimization, that solves this 
problem and we have shown that the resulting closed-loop 
system is asymptotically stable even in the face of computing 
time restrictions. At this stage, we are conducting tests of 
such controllers in different systems. However, the stability 
results hinge on the availability of a certain minimum time 
for computation, and this minimum depends on the 
dimension of the system. 

In this paper we propose a feedback controller, based 
upon on-line optimization, for the suboptimal minimum-time 
control of a class of systems. The proposed controller can be 
implemented using an analog ("neural") circuit to carry-out 
the on-line minimization. This circuit has the potential to 
perform the minimization very fast, thus offering an 
interesting alternative, that provides advantages in terms of 
cost and reliability, to a digital computer-based 
implementation. 

2. Statement o f  the problem 
We will consider linear, time-invariant, controllable 

discrete-time systems modeled by the difference equation: 

_x~,+t =A_x~, +B_u~,, k =0, 1 . . . .  (1) 

with initial condition _Xo, and the constraints 

_u k • f ~ C R  '~, _x k•~dCRn (2) 

where f~ and qd are compact convex polyhedrons containing 
the origin in their interior and defined by a set of inequalities 
of the form: 

~ =  {_x: IG_xl <-y} 

t~ = {_u:W_u_<~} 

where 7 • Rt', )'i >0,  G is an p * n  matrix such that 
rank (G) = n, W is a q * m matrix, o • R q, - denotes a 
vector quantity and where the I'l and the inequalities should 
be interpreted on a component by component sense. An 
additional hypothesis on the region qd, a constraint 
qualification hypothesis, will be introduced in the next 
section. The objective is to find a sequence of admissible 
controls, _Uk[_Xk], that brings the system to the origin in 
minimum time. The notation _uk[_x~] emphasizes the fact that 
a closed-loop solution is desired. We will call such a 
sequence a "global optimum". This problem will be denoted 
as problem (P) and throughout this paper we will assume 
that (P) is feasible for any initial condition in q3. (In Section 
3 we will show how this assumption can be checked). 

3. Definitions and theoretical results 
In this section we introduce the definitions and theoretical 

results required to support our controller. First we will 
introduce a norm in the set qd and show that there exists a 
control sequence such that this norm defines a Lyapunov 
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function for the system. Then, we will show that a linear 
programming problem can be solved using a penalty function 
method with proper choice of the penalties. This result will 
be used in the next section to find the control sequence 
mentioned above. 

L e m m a  1. Let v(_x) be defined as: 

v(_x) = max /IG-xl ' / .  (3) 
O<--i~P t ~i J 

Then v(.) is a norm in ~d. We will denote this norm as 

The proof of the lemma follows from the definitions of ~d 
and v(.). It also follows that II-xllo-< 1 for all _xe ~3 and 
II_xlL = 1 for _x in the boundary of ~d, 0~d. 

Constraint qualification hypothesis. Throughout this paper 
we will consider systems such that: 

min {llA_x + B_ullo} < 1 ~'_x • 0~d. (4) 
~ 

Condition (4) implies that for any initial condition on the 
boundary of the admissible region there exists a control that 
brings the system to its interior. Since the problem was 
assumed to be feasible in ~d, the only effect of the additional 
constraints is to rule out the possibility of the system staying 
on the boundary for consecutive sampling instants. For the 
class of systems that we are considering in this paper,  
condition (4) can be reduced to a system of linear inequalites 
and checked using linear programming. Note that the 
convexity of f2 implies that satisfaction of (4) is a sufficient 
condition for feasibility of (P) in ~d. 

Theorem 1. Consider problem (P) with the additional 
constraint (4). Then, there exist a control sequence 
o//= {_Uo . . . .  }, _u~, • if2 such that 

II-xk+~llo < [I-x*II, k = 0, 1 • " • V_x o • qd. (5) 

Proof. The proof follows by noting that ~d satisfies the 
constraint qualification conditions [equations (6) and (7)] in 
Sznaier and Damborg (1990) and therefore the theorem 
reduces to a special case of Theorem 2 therein. 

Corollary 1. Consider a point .~ in qd, _x g: 0 and let: 

p(_x) = min ~ IlA_x_ _+ B_u IL / 
u ~  I. II_xlL )" (6) 

Then p(_x) < 1. 

The following theorem shows that a linear programming 
problem can be solved using an exact penalty function 
method. This is the basic result exploited in the 
implementation of our algorithm using an analog circuit. The 
theorem is originally due to Pyne (1956), although in his 
derivation it was assumed that at most only one constraint 
was violated at any given time. In the following proof this 
limitation is removed. 

Theorem 2. Consider the following optimization problems: 

min {L(_x) = _c's} (7) 
8 e ~  

where ~3 is a convex polyhedron defined by 

~ =  (_x :G_x-<7} 

and where _y•R p, G is an p * n  matrix and ' denotes 
transpose. 

min {H(_x) = _c'_x + _6'(G_x - _7)} (8) 

where the components 6~ of _6 are defined by: 

6, = KO[(Gx_ - _),),], K > 0 

0, if x--<0; 
O(x)=  1, otherwise. (9) 

Then, there exist K o such that for K >-Ko, (7) and (8) have 
the same solution. Note that the penalties (6~) in (8) are 
essentially the Lagrange multipliers for the Kuhn and Tucker 
conditions (Luenberger, 1969). 

Proof. Consider a point _x ° outside the region ~d. It follows 
that at least one of the components of _6 is strictly positive. 
Let j(_x °) = {i~, i 2 . . . . .  i , ,} be the set of indices such that 
6i~1~o > 0 and denote the j th  row of G as _N]. (Note that _N~ is 
the outward pointing normal to the hyperplane that bounds 
the j th constraint.) Then H(_x) in (8) can be rewritten as 

H(_x) =c_'x_ + ~'. 6~(N_;_x - Yi)" (10) 
/--I 

Thus we have 

V H = _ c +  ~ 6i_N j 
i=o (11) 

=-~+2 K~. 
./~j 

From the convexity of ~ it follows that if 6iv 6i2 . . . .  ,6ira 
are nonzero simultaneously then _z = _Ni~ + _N~2 + • • • + _N~m ~ 
0. Hence from (11) it follows that: 

- v n ' _~ = - _c ' _z - Z K ~_ ;_z 
~ /  (12) 

= -_c'_z - K_z'_z. 

Therefore, if K is selected such that: 

K >. K o = max~1 {~}c ' z  (13) 

where 1 = {]} (i.e. the set of indices corresponding to all 
possible combinations of constraints that are violated 
simultaneously), then we have that, for every point _x°~ ~ 
there exist a vector go such that -VH'z_  ° < 0. It follows that 
H can have a minimum only in the region ~ (where 
~(_~) = ~ ( _ x ) ) .  [ ]  

Note that the maximization in (13) is well defined since I is 
a finite set. Note also that condition (13) reduces to the 
condition obtained by Pyne (1956), for the special case when 
it is assumed that at most only one constraint is violated at a 
given time. 

4. Proposed control algorithm 
It is well known that problem (P) can be solved for 

formulating a sequence of linear programs. This approach 
was used by Gutman (1986) to design a feedback controller 
for a reservoir based upon the use of on-line optimization. 
However, this approach presents the difficulty that 
asymptotic stability of the closed-loop system is guaranteed 
only if there is enough computation time available to expand 
the sequence of linear programs until a complete solution to 
the problem is obtained. A d  hoc techniques (Gutman, 1986) 
have been proposed to obtain a control law when there is not 
enough time available to compute a complete solution, but 
they can not guarantee asymptotic stability. Further, it is not 
guaranteed that the control law generated by these ad hoc 
techniques is a "sensible" control strategy, i.e. one that will 
steer the system in a convenient direction. In this paper we 
will concentrate in the stability aspects of the problem 
presenting a controller that is guaranteed to yield an 
asymptotically stable system while complying with all the 
restrictions. As a result, our controller is only suboptimal. 
However, we expect this controller to perform well 
compared with the true minimum time solution. Sectiou 4 
provides an example where this expectation is met. 

From Theorem 1 and its corollary, it follows that for any 
point _x e ~ there exists a control _u(_x) e ff~ such that the ratio 
0 of the norm of the state resulting from applying the control 
_u(_x) at _x to the norm of _x is strictly smaller than 1. Consider 
now the control law _u~(_x~) obtained by minimizing the value 
of 0 at each stage, i.e. 

_u~ = argmin {0(_x~)} (14) 
~ff~ 
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where 
p(_x) IIA_x + B_ullo__ II_xk+dlo (15) 

II-xllo II-x~llo 
We will call the sequence ~ a "local optimum" and use it as 
our control law. Hence we have the following algorithm. 

Control algorithm. Let  k be the current time instant, _xt the 
current state of the system and _u~ the control law computed 
during the last sampling interval. Then 

Repeat until the origin is reached: 
Begin: 
(1) use _u~ as control for the next interval 
(2) compute _x = A_x~ + B_u~ 
(3) find _u~÷l by solving (14) 
End. 

Note that when using _u*, II_xllo becomes a Lyapunov 
function for the system (since from Corollary 1, p (x )<  1, 
(15) implies that II-x~+dl~<lLx~llo) and hence asymptotic 
stability is guaranteed. With this choice of Lyapunov 
function, it is apparent that our algorithm is related to the 
well known technique of maximizing the rate of decrease of a 
Lyapunov function [see for instance Kalman and Bertram 
(1960)]. However, our choice of v(_x) guarantees that the 
algorithm is applicable to the entire domain of definition of 
the problem (rather than to a subset as is the case when using 
quadratic Lyapunov functions). Note also that the "local 
optimum" strategy is shortsighted in the sense that it 
minimizes the norm of the target state in one step as opposed 
to the "global optimum" sequence that minimizes the transit 
time to the origin. Clearly the two strategies do not coincide 
in general, although it is reasonable to expect similar 
behavior in the region far from the origin. 

5. Implementation o f  the proposed control algorithm using a 
neural net 

From (14) we have that, given the present state of the 
system _x~, _u~ and pk can be computed by solving the 
following optimization problem 

min p (16) 
g ~  

subject to 

IIA_x~ + B_ulL = p II-Xklto 

or equivalently, by using the definition of v(_x) 

min fl (17) 
subject to 

-i~], + GBo < -GAx_ k 
(18) 

-i~y_ - GB_u < GAx_~ 

where 
~ = p II_xkllo. 

Note that equations (17) and (18) define a linear 
programming problem that must be solved at each sampling 
interval. Rather than solving this problem using an on-board 
digital computer, we will follow an approach similar to those 
in Pyne (1956), Tank and Hopfield (1986) and Kennedy and 
Chua (1988), and use an analog circuit. 

Consider a Hopfield continuous neural net (Hopfleld and 
Tank, 1985). Each "neuron" is an analog element with its 
dynamics given by: 

d_~y~=_ldt c, (,__~ T~,x, + /~-Y~)  (19) 

where g~ is a continuous, monotonically increasing function 
as illustrated in Fig. la. Hopfield and Tank (1986) showed 
that a problem of type (8) can be approximately solved 
employing a network with two types of amplifiers 
("graded-response neurons"): (i) linear amplifiers, each one 
representing a variable; and (ii) nonlinear amplifiers, each 
one representing one of the Lagrange multipliers 6~ in (8). 

The topology of the network is illustrated in Fig. lb. The 
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amplifier representing the ith variable has a bias current 
input I i = c i and is connected to each of the amplifiers 
representing the constraints, with interconnecting weight to 
the jth constraint given by T i j = G  q. The amplifier 
representing the jth constraint has a bias current input / /=  Yi 
and is connected to each of the amplifiers representing the 
variables, with interconnecting weight to the ith variable 
given by ~i = G~i. Note that when the neurons representing 
the variables are implemented using operational amplifiers 
with very large input impedance the last term in equation 
(19) vanishes and this network coincides with the dynamical, 
canonical, nonlinear programming circuit of Kennedy and 
Chua (1988). Hence, provided that the constraint amplifiers 
are sufficiently fast, the network converges without 
oscillations to a minimum of the total co-content function of 
the network, given by 

(~(x) = c'x ~"~ f ' v~-  rJ g(z) dz. (20) 
- - - + j = l  ,.t o 

Comparing equations (20) and (8) it follows that by selecting 
g(-) as any continuous function sufficiently close to the 
transfer function of a "hard limiter" (such as a sigmoid), 
G(x_)-H(_x) to any desired accuracy. From the result of 
Theorem 2 we have that, with proper choice of the weights, 
the minimum of H coincides with the minimum of the 
original LP problem (7). Therefore a circuit of this form can 
be used during the sampling interval to find the "local 
optimum" control sequence _u~, by solving the problem 
defined by (17) and (18). By identifying the corresponding 
terms in (7), (8), (17) and (18) we have 

H(#, u) --- ,u + _6'[(-#y + GB_u + GA~:~,)', 

( - # y -  GBu - GA_Xk)']. (21) 



142 Brief Paper 

Hence 

_c r = (1, 0 .  -- 0) 

6~ = K O ( - I ~ y  + GB_u + GAx_k)~, 

6~+p = KO(-~y- GB_u - GAx_k)~, i = 1, p (22) 

1~ = 1, lg=0;  i = 2 ,  m + l  

T~i= - ),iTL~+p= - y , ;  i = l ,  p 

T~+Lj=(GB)q, Ti+la+p =- (GB)~f i  i = l , m ;  j = l , p .  

A difficulty with the proposed circuit arises from the 
potentially damaging effects of nonlinear phenomena in the 
amplifiers, including saturation, that we have neglected so 
far. However, note that although the op-amps representing 
the variables have been assumed linear, our results hold as 
long as the feedback configuration used functions as an 
integrator, which depends (as long as there is no saturation) 
only on the assumptions of very large gain and input 
impedance. Furthermore, saturation has the effect of limiting 
the variables to the closed hypercube ~ given by 

~ = {_X : Umi n <~X i ~ lJmax}. 

Therefore, by scaling the problem so that ~ _  ~ saturation 
effects can be avoided. Note also that in this case condition 
(13) guarantees that for any initial condition in ~ the net 
converges to the desired solution. 

Another problem arises from the difficulty in estimating 
the convergence time of the net. An order of magnitude 
estimate of the speed of convergence had been proposed by 
Wolfe in a discussion appearing with Pyne (1956), by 
assuming that the system moves along the line determined by 
the intersection of n - 1 constraints and averaging this value 
over all possible directions in n-space. In this case the 
velocity at which the state moves is given by 
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~u 
v = - -  (23) 

n 

where v.  is the unconstrained velocity. In the next section we 
will make use of this formula to estimate the convergence 
time of  the network in a particular application. 

6. A n  example  
As an example application of  our controller, we will 

consider the problem of minimum time control of an F-100 
jet engine. The system at intermediate power,  sea level static 
and Power Lever Angle (PLA) = 83 ° can be represented by a 
model with five states and five controls (DeHoff et al., 1977). 
However, two of these controls are sufficient to control the 
system. Therefore, for simplicity, we will use only two 
controls. Hence, after discretizing and normalizing, we have: 

0.8907 0.0474 -0.0980 0.2616 0.0689 

0.0237 0.9022 -0.0202 0.1057 0.0311 

A = 0.0233 -0.0149 0.8167 0.2255 0.0295 

0.0 0.0 0.0 0.7788 0.0 

-0.0979 0.3532 0.3662 0.6489 0.0295 

/ 5 0 . 0  \ 

//  0.0213 -0.3704 / 

0.0731 -0.1973 

B = I - 0 . 0 3 5 7  -0.5538 

~ 0.2212 0.0 

\ 0.0527 -3.9068 

(24) 

G = I: ff2 = {_u e R2:  [utl <- 31.O; lu21<- 200.O}. 

The sampling time for this system is 25 msec. The network 
was assumed to be constructed of operational amplifiers 
acting as switches, adders and integrators, and simulated 
using a digital computer. In order to be consistent with a 
physical implementation, the following values where chosen 
for the components: x~ (voltages) - volts, 1 i (bias currents) -- 
mA, 1/T 0 - - K Q ,  Ci (capacitance for the in t eg ra to r s ) -  0.1 to 
10 nF, K = 2 volts [from (13)]. 

With thse values, (23) yield an estimate of 0.1 - I msec for 
the neural net to converge to the next control sequence. This 
is consistent with the observed convergence time for a typical 
iteration, as shown in Fig. 2, and well below the maximum 
time of 25 msec available for computations. 

Figure 3 shows the states of the system, for the initial 
condition: 

_x0= (50.0, 0.0, 0.0, 0.0, 0.0)' 

when using the strategy _u* versus the true minimum. Note 
that the "local opt imum" strategy takes on the order of one 
and a half times longer to drive the states to zero than the 
true minimum controller. As we mentioned before, this is 
due to the fact that the "local minimum" strategy is 
suboptimal, minimizing the norm of the next state of the 
system rather than the total transit time to the goal. Note 
also that the conservative nature inherent to the Lyapunov 
function based design is apparent in the fact that the states 
are precluded from riding the boundaries of the admissible 
region, as is the case with the true optimal controller. 

7. Conclusions 
Most realistic control problems involve some types of 

constraints. However,  up to date there are no feedback 
controllers that allow dealing with this class of problems 
except in restricted cases. In this paper we propose a 
suboptimal minimum time controller, based upon on-line 
optimization, for systems with linear state and control 
inequality constraints. In the first portion of the paper we 
present theoretical results showing that our control algorithm 
yields asymptotically stable closed-loop systems. In the 
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second portion of the paper, we show that our control 
algorithm can be implemented using an analog neural net. 

Although the proposed controller is overly conservative 
due to the incorporation of the stability results, experiments 
show that it performs reasonably well when compared with 
the true optimal controller. We believe that our controller 
may provide significant advantages over the controllers 
available at the present time for the control of constrained 
systems. In particular, the analog circuit implementation has 
the potential to carry-out the required minimization very 
fast, thus providing an alternative to the use of a digital 
computer in the feedback loop. This alternative offers 
advantages in terms of cost and reliability and may prove to 
be specially valuable when the time available for 
computations is limited. 
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